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Abstract. We prove Rota’s basis conjecture for matroids of rank
n ≤ 4 using a computer program. The program starts with n
arbitrary bases and uses basis exchange properties to infer new
bases until it has n disjoint rainbow bases (solving the conjecture)
or no more bases can be inferred (providing a counter-example).
n = 3 is solved in one case whereas n = 4 is solved in around a
hundred thousand cases.

1. Introduction

Given n disjoint bases in an n-dimensional vector space, we wish to
show that there exist n pairwise disjoint transversals of these bases that
are also bases. If we think of the original n bases as each having a color,
then we are trying to show that there exists n disjoint “rainbow” bases.
To prove this, we know that given two bases, there are theorems that
imply the existence of other bases. Hence, we apply these theorems
to the n given bases to imply the existence of other bases. Now we
apply these theorems to the n given bases along with these other bases
to imply the existence of even more bases. This is continued until we
have implied the existence of n disjoint “rainbow” bases, or we cannot
imply any more bases (in which case the conjecture is false). Due to
the many steps involved and cases that must be considered, we use a
computer to perform this task.

The concept of independence in a vector space can be generalized
into a mathematical structure known as a matroid. This conjecture
generalizes to matroids, and all of our techniques for proving it do as
well. Hence, we use our algorithm to try and prove or disprove this
strengthened conjecture.

Definition 1.1 (matroid). A matroid is an ordered pair M = (S,B),
where S is a finite set (called the ground set) and B is a collection
of subsets of S (called the bases of M), that satisfies the following
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properties:
M1: B is nonempty.
M2: Given any two bases B1, B2 and an element x of the first basis, we
can find some element y of the second basis such that (B1−{x})∪{y}
is a basis.

Example 1.2 (matroid from vectors in a vector space). The following
four column vectors (labeled 1, 2, 3, 4)


elements: 1 2 3 4

1 0 0 1
0 1 0 1
0 0 1 0


yield the following matroid: S = {1, 2, 3, 4}, B = {{1, 2, 3}, {1, 3, 4}, {2, 3, 4}}.

Note that not all matroids arise from vector spaces. Theorems that
allow us to infer bases in a matroid from known bases are of interest
to us; we shall use the following lemma from White [5].

Lemma 1.3 (White’s lemma). Given any two bases D,E and an or-
dered partition O(D) = (D1, . . . , Dk) of D, we can find an ordered par-
tition O(E) = (E1, . . . , Ek) of E so that ∀i ∈ {1, . . . , k}, (D−Di)∪Ei

is a basis. Note that this requires that |Di| = |Ei| for all i.

We will simply refer to “ordered partition” by “partition” if there is
no ambiguity. Furthermore, we shall refer to each element of a partition
as a “block.” In 1.3, if we choose the first block to be D1 = D∩E, then
clearly E1 = D ∩ E = D1. Furthermore, any block containing D ∩ E
can split into D ∩ E and another block contained in D − E, so 1.3
is equivalent to the following theorem, where we replace O(D),O(E)
with O(D − E),O(E −D).

Theorem 1.4 (partition basis exchange). Given any two bases D,E
and an ordered partition O(D − E) = (D1, . . . , Dk) of D − E, we can
find an ordered partition O(E − D) = (E1, . . . , Ek) of E − D so that
∀i ∈ {1, . . . , k}, (D −Di) ∪ Ei is a basis.

Notice that we can choose two bases D,E and a partition O(D−E),
but the corresponding partition O(E−D) is unknown. Hence, we refer
to this choice (D,E,O(D−E)) as a “3-tuple,” and a partition O(E−D)
as a “candidate.” Below is an example showing why 1.3 and 1.4 are
equivalent.
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Example 1.5 (partition basis exchange 1). If D = {a1, a2, a3} and
E = {a1, b2, b3}, then any subset of D containing a1 must be swapped
for a subset of E containing a1. Suppose not, that is, suppose some
other subset of D (a2 or a3) must be swapped for a1. If we swap say
a2 for a1 in E, then we have that (D − {a2}) ∪ {a1} = {a1, a1, a3} is a
basis, a contradiction.

