Invariants of an Incidence Matrix Related to Rota's Basis Conjecture

Adam Zweber, Xuyi Guo, Stephanie Bittner, and Mike Cheung

July 20, 2012

(ロ) (四) (注) (注) (注) (

Xuyi Guo, Adam Zweber, and Stephanie Bittner

Rota's Basis Conjecture (again)

Recall Rota's Basis Conjecture states that given a set of n bases for an n – dimensional vector space, one can always make n, disjoint bases each containing one vector from each of the original bases.

Rota's Basis Conjecture (again)

- Recall Rota's Basis Conjecture states that given a set of n bases for an n – dimensional vector space, one can always make n, disjoint bases each containing one vector from each of the original bases.
- We can think of these in terms of "rainbow" sets of vectors.

<i>a</i> 1	a 2	• • •	an
b_1	b ₂	• • •	b _n
÷	÷		÷
k_1	k_2		k _n

We will use *transversal* to refer to any rainbow set of vectors whether they form a basis or not.

イロン 不同 とくほう イロン

Xuyi Guo, Adam Zweber, and Stephanie Bittner

The Incidence Matrix for Disjointness of Transversals

Consider the matrix A_n which has rows and columns indexed by transversals (rainbow sets of vectors) of dimension n, and has a 1 in the *i*, *jth* spot if the transversal at *i* and the transversal at *j* are disjoint and a 0 otherwise.

The Incidence Matrix for Disjointness of Transversals

- Consider the matrix A_n which has rows and columns indexed by transversals (rainbow sets of vectors) of dimension n, and has a 1 in the i, jth spot if the transversal at i and the transversal at j are disjoint and a 0 otherwise.
- ► A_n may also be called the adjacency matrix for the graph in which the transversals are the vertices, connected by an edge if they are disjoint.

イロン 不同 とくほう イロン

The Incidence Matrix for Disjointness of Transversals

- Consider the matrix A_n which has rows and columns indexed by transversals (rainbow sets of vectors) of dimension n, and has a 1 in the *i*, *jth* spot if the transversal at *i* and the transversal at *j* are disjoint and a 0 otherwise.
- ► A_n may also be called the adjacency matrix for the graph in which the transversals are the vertices, connected by an edge if they are disjoint.

• A_n has dimension $n^n \times n^n$ Here is an example for n = 2

$$\begin{array}{c} (a_1, b_1) & (a_1, b_2) & (a_2, b_1) & (a_2, b_2) \\ (a_1, b_1) & \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ (a_2, b_1) & \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \\ \end{array} \right)$$

Xuyi Guo, Adam Zweber, and Stephanie Bittner

A_n for n = 3 and n = 5

・ロン ・四 と ・ ヨ と ・ ヨ と …

Xuyi Guo, Adam Zweber, and Stephanie Bittner

Smith Normal Form

The Smith Normal Form (SNF) is a diagonal form of an integer matrix that can be obtained by multiplying the matrix on the left and right sides by unimodular (*determinant* = ±1) invertible square integer matrices.

イロト 不得 トイヨト イヨト 二日

Smith Normal Form

- The Smith Normal Form (SNF) is a diagonal form of an integer matrix that can be obtained by multiplying the matrix on the left and right sides by unimodular (*determinant* = ±1) invertible square integer matrices.
- ► The SNF can be defined for any matrix with entries in the integers, such as A_n

(ロ) (四) (注) (注) (注) (

Smith Normal Form

- The Smith Normal Form (SNF) is a diagonal form of an integer matrix that can be obtained by multiplying the matrix on the left and right sides by unimodular (*determinant* = ±1) invertible square integer matrices.
- ► The SNF can be defined for any matrix with entries in the integers, such as A_n
- The entries on the diagonal of SNF are called the *invariant factors*. They will also be integers, with each entry being a divisor of the subsequent ones.

