Name: Pledge:

Math 411 Midterm

Due Friday March 30 at start of class.

You may use your book, your notes, and/or me for help. No other sources.

- (1) (Part I 15 points)
 - (a) Show that the simple integrable functions are dense in L_1 by applying the Dominated Convergence Theorem to our basic construction (Lebesgue Ladder).
 - (b) Let $f, f_n \in L_1[a, b]$. Show that $f_n \to f$ uniformly on [a, b] implies that $f_n \to f$ in $L_1[a, b]$. Is the result true if [a, b] is replaced by \mathbb{R} ?
 - (c) Suppose the sequence of measurable functions $\{f_n\}$ is cauchy in measure, and that some subsequence $\{f_{n_k}\}$ converges in measure to a measurable function f. Show that $f_n \to f$ in measure.

(2) (Part II - 15 points)

Prove that L_1 is complete by following the steps below.

- (a) Show that any cauchy sequence $\{f_n\}$ in L_1 is cauchy in measure. (Use Chebyshev.)
- (b) Given a sequence $\{f_n\}$ cauchy in measure, apply the theorem of Riesz to produce a function f to which some subsequence $\{f_{n_k}\}$ converges pointwise almost everywhere. Show that $f_n \to f$ in L_1 . (Use Fatou to estimate $||f_{n_k} f||$.)
- (c) Put all of this together for a complete proof, remembering to check any and all details.
- (3) (Bonus!) Compute the limits in exercise 44, page 332.
 (1/2 point for each.)