Below is an example applying 1.4

Example 1.6 (partition basis exchange 2). If we are given the 3-tuple
D = {a1, a2, a3, a4}, E = {b1, b2, b3, b4},O(D−E) = ({a1, a2}, {a3}, {a4}),
then possible candidates for O(E−D) are all partitions with one block
of order two followed by two blocks of order one:
({b1, b2}, {b3}, {b4})
({b1, b2}, {b4}, {b3})
({b1, b3}, {b2}, {b4})
({b1, b3}, {b4}, {b2})
({b1, b4}, {b2}, {b3})
({b1, b4}, {b3}, {b2})
({b2, b3}, {b1}, {b4})
({b2, b3}, {b4}, {b1})
({b2, b4}, {b1}, {b3})
({b2, b4}, {b3}, {b1})
({b3, b4}, {b1}, {b2})
({b3, b4}, {b2}, {b1})

We then have twelve cases, one for each O(E − D), each implying
the existence of three bases. Case 1 (O(E−D) = ({b1, b2}, {b3}, {b4}))
implies the existence of these bases by 1.4:
{b1, b2, a3, a4}
{a1, a2, b3, a4}
{a1, a2, a3, b4}

Notice that if the partition of D − E consists of one-element blocks
of D − E, then we have the following corollary:

Corollary 1.7 (bijective basis exchange). Given any two bases D,E,
there is a bijective function f : D − E → E − D such that ∀x ∈
D − E, (D − {x}) ∪ {f(x)} is a basis.

Notice further that if the partition of D−E contains only two blocks
{D1, D−E−D1}, then the corresponding partition of E−D contains
two blocks {E1, E−D−E1}, so 1.4 implies the existence of two bases,
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(D−D1)∪E1 and (D− (D−E−D1))∪ (E−D−E1) = D1∪ (E−E1).
This yields the following corollary:

Corollary 1.8 (subset basis exchange). Given any two bases B1, B2

and a subset A1 of B1 − B2, there exists a subset A2 of B2 − B1 such
that (B1 − A1) ∪ A2 and (B2 − A2) ∪ A1 are bases.

Example 1.9 (subset basis exchange). For n = 3, we are given bases
D1 = {a1, a2, a3}, D2 = {b1, b2, b3}, D3 = {c1, c2, c3}. If we choose B1 =
D1, B2 = D2, A1 = {a1, a2}, A2 could be either {b1, b2}, {b1, b3}, or
{b2, b3}. Hence, we must consider three cases - one for each possible A2.
Case 1 (A2 = {b1, b2}) provides two new bases: D4 = {a3, b1, b2}, D5 =
{a1, a2, b3}. Now if we choose B1 = D5, B2 = D3, A1 = {b3}, then A2

could be either {c1}, {c2}, or {c3}. Hence, we have another three cases
(Case 1-1, 1-2, 1-3).

In 1989, Rota made a conjecture about another basis exchange prop-
erty of matroids.

Conjecture 1.10 (Rota’s basis conjecture). Let M be a matroid of
rank n and let B∗ = {B1, . . . , Bn} be a collection of n disjoint bases
in M . Then there exists n pairwise disjoint transversals of B∗ that are
bases.

If we think of each of the n given bases as having a color, we can
call these pairwise disjoint transversals “rainbow” bases. Furthermore,
we can define the rainbowness of a basis in this matroid as being the
number of bases in B∗ that it has a non-empty intersection with. For
example, all bases in B∗ have rainbowness 1 and all rainbow bases have
rainbowness n.

2. Algorithm

The n bases given by 1.10 do not fully describe the matroid, since
1.4 implies the existence of other bases. In fact, we can “complete” the
matroid by inferring new bases until no new bases can be inferred. At
this point, our collection of known bases fully describes a matroid, since
this collection along with the n2 elements from the bases in B∗ satisfies
M1 and 1.4, which implies M2. While in the process of completing this
matroid, if we ever have n disjoint rainbow bases, we have proven the
conjecture and don’t need to finish completing the matroid. On the
other hand, if we have completed the matroid yet there is no set of n
disjoint rainbow bases in it, then this matroid is a counter-example to
1.10.
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Specifically, we start with the given n bases (assuming nothing about
these bases besides the fact that they satisfy the axioms of a matroid)
and proceed in a series of steps until we have proven the existence of
n disjoint rainbow bases (or arrived at a counter-example). At each
step, we choose a 3-tuple (D,E,O(D−E)) and apply 1.4 to prove the
existence of new bases. We will need to consider a separate case for
each valid O(E −D). It is preferable to prove 1.10 in as few cases as
possible, so we first look for 3-tuples where we can eliminate all but
one candidate O(E −D). This way, we can prove the existence of new
bases without having to branch off into more cases. If no such 3-tuple
exists, we must find the “best” 3-tuple that will branch off into the
least number of cases and prove 1.10 in as few steps as possible. To do
this, we compute a score for each 3-tuple based on the number of cases
that must be considered (one case for each candidate O(E −D)) and
the quality of the new bases resulting from each case.

