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Rota’s Basis Conjecture (again)

I Recall Rota’s Basis Conjecture states that given a set of n
bases for an n − dimensional vector space, one can always
make n, disjoint bases each containing one vector from each
of the original bases.

I We can think of these in terms of ”rainbow” sets of vectors.

a1 a2 · · · an
b1 b2 · · · bn
...

...
...

k1 k2 · · · kn

I We will use transversal to refer to any rainbow set of vectors
whether they form a basis or not.

Xuyi Guo, Adam Zweber, and Stephanie Bittner

Invariants of an Incidence Matrix Related to Rota’s Basis Conjecture



Rota’s Basis Conjecture (again)

I Recall Rota’s Basis Conjecture states that given a set of n
bases for an n − dimensional vector space, one can always
make n, disjoint bases each containing one vector from each
of the original bases.

I We can think of these in terms of ”rainbow” sets of vectors.

a1 a2 · · · an
b1 b2 · · · bn
...

...
...

k1 k2 · · · kn

I We will use transversal to refer to any rainbow set of vectors
whether they form a basis or not.

Xuyi Guo, Adam Zweber, and Stephanie Bittner

Invariants of an Incidence Matrix Related to Rota’s Basis Conjecture



The Incidence Matrix for Disjointness of Transversals

I Consider the matrix An which has rows and columns indexed
by transversals (rainbow sets of vectors) of dimension n, and
has a 1 in the i , jth spot if the transversal at i and the
transversal at j are disjoint and a 0 otherwise.

I An may also be called the adjacency matrix for the graph in
which the transversals are the vertices, connected by an edge
if they are disjoint.

I An has dimension nn × nn

Here is an example for n = 2


(a1, b1) (a1, b2) (a2, b1) (a2, b2)

(a1, b1) 0 0 0 1
(a1, b2) 0 0 1 0
(a2, b1) 0 1 0 0
(a2, b2) 1 0 0 0
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An for n = 3 and n = 5

n = 3

(27× 27)

n = 5

(3125× 3125)

Xuyi Guo, Adam Zweber, and Stephanie Bittner

Invariants of an Incidence Matrix Related to Rota’s Basis Conjecture



Smith Normal Form

I The Smith Normal Form (SNF) is a diagonal form of an
integer matrix that can be obtained by multiplying the matrix
on the left and right sides by unimodular (determinant = ±1)
invertible square integer matrices.

I The SNF can be defined for any matrix with entries in the
integers, such as An

I The entries on the diagonal of SNF are called the invariant
factors. They will also be integers, with each entry being a
divisor of the subsequent ones.
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Smith Normal Form continued

Over a field

PXQ =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 0



Over the integers

PXQ =


s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 0 · · · sN



Here is a non-square example

X =

(
1 2 3
4 5 6

)
,P =

(
1 0
4 −1

)
,Q =

1 −2 1
0 1 −2
0 0 1


SNF (X ) = PXQ =

(
1 0 0
0 3 0

)
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Why Smith Normal Form

I The SNF is unique for a given matrix and is not affected by
permuting the columns/rows

I Determinants of submatrices. dk indicates the GCF of all
submatrices of dimension k × k of the matrix.

s1 = d1

s1s2 = d2

...

s1s2 . . . sN = dN

X =

(
1 2 3
4 5 6

)
∣∣∣∣1 2
4 5

∣∣∣∣ = −3,

∣∣∣∣1 3
4 6

∣∣∣∣ = −6,

∣∣∣∣2 3
5 6

∣∣∣∣ = −3

SNF (X ) =

(
1 0 0
0 3 0

)
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Dimensions 2, 3, 4, and 5

I We computed the SNF of An for n = 2, 3, 4, 5
I The first entry in the ordered pair denotes the value of the

integer that appears in SNF and the second entry denotes its
multiplicity (i.e. (1, 10) indicates that 1 appears on the SNF
diagonal 10 times.)

So

(
1 0 0
0 3 0

)
would be ((1, 1), (3, 1))

Dimension SNF
2 ((1,4))
3 ((1,8),(2,12),(4,6),( 8,1))
4 ((1,81),(3,108),(9,54),(27,12),(81,1))
5 ((1,1024),(4,1280),(16,640),(64,160),(256,20),(1024,1))

Xuyi Guo, Adam Zweber, and Stephanie Bittner

Invariants of an Incidence Matrix Related to Rota’s Basis Conjecture



A Pattern

Dimension SNF
2 ((1,1),(1,2),(1,1))
3 ((1,8),(2,12),(4,6),( 8,1))
4 ((1,81),(3,108),(9,54),(27,12),(81,1))
5 ((1,1024),(4,1280),(16,640),(64,160),(256,20),(1024,1))

I Now we multiply the entries of the ordered pairs together and
factor.

