Name:
Pledge:

Math 434 HW 2

Due Wednesday $3 / 2$ at beginning of class.
(1) Let V be a vector space with basis $v_{1}, v_{2}, \ldots, v_{n}$ and let $c \in F$ be a scalar. Show that the list

$$
v_{1}+c v_{2}, v_{2}, \ldots, v_{n}
$$

is also a basis of V. (More generally, it should be clear to you that replacing any basis vector v_{i} in the original list with $v_{i}+c v_{j}$, for $i \neq j$, will still result in a basis of V.)
(2) Let $T: V \rightarrow W$ be a linear map between finite dimensional vector spaces. Show that there exists a subspace U of V so that by restricting the domain of T to U, one gets an isomorphism from U to range T. (Hint: study the proof of Theorem 3.22.)
(3) Let $T: V \rightarrow W$ be a linear map between finite dimensional vector spaces. Show that there exists bases of V and W so that, with respect to these bases,

$$
\mathcal{M}(T)_{j, k}= \begin{cases}1, & \text { if }(j, k)=(i, i) \text { and } i \leq \operatorname{dim} \operatorname{range} T \\ 0, & \text { otherwise }\end{cases}
$$

In other words, show there exist bases of V and W so that $\mathcal{M}(T)$ looks like

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & & 0 \\
& \vdots & & \ddots & \vdots \\
0 & 0 & 0 & \cdots &
\end{array}\right)
$$

where the number of 1 s down the main diagonal is equal to the dimension of range T. (Hint: study the proof of Theorem 3.22.)
(4) Consider the linear map $S: F^{4} \rightarrow F^{4}$ defined by:

$$
S\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=\left(a_{1}+a_{2}+a_{3}+a_{4}\right) \cdot(1,1,1,1)
$$

(a) Write down the matrix for S, with respect to the standard basis of both the domain and codomain.
(b) Construct bases of the domain and codomain so that the matrix $\mathcal{M}(S)$ has the form of problem 3 (and write down this matrix). One bonus point for you if you are able to use the same basis for both domain and codomain.