2.1. 3-Tuples. Consider the 3-tuple (D,E,O(D−E)) again. If there
is some O(E −D) such that applying 1.4 will result in no new bases,
then skip this 3-tuple.

Scores for 3-tuples are computed by finding the case with the low-
est case score and dividing that score by ln |C| where |C| is the number
of cases. Case scores are computed by adding together the basis scores
for each new basis corresponding to that case. In computing the basis
scores, we require a fixed list of “element score values” and “subscore
factors.” We try to choose values and factors that minimize the number
of cases that must be considered, though this is largely experimental
and by no means rigorous. A new basis score is computed as follows.

(1) Group the elements in the new basis by which starting basis in
B∗ the element belongs to. Each group might contain anywhere
from 0 to n elements.

(2) For each existing rainbow basis, compute a subscore as follows:
(a) We first compute an element score for each of the elements

of the rainbow basis.
(b) Associate each element in the rainbow basis to a group

in the new basis based on which starting basis in B∗ the
element of the rainbow basis belongs to.

(c) For each element of the rainbow basis, find the number of
elements in its associated group that are not equal to it.
Call this the disjointness of this element of the rainbow
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basis. The element score corresponding to each element of
the rainbow basis is a value determined by the disjointness
of that element. For instance, disjointness {0, 1, 2, 3} could
correspond to element scores of {0, 1, 3, 10}. Call this list
{0, 1, 3, 10} the “element score values.” For example, if our
rainbow basis contains an a3 and its corresponding group
is {a3, a4, a5}, then since a4, a5 are different from a3, the
element a3 of the rainbow basis has disjointness 2. This
would yield an element score of 3. Once again, the element
scores are chosen by the user, more or less experimentally.
However, we should require that the element score values
are strictly increasing, since we would like to award a higher
score to (i.e. prefer) bases that are more disjoint from
currently known rainbow bases.

(d) Average the nonzero element scores of each element of the
rainbow basis. Multiply this number by a factor deter-
mined by the number of nonzero subscores. For instance,
the factors corresponding to {0, 1, 2, 3} nonzero subscores
could be {0, 1, 2, 4}. Call this list of factors the “subscore
factors.” For instance, given element scores {0, 5, 0, 3, 4},
the average of the nonzero element scores is 4, and since
there are 3 nonzero element scores, we multiply it by the
subscore factor 4 for a subscore of 16. These subscore
factors are also chosen experimentally, but once again we
should require that the subscore factors are strictly increas-
ing.

(3) The basis score is the sum of all subscores divided by the num-
ber of rainbow bases. We divide to normalize the score across
different steps of the algorithm, since earlier steps have less rain-
bow bases whereas later steps have more. This normalization
is actually not necessary in the algorithm since within a partic-
ular step of a particular case, the number of rainbow bases will
be the same. However, it is useful for gathering statistics and
theoretical discussion.

Example 2.1 (subscore calculation). Let the element score values be
{0,2,3,4,5} and the subscore factors {0,1,3,7,15,31} Suppose our start-
ing bases are {a1, a2, a3, a4}, {b1, b2, b3, b4}, {c1, c2, c3, c4}, {d1, d2, d3, d4}
and our new basis is {a1, a2, b2, d4}. Then our four groups are {a1, a2}, {b2}, ∅, {d4}.
To calculate the subscore for the existing rainbow basis {a3, b2, c2, d2},
we compute the element scores of each element in the rainbow basis
(Figure 1). From this, the average of the nonzero subscores is 3+2

2
= 2.5.
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Group {a1, a2} {b2} ∅ {d4}
Element a3 b2 c2 d2
Disjoint {a1, a2} ∅ ∅ {d4}
Disjoint# 2 0 0 1
Subsubscore 3 0 0 2

Figure 1. Table illustrating the calculation of a sub-
score. “Element” refers an element in the rainbow basis.
“Disjoint” refers to the bases in the group that are dis-
joint from the corresponding element.