Dimension

2 (12
(2
0

)
, 12
(2
1

)
, 12
(2
2

)
)

3 (23
(3
0

)
, 23
(3
1

)
, 23
(3
2

)
, 23
(3
3

)
)

4 (34
(4
0

)
, 34
(4
1

)
, 34
(4
2

)
, 34
(4
3

)
, 34
(4
4

)
)

5 (45
(5
0

)
, 45
(5
1

)
, 45
(5
2

)
, 45
(5
3

)
, 45
(5
4

)
, 45
(5
5

)
)
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Conjecture About the SNF of An

The Smith Normal Form of An which denotes the incidence matrix
for disjointness of transversals for dimension n will have entries
given by

((n − 1)k , (n − 1)n−k
(
n

k

)
)

where k indicates we are referring to the kth ordered pair (starting
at k = 0 and ending at k = n)
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The Eigenvalues of An

I Graph theorists interested in eigenvalues of incidence matrices

I The eigenvalues, λ1, λ2, . . . , λk of any matrix are related to
the invariant factors s1, s2, . . . , sk by the fact that∏k

i=1 λi =
∏k

i=1 si
I Data suggest the eigenvalues of An are the conjectured

invariant factors up to sign, i.e. we suspect that the
eigenvalues of An all equal ±(n − 1)k for k = 0, 1, . . . , n
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Recall...

I We conjectured that the invariant factors of An are given by
(n − 1)k each with multiplicity (n − 1)n−k

(n
k

)
.

Observe...

I For a fixed transversal z = (ai , bj , . . . , cl), (n − 1)n−k
(n
k

)
is

the number of transversals with exactly k elements in
common with z .

I What happens when we use this fact to index the rows and
columns of An?
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Then An looks like this...

An =


A0,0 A0,1 · · · A0,n

A1,0 A1,1 · · · A1,n
...

...
. . .

...
An,0 An,1 · · · An,n


I Block Ai ,j contains rows indexed by transversals with i

elements in common with some fixed z and columns indexed
by transversals with j elements in common with z

I Ai ,j ’s have constant row sums (n − 1)i (n − 2)(n−i−j)
(n−i

j

)
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Lemma
(Van Lint)
Let M be a matrix of size m by m which has the form

M =


M1,1 M1,2 · · · M1,k

M2,1 M2,2 · · · M2,k
...

. . . · · ·
...

Mk,1 Mk,2 · · · Mk,k


Where each Mi ,j is a submatrix of size mi by
mj(i = 1, 2, . . . , k; j = 1, 2, . . . , k). Suppose that for each i and j
the matrix Mi ,j has constant row sums bij . Let B be the matrix
with entries bij . Then each eigenvalue of B is an eigenvalue of M.
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A3 indexed with respect to disjointness

0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 1
0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 1 0 1
0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1
1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0
0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0
0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 1 0
1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0
0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0
1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Matrix of row sums

B3 =


1 3 3 1
2 4 2 0
4 4 0 0
8 0 0 0


I We can make this upper triangular by permuting the columns
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Theorem
For each k ∈ {0, 1, . . . , n}, (n − 1)k is an eigenvalue of A′n where
A′n is a matrix obtained by reversing the column order of An

Proof
Recall we indexed An so that

An =


A0,0 A0,1 · · · A0,n

A1,0 A1,1 · · · A1,n

...
...

. . .
...

An,0 An,1 · · · An,n


Where the i , j -th block has constant row sum (n − 1)i (n − 2)(n−i−j)

(
n−i
j

)

Xuyi Guo, Adam Zweber, and Stephanie Bittner

Invariants of an Incidence Matrix Related to Rota’s Basis Conjecture



Proof
Continued...
Thus, upon reversing column order we have

A′n =


A0,n A0,n−1 · · · A0,0

A1,n A1,n−1 · · · A1,0
...

...
. . .

...
An,n An,n−1 · · · An,0


Where the i , j -th block has constant row sum
(n − 1)i (n − 2)(j−i)

(n−i
n−j
)
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Proof
So if i > j then n − j > n − i so

(n−i
n−j
)

= 0 so

bij = (n − 1)i (n − 2)(j−i)
(n−i
n−j
)

= 0. And if i = j Then

bij = (n − 1)i (n − 2)(j−i)
(n−i
n−j
)

= (n − 1)i (n − 2)0
(n−i
n−i
)

= (n − 1)i .

Thus Bn is upper-triangular with diagonal entries (n− 1)i , so these
are the eigenvalues of Bn and are therefore eigenvalues of A′n
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Future Directions

I SNF of Bn, the matrix of row sums of An, has invariant
factors (n − 1)k

I Consider how permuting the columns of An affects eigenvalues
I What are the multiplicities of the eigenvalues?

I Showing the multiplicities are what we suspect will show that
these are the only eigenvalues of An

I We suspect they are related to the sizes of the blocks of An

when indexed correctly
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”Nowhere in the sciences does one find as wide a gap as that
between the written version of a mathematical result and the
discourse that is required to understand the same result.”-
Gian-Carlo Rota
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