(ロ) (四) (注) (注) (注) (

Smith Normal Form continued

Over a field

$$PXQ = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

Over the integers

$$PXQ = \begin{pmatrix} s_1 & 0 & \cdots & 0 \\ 0 & s_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_N \end{pmatrix}$$

(日) (图) (문) (문) (문)

Xuyi Guo, Adam Zweber, and Stephanie Bittner

Smith Normal Form continued

Over a field

$$PXQ = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

Over the integers

$$PXQ = \begin{pmatrix} s_1 & 0 & \cdots & 0 \\ 0 & s_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_N \end{pmatrix}$$

(日) (图) (문) (문) (문)

Here is a non-square example

$$X = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, P = \begin{pmatrix} 1 & 0 \\ 4 & -1 \end{pmatrix}, Q = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$
$$SNF(X) = PXQ = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}$$

Xuyi Guo, Adam Zweber, and Stephanie Bittner

Why Smith Normal Form

 The SNF is unique for a given matrix and is not affected by permuting the columns/rows

・ロ・ ・四・ ・ヨ・ ・ ヨ・

3

Xuyi Guo, Adam Zweber, and Stephanie Bittner

Why Smith Normal Form

- The SNF is unique for a given matrix and is not affected by permuting the columns/rows
- Determinants of submatrices. dk indicates the GCF of all submatrices of dimension k × k of the matrix.

$$s_{1} = d_{1} \qquad X = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

$$s_{1}s_{2} = d_{2} \qquad \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} = -3, \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} = -6, \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} = -3$$

$$s_{2} \dots s_{N} = d_{N} \qquad SNF(X) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Xuyi Guo, Adam Zweber, and Stephanie Bittner

S1

Dimensions 2, 3, 4, and 5

- We computed the SNF of A_n for n = 2, 3, 4, 5
- The first entry in the ordered pair denotes the value of the integer that appears in SNF and the second entry denotes its multiplicity (i.e. (1,10) indicates that 1 appears on the SNF diagonal 10 times.)

So
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}$$
 would be $((1,1), (3,1))$

Xuyi Guo, Adam Zweber, and Stephanie Bittner

A Pattern

Dimension	SNF
2	((1,1),(1,2),(1,1))
3	((1,8),(2,12),(4,6),(8,1))
4	((1,81),(3,108),(9,54),(27,12),(81,1))
5	((1,1024),(4,1280),(16,640),(64,160),(256,20),(1024,1))

Xuyi Guo, Adam Zweber, and Stephanie Bittner

A Pattern

Now we multiply the entries of the ordered pairs together and factor.

Dimension

$$\begin{array}{rcl} 2 & (1^2\binom{2}{0}, 1^2\binom{2}{1}, 1^2\binom{2}{2}) \\ 3 & (2^3\binom{3}{0}, 2^3\binom{3}{1}, 2^3\binom{3}{2}, 2^3\binom{3}{3}) \\ 4 & (3^4\binom{4}{0}, 3^4\binom{4}{1}, 3^4\binom{4}{2}, 3^4\binom{4}{3}, 3^4\binom{4}{4}) \\ 5 & (4^5\binom{5}{0}, 4^5\binom{5}{1}, 4^5\binom{5}{2}, 4^5\binom{5}{3}, 4^5\binom{5}{4}, 4^5\binom{5}{5}) \end{array}$$

-

Xuyi Guo, Adam Zweber, and Stephanie Bittner

The Smith Normal Form of A_n which denotes the incidence matrix for disjointness of transversals for dimension n will have entries given by

$$((n-1)^k, (n-1)^{n-k} \binom{n}{k})$$

where k indicates we are referring to the kth ordered pair (starting at k = 0 and ending at k = n)

Xuyi Guo, Adam Zweber, and Stephanie Bittner

The Eigenvalues of A_n

- Graph theorists interested in eigenvalues of incidence matrices
- The eigenvalues, λ₁, λ₂,..., λ_k of any matrix are related to the invariant factors s₁, s₂,..., s_k by the fact that Π^k_{i=1} λ_i = Π^k_{i=1} s_i
- ▶ Data suggest the eigenvalues of A_n are the conjectured invariant factors up to sign, i.e. we suspect that the eigenvalues of A_n all equal ±(n − 1)^k for k = 0, 1, ..., n

Xuyi Guo, Adam Zweber, and Stephanie Bittner

Recall...