Since we have two nonzero subscores, we multiply by the corresponding
subscore factor of 3, for a final subscore of 7.5.

This score is designed to hopefully choose the optimal 3-tuple each
time to reach n disjoint rainbow bases as quickly as possible. Of course,
this score does not rigorously determine which 3-tuple is the best, but
we believe it to be a good tradeoff between time spent computing the
score and time saved by choosing a better 3-tuple (and hence proving
1.10 in less cases and steps). The reason why we divide by ln |C| at
the end is because at each step that we apply 1.4 we get a more or less
constant number of new bases (maybe 1 to 4 for n = 4), whereas the
number of new cases is somewhat proportional to the current number
of cases. We illustrate this concept with two examples.

Example 2.2 (3-tuple scoring 1). Suppose at step s some 3-tuple
branches off into 3 cases, with the worst case (that is, the case with
the lowest case score) scoring 5. This would score 5

ln 3
= 10

ln 9
. Now if we

branch off into 3 cases with the worst case scoring 5 (again) at step s+1
for each of the 3 cases, we will have 9 cases and a combined score of
10, which corresponds with the right hand side (RHS) of the equation.
Alternatively, a 3-tuple at step s could branch off into 9 cases, with
the worst case scoring 10. By our metric, this would again yield the
same score. Hence, we believe our metric finds an appropriate trade-off
between number of cases and the combined quality of the new bases
resulting from each case.

Example 2.3 (3-tuple scoring 2). Suppose at some step in the program
we have a choice between two 3-tuples. One branches off into 3 cases at
one application of 1.4, with the worst case yielding a normalized score
of 5. Another branches off into 8 cases with the worst case yielding two
bases scoring a total of 9.5 normalized. By our metric, these 3-tuples
are about the same quality, since 9.5

ln 8
≈ 4.57 and 5

ln 3
≈ 4.55.
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2.2. Eliminating candidates. In order to reduce the number of cases,
we try to eliminate as many of the candidate partitions O(E −D) as
possible. If the addition of the new bases proves 1.10, then we can
eliminate that candidate. If two candidates result in two similar cases,
we can eliminate one of the two candidates.

2.2.1. Permutation cases. We formalize the concept of two cases being
similar (so that only one must be considered). Define some permutation
σ of the elements of the ground set S of a matroid. Note that we can
permute all subsets of S with σ as well. Given a collection B of bases,
we can permute all the bases of B (since they are all subsets of S) to
produce a new collection of subsets of S (not necessarily all bases).
Hence, we can define the action of σ on a collection of bases in this
way.

To test two cases for similarity, let B1 and B2 be the collection of all
known bases after applying 1.4 on the first and second case. If some
permutation σ of B1 yields B2, then these cases are similar and only
one must be considered.

Example 2.4. ConsiderB1 = {a1, a2}, B2 = {b1, b2},O(D) = ({a1}, {a2});
we have candidates ({b1}, {b2}), ({b2}, {b1}) that each produce two new
bases B3, B4, resulting in two collections of bases:

Collection/Basis B1 B2 B3 B4

B1 {a1, a2} {b1, b2} {b1, a2} {a1, b2}
B2 {a1, a2} {b1, b2} {b2, a2} {a1, b1}

However, B1 and B2 are unchanged under the permutation σ that
swaps b1 with b2, and the new bases B3 = {a2, b1}, {a2, b2} and B4 =
{a1, b2}, {a1, b1} are equivalent after applying σ to one or the other.
Hence, one of these cases can be eliminated.

2.2.2. Superset cases. Ultimately, we hope to prove that one can always
find n disjoint rainbow bases starting with the initial collection B∗ =
{B1, . . . , Bn}. On the way, we prove cases that start with B∗ plus some
other bases that we have inferred using 1.4. Suppose we prove a case
C1 that starts with the collection of bases B1. While proving another
case C2, we arrive at a collection of bases that contains B1. Then we
no longer need to consider C2 since we can prove the conjecture for C2

by following the same steps as C1, ignoring the additional bases that
C2 has.

