Name:
Pledge:

Math 434 HW 3

Due Friday $4 / 15$ at beginning of class.
(1) Suppose that $S, T \in \mathcal{L}(V)$, where V is a finite dimensional vector space over \mathbb{C}. If $S T=T S$, show that S and T have a common eigenvector.
(2) Find an orthonormal basis (with respect to usual dot product) for the subspace of \mathbb{R}^{5} spanned by:

$$
(1,1,0,-1,0),(-1,1,1,1,1),(1,-1,1,0,1),(1,1,-1,-1,0) .
$$

Find the vector in this subspace that is closest to $(1,2,3,4,5)$, in the sense of usual euclidean distance.
(3) Let V be a finite dimensional vector space. An operator $T \in \mathcal{L}(V)$ is said to be nilpotent if $T^{n}=0$ for some positive integer n. Must a nilpotent operator have an eigenvalue? Describe the eigenvalues of T.
(4) Consider $T \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ defined by

$$
T(x, y)=(x-y, 2 y-x)
$$

Find the eigenvalues of T.
Bonus! (1 point each)
(1) Figure out how the operator in problem 4 above relates to the Fibonacci numbers. Use the eigenvectors of that operator to find a formula for the Fibonacci numbers. See book or ask me for hints.
(2) Let V be a finite dimensional vector space. Consider the space

$$
V^{\prime}=\mathcal{L}(V, F)
$$

Let $v_{1}, v_{2}, \ldots, v_{n}$ be a basis for V. For $i=1,2, \ldots, n$ define $v_{i}^{\prime} \in V^{\prime}$ by

$$
v_{i}^{\prime}\left(v_{j}\right)= \begin{cases}1 & \text { if } j=i \\ 0 & \text { if } j \neq i\end{cases}
$$

Show that $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}$ is a basis of V^{\prime}.
(3) Let V be finite dimensional and let T be an operator on V. Define $T^{\prime} \in \mathcal{L}\left(V^{\prime}\right)$ by

$$
T^{\prime}(f)=f T
$$

(You should mentally check this defines an operator on V^{\prime}. Ask me if you do not understand the notation.) Let $v_{1}, v_{2}, \ldots, v_{n}$ be a basis for V. Describe the relationship of the two matrices

$$
\mathcal{M}(T)_{v_{1}, v_{2}, \ldots, v_{n}} \quad \text { and } \quad \mathcal{M}\left(T^{\prime}\right)_{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}}
$$

to each other.