We conjectured that the invariant factors of A_n are given by (n − 1)^k each with multiplicity (n − 1)^{n-k} (ⁿ_k).

イロト イヨト イヨト イヨト 三日

Recall...

► We conjectured that the invariant factors of A_n are given by (n-1)^k each with multiplicity (n-1)^{n-k} (ⁿ_k).
because

Observe...

- ► For a fixed transversal z = (a_i, b_j,..., c_l), (n − 1)^{n-k} (ⁿ_k) is the number of transversals with exactly k elements in common with z.
- What happens when we use this fact to index the rows and columns of A_n?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

Then A_n looks like this...

$$A_{n} = \begin{pmatrix} A_{0,0} & A_{0,1} & \cdots & A_{0,n} \\ A_{1,0} & A_{1,1} & \cdots & A_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n,0} & A_{n,1} & \cdots & A_{n,n} \end{pmatrix}$$

Block A_{i,j} contains rows indexed by transversals with i elements in common with some fixed z and columns indexed by transversals with j elements in common with z

► $A_{i,j}$'s have constant row sums $(n-1)^i(n-2)^{(n-i-j)}\binom{n-i}{j}$

Xuyi Guo, Adam Zweber, and Stephanie Bittner

Lemma (Van Lint) Let M be a matrix of size m by m which has the form

$$M = \begin{pmatrix} M_{1,1} & M_{1,2} & \cdots & M_{1,k} \\ M_{2,1} & M_{2,2} & \cdots & M_{2,k} \\ \vdots & \ddots & \cdots & \vdots \\ M_{k,1} & M_{k,2} & \cdots & M_{k,k} \end{pmatrix}$$

Where each $M_{i,j}$ is a submatrix of size m_i by $m_j(i = 1, 2, ..., k; j = 1, 2, ..., k)$. Suppose that for each i and j the matrix $M_{i,j}$ has constant row sums b_{ij} . Let B be the matrix with entries b_{ij} . Then each eigenvalue of B is an eigenvalue of M.

イロト 不得 トイヨト イヨト 二日

Xuyi Guo, Adam Zweber, and Stephanie Bittner

A_3 indexed with respect to disjointness

(0	0	0	0	0	0	0	1	1	0	0	0	1	0	1	0	0	0	0	0	1	0	1	0	1
	0	0	0	0	0	1	1	0	0	1	1	0	1	1	1	1	0	0	0	0		1	1	1	1
	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	0	0		0	0	1	1
	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	1	0	1	1
	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0		0	1	0	0
	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0	1	1	0	0
	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	0	1		1	0	1	0
-	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	1	0	1	0
	1	0	0	0	1	1	0	0	0	0	0	0	1	1	0	1	1	1	0	1		0	0	0	1
	0	1	1	0	0	1	1	0	0	0	0	0	1	1	1	1	1	1	1	1		0	0	0	1
	0	0	1	0	0	0	T	0	0	0	0	0	0	T	1	0	0	T	1	0		0	0	0	1
	1	0	1	1	0	0	0	1	0	1	0	0	1	0	1	0	1	0	1	1		0	1	1	1
	1	0	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	1	1	0	0	1	1	0
	1	1	0	1	0	0	0	0	1	0	1	0	0	0	0	0	1	1	1	1		1	1	1	0
	T	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	1	0	0		1	0	0	0
	0	0	1	T	0	0	0	0	1	1	0	0	0	0	0	1	T	T	0	0		T	0	0	0
	0	0	0	0	1	1	1	1	1	1	1	1	0	0	1	1	0	0	0	0		0	1	1	0
	0	0	0	0	0	1	0	1	1	0	1	0	0	1	1	T	0	0	0	0		0	T	1	0
	0	0	0	0	1	1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	1	1	0	0	0
-	0	0	0	0	0	0	1	1	1	1	0	0	1	1	0	0	0	0	0	0	1	1	0	0	0
	1	0	1	0	1	0	1	0	0	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0	0
	0	1	0	1	0	1	0	1	0	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0	0
	1	1	0	0	1	1	0	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0
	0	0	1	1	0	0	1	1	0	0	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0
	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	U	0	U	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	U	0
	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

