Name: Pledge:

Math 411 Final

Due Wednesday May 2 at 12:30pm.

Slip exam under door of my office (Roop 339).

You may use your book, your notes, and me for help.

No other sources.

- (1) (Part I 15 points)
 (a) If E is measurable, show that E + x is measurable.
 - (b) Let $f : \mathbb{R} \to \mathbb{R}$. If f is measurable, show that g(x) = f(x+t) is measurable, for any t.
 - (c) If $f \in \mathcal{L}_1$, show $g \in \mathcal{L}_1$ and $\int f = \int g$.

(2) (Part II - 15 points)

(a) Let $f \in \mathcal{L}_1(\mathbb{R})$. Carefully prove that $\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) \cos(nx) dx = 0.$

(b) Let
$$E \subseteq \mathbb{R}$$
 be closed, let $f: E \to \mathbb{R}$ be continuous.
Construct a continuous function $g: \mathbb{R} \to \mathbb{R}$ that agrees with f on E .

(c) Let (f_n) be a sequence of measurable functions converging pointwise a.e. to a real-valued function f on a measurable set D of *arbitrary* measure. Show there exist measurable sets $E_1 \subseteq E_2 \subseteq \cdots \subseteq D$ so that $(f_n) \to f$ uniformly on each E_k and $m((\bigcup_{k=1}^{\infty} E_k)^c) = 0$.

- (3) (Bonus!) 1 point each.
 - (a) Tell me something you learned from one of the presentations. (Not your own.)
 - (b) Let $1 . Show that <math>\mathcal{L}_p \not\subset \mathcal{L}_q$.
 - (c) Let $1 . Show that <math>\mathcal{L}_q \not\subset \mathcal{L}_p$.