In fact, we only need to consider the difference between the new
bases inferred for each case. For instance, suppose case 1 results in a
new basis X and case 2 results in a new basis Y . If the conjecture is
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Unproven case 1-2 2-1 2-2 2-3-1 2-3-2
Proven case 1-1 1 2-1 1 2-2
Missing bases L H, I O H, I L,M

Figure 2. Details of superset cases in Figure 3

A,B,C

D,E,F,G

J

K,I

Q,R

L,P

M

H

L,M

N,O

O

H

H,I

M,N

L,P

L

Proven!

Figure 3. Case tree. Orange lines indicate a superset case

proven for case 1, and case 2 eventually infers a new basis X, then case
2 has also been proven, following the same steps as case 1. Consider
Figure 3, which illustrates an application of this concept. Each letter
represents a basis. As more bases are inferred, we find the need to
branch off into different cases. The program considers cases on the left
first, and proves the conjecture for case 1-1. However, case 1-2 infers
the basis L, meaning it is proven through case 1-1. We call case 1-2
a superset case. We list all superset cases for this example in Figure
2. Here, an “unproven case” is proven through a “proven case” by
inferring the “missing bases” that the unproven case needs to contain
all the bases of the proven case.

2.3. Exchange graph. Again from White, there is another way to
infer new bases that does not require branching off into cases [5]:

Definition 2.5 (exchange graph). An exchange graph G for a collec-
tion of bases B in a matroid M is a directed multigraph whose vertices
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are the members of the ground set of the matroid. There is an edge
from a to b labeled B1 if and only if b ∈ B1 ∈ B and (B1−{b})∪{a} ∈ B.

Definition 2.6 (shortcut). Given a path or cycle v1
B1−→ v2

B2−→ . . .
Bn−1−−−→

vn, we say this path or cycle has a shortcut if and only if we can find
i < j − 1 such that there is an edge directed from vi to vj.

Theorem 2.7 (no shortcuts). Let v1
B1−→ v2

B2−→ . . .
Bn−1−−−→ vn be a path

or cycle with no shortcuts. The edge labels are not necessarily distinct
but the vertices are, except in the case of a cycle where v1 = vn. Now let

i ∈ {1, . . . , n − 1} and let a1
Bi−→ b1, . . . , ak

Bi−→ bk be all ordered vertex
pairs with an edge labeled by Bi. Then (Bi−{b1, . . . , bk})∪{a1, . . . , ak}
is a basis in M .

Recall that each candidate of each 3-tuple infers a number of new
bases. These new bases will introduce new edges in the exchange graph,
which may imply the existence of more new bases.

3. Results

Rota’s basis conjecture has been completely proven for n = 3 in
three cases by Chan [1], who uses 1.8 and other clever techniques. Fur-
thermore, Onn proved that when n is even, the Alon-Tarsi conjecture
implies 1.10 for all matroids arising from vector spaces (except vector
spaces of certain characteristics) [4]. The Alon-Tarsi conjecture has
been proven for n = p+ 1 for all p prime by [2]. Furthermore, 1.10 has
been verified for all paving matroids [3]. Hence, n = 4 for matroids is
still open.

Using our algorithm, we have created a program that can completely
prove Rota’s basis conjecture for any n. The program generates a proof
while it runs; the full proof of n = 3 is shown below. We have proven
n = 3 in one case and n = 4 in around a hundred thousand cases. For
n ≥ 5, the program cannot complete in a reasonable amount of time.
However, we can still use the program to look for counter-examples for
these cases.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗START∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
B0 = a1 a2 a3
B1 = b1 b2 b3
B2 = c1 c2 c3
B3 = a1 a3 b1
B4 = a2 b2 b3
B5 = a1 b1 c1
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B6 = a3 c2 c3
B7 = a2 a3 b3
B8 = b2 c2 c3
B9 = a2 b2 c2
B10 = b2 b3 c3
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

−a3 ( in B7) −c3 ( s o l v e s )
B7( a2 )/B6( c2 )
B11 = a3 b3 c2
B12 = a2 a3 c3

−c3 ( in B10) −a3 ( s o l v e s )
B10( b2 )/B6( c2 )
B13 = b3 c2 c3
B14 = a3 b2 c3