イロト イヨト イヨト イヨト 三日

Xuyi Guo, Adam Zweber, and Stephanie Bittner

Matrix of row sums

$$B_3 = \left(\begin{array}{rrrrr} 1 & 3 & 3 & 1 \\ 2 & 4 & 2 & 0 \\ 4 & 4 & 0 & 0 \\ 8 & 0 & 0 & 0 \end{array}\right)$$

We can make this upper triangular by permuting the columns

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

Xuyi Guo, Adam Zweber, and Stephanie Bittner

Theorem

For each $k \in \{0, 1, ..., n\}$, $(n-1)^k$ is an eigenvalue of A'_n where A'_n is a matrix obtained by reversing the column order of A_n

Proof

Recall we indexed A_n so that

$$A_{n} = \begin{pmatrix} A_{0,0} & A_{0,1} & \cdots & A_{0,n} \\ A_{1,0} & A_{1,1} & \cdots & A_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n,0} & A_{n,1} & \cdots & A_{n,n} \end{pmatrix}$$

Where the *i*, *j*-th block has constant row sum $(n-1)^i(n-2)^{(n-i-j)\binom{n-i}{i}}$

(日) (周) (日) (日) (日)

Xuyi Guo, Adam Zweber, and Stephanie Bittner

Proof

Continued...

Thus, upon reversing column order we have

$$A'_{n} = \begin{pmatrix} A_{0,n} & A_{0,n-1} & \cdots & A_{0,0} \\ A_{1,n} & A_{1,n-1} & \cdots & A_{1,0} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n,n} & A_{n,n-1} & \cdots & A_{n,0} \end{pmatrix}$$

イロン 不同 とくほう イロン

3

Where the i, j-th block has constant row sum $(n-1)^i(n-2)^{(j-i)}\binom{n-i}{n-j}$

Xuyi Guo, Adam Zweber, and Stephanie Bittner

Proof So if i > j then n - j > n - i so $\binom{n-i}{n-j} = 0$ so $b_{ij} = (n-1)^i (n-2)^{(j-i)} \binom{n-i}{n-j} = 0$. And if i = j Then $b_{ij} = (n-1)^i (n-2)^{(j-i)} \binom{n-i}{n-j} = (n-1)^i (n-2)^0 \binom{n-i}{n-i} = (n-1)^i$. Thus B_n is upper-triangular with diagonal entries $(n-1)^i$, so these are the eigenvalues of B_n and are therefore eigenvalues of A'_n

Xuyi Guo, Adam Zweber, and Stephanie Bittner

Future Directions

- ► SNF of B_n, the matrix of row sums of A_n, has invariant factors (n − 1)^k
- Consider how permuting the columns of A_n affects eigenvalues
- What are the multiplicities of the eigenvalues?
 - Showing the multiplicities are what we suspect will show that these are the only eigenvalues of A_n
 - We suspect they are related to the sizes of the blocks of A_n when indexed correctly

イロト 不得 とくき とくき とうき

"Nowhere in the sciences does one find as wide a gap as that between the written version of a mathematical result and the discourse that is required to understand the same result."-Gian-Carlo Rota

イロト 不得 トイヨト イヨト 二日

Xuyi Guo, Adam Zweber, and Stephanie Bittner

Acknowledgements

Advisors Dr. Josh Ducey and Dr. Minah Oh

イロト 不得 とくほ とくほ とうほう

- REU director Dr. Len Van Wyk
- NSF Grant DMS-1004516
- JMU Department of Mathematics