	Instructor: Josh Ducey Assignment: Qualifier 5: Exp, Log, and Program: 199E: Precalculus/Algebra Trig Functions Gateway Test Bank: MyMathTest: Basic Algebra, Precalculus and Calculus
1.	The point given below is on the terminal side of an angle θ . Find the exact value of each of the six trigonometric functions of θ .
	(24, -7)
	$\sin \theta = $ (Type an integer or a simplified fraction.)
	$\cos \theta = $ (Type an integer or a simplified fraction.)
	$\tan \theta = \Box$ (Type an integer or a simplified fraction.)
	$\cot \theta = $ (Type an integer or a simplified fraction.)
	$\sec \theta = \Box$ (Type an integer or a simplified fraction.)
	$\csc \theta = \Box$ (Type an integer or a simplified fraction.)
2.	Let θ be an angle in standard position. Name the quadrant in which θ lies.
	$\sin \theta > 0$, $\cot \theta > 0$
	The angle θ lies in which quadrant?
	O II
	O I
	O III
	O IV
3.	Find two values of θ , $0 \le \theta < 2\pi$, that satisfy the following equation.
	$\cos \theta = \frac{\sqrt{2}}{2}$
	$\theta = \square$ (Use integers or fractions for any numbers in the expression.)

Student:	
Date:	
Time.	

Instructor: Josh Ducey

Program: 199E: Precalculus/Algebra

Gateway

Test Bank: MyMathTest: Basic Algebra,

Precalculus and Calculus

4. Solve the logarithmic equation. Be sure to reject any value of x that is not in the domain of the original logarithmic expressions. Give the exact answer.

$$\log_5(x+119) + \log_5(x-5) = 3$$

Select the correct choice below and, if necessary, fill in the answer box to complete your answer.

 \bigcirc A. $x = \bigcirc$ (Simplify your answer. Use a comma to separate answers as needed.)

OB. There is no solution.

5. Find the exact value of the logarithm without using a calculator.

log ₉81

 $\log_{9}81 =$

6. Solve the following exponential equation by expressing each side as a power of the same base and then equating exponents.

$$16^{x+5} = 256^{x-9}$$

$$\mathbf{x} =$$

7. Use the given triangles to evaluate the following expression. If necessary, express the value without a square root in the denominator by rationalizing the denominator.

cos 45°

Assignment: Qualifier 5: Exp, Log, and

Trig Functions

 $\cos 45^{\circ} =$

(Simplify your answer. Type an exact answer, using radicals as needed. Use integers or fractions for any numbers in the expression. Rationalize all denominators.)

Date:	Instructor: Josh Ducey Program: 199E: Precalculus/Algebra Gateway Test Bank: MyMathTest: Basic Algebra, Precalculus and Calculus	
8.	Solve the following logarithmic equation. Be sure to reject any value of x that is not in the domain of the original logarithmic expression. Give the exact answer. $\log_2(3x+7) = 5$ $x = \boxed{\text{(Type an integer or a simplified fraction.)}}$	
9.	Solve the following exponential equation. Express the solution set in terms of natural logarithms. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. $8^{2x} + 8^x - 30 = 0$	
	What is the solution in terms of natural logarithms? $x = $	
10.	Solve the following exponential equation by expressing each side as a power of the same base and then equating exponents. $125^{x} = \frac{1}{\sqrt{5}}$	
	$\mathbf{x} = \square$	