−b3 ( in B10) −a3 ( s o l v e s )
B10( b2 )/B7( a2 )
B15 = a2 b3 c3
B16 = a3 b2 b3

−c2 ( in B11) −a2 ( s o l v e s )
B11( a3 )/B9( b2 )
B17 = b2 b3 c2
B18 = a2 a3 c2

−a2 ( in B12) −b2 ( s o l v e s )
B12( a3 )/B9( c2 )
B19 = a2 c2 c3
B20 = a2 a3 b2

−a3 ( in B6) −b1 ( permutation o f a1 : a1 a2 a3 b1 b3 b2 c1 c3 c2 )
B6( c2 )/B3( a1 )
B21 = a1 a3 c3
B22 = a3 b1 c2

−a1 ( s o l v e s ) −c3 ( s o l v e s )
B4( b3 )/B21( a3 )
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B23 = a1 b3 c3

−a1 ( s o l v e s ) −c1 ( s o l v e s )
B20( a3 )/B5( b1 )
B24 = a2 b1 b2
B25 = a1 a3 c1

−a2 ( in B24) −c3 ( s o l v e s )
B24( b1 )/B12( a3 )
B26 = a2 b1 c3

−b2 ( s o l v e s ) −b3 ( s o l v e s )
B25( a1 )/B17( c2 )
B27 = a3 c1 c2
B28 = a1 b2 b3

−a1 ( in B28) −b1 ( s o l v e s )
B28( b2 )/B5( c1 )
B29 = a1 b3 c1
B30 = a1 b1 b2

−b1 ( in B26) −a3 ( s o l v e s )
B26( a2 )/B3( a1 )
B31 = a1 b1 c3
B32 = a2 a3 b1

−b1 ( s o l v e s ) −b3 ( s o l v e s )
B25( a1 )/B1( b2 )
B33 = a3 b2 c1
B34 = a1 b1 b3

−b3 ( in B29) −a3 ( s o l v e s )
B29( a1 )/B7( a2 )
B35 = a2 b3 c1
B36 = a1 a3 b3

−c1 ( s o l v e s ) −c3 ( s o l v e s )
B28( b3 )/B2( c2 )
B37 = a1 b2 c2
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B38 = b3 c1 c3

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗SOLVED∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
BASES =
0 : a1 a2 a3
1 : b1 b2 b3
2 : c1 c2 c3
3 : a1 a3 b1
4 : a2 b2 b3
5 : a1 b1 c1
6 : a3 c2 c3
7 : a2 a3 b3
8 : b2 c2 c3
9 : a2 b2 c2
10 : b2 b3 c3
11 : a3 b3 c2
12 : a2 a3 c3
13 : b3 c2 c3
14 : a3 b2 c3
15 : a2 b3 c3
16 : a3 b2 b3
17 : b2 b3 c2
18 : a2 a3 c2
19 : a2 c2 c3
20 : a2 a3 b2
21 : a1 a3 c3
22 : a3 b1 c2
23 : a1 b3 c3
24 : a2 b1 b2
25 : a1 a3 c1
26 : a2 b1 c3
27 : a3 c1 c2
28 : a1 b2 b3
29 : a1 b3 c1
30 : a1 b1 b2
31 : a1 b1 c3
32 : a2 a3 b1
33 : a3 b2 c1
34 : a1 b1 b3
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35 : a2 b3 c1
36 : a1 a3 b3
37 : a1 b2 c2
38 : b3 c1 c3
RAINBOW BASES =
0 : a1 b1 c1
1 : a2 b2 c2
2 : a3 b3 c2
3 : a3 b2 c3
4 : a2 b3 c3
5 : a3 b1 c2
6 : a1 b3 c3
7 : a2 b1 c3
8 : a1 b3 c1
9 : a1 b1 c3
10 : a3 b2 c1
11 : a2 b3 c1
12 : a1 b2 c2

−a1 ( s o l v e s ) −b1 ( s o l v e s ) −b3 ( s o l v e s )
B8( c2 )/B34 (? )
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗SOLVED∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

NUMBER OF CASES = 1
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