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1 Introduction

Rota’s Basis Conjecture. Rota’s Basis Conjecture (‘89) states that given a set of n bases for an n-
dimensional vector space, one can always make n disjoint bases each containing one vector from each of the
original bases. This conjecture is stated for any finite dimensional vector space over any field. Basically, if
you have the bases,

{a1, a2, . . . , an}, {b1, b2, . . . , bn}, . . . , {k1, k2, . . . , kn}

we can place them as rows of this array:

a1 a2 · · · an
b1 b2 · · · bn
...

...
...

k1 k2 · · · kn

Then the conjecture states that there is a way to independently permute the rows so that each of the resulting
columns forms a basis.
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1.1 Known Results

Relationship to the Alon-Tarsi Conjecture. Huang and Rota [5], showed that the Alon-Tarsi Conjec-
ture implies Rota’s Basis Conjecture over fields of characteristic zero. Then Onn [6] provided a much more
simple proof using The Colorful Determinantal Identity.

The Alon Tarsi Conjecture states that for Latin squares of even size n the number of even Latin squares
of size n and the number of odd Latin squares of size n are different.

In order to understand this, it is necessary to know how to tell if a Latin square is even or odd. In a Latin
square, each row and column can be viewed as a permutation. The sign of a Latin square is the product of
the signs of these permutations. If the sign is a positive 1, we have an even Latin square and a negative 1
means an odd Latin square.

Provided is a small 3 x 3 Latin square:

1 2 3
2 3 1
3 1 2

For example, in the second row we can see that there are two inversions. Therefore that row has a positive
one corresponding to it. We continue this for every row and column, and conclude that this is an even Latin
square.

Known Results for The Alon-Tarsi Conjecture. The Alon-Tarsi Conjecture has been verified by
computer for all even n ≤ 8. As n increases the number of the Latin squares of that size gets incredibly
large and very difficult to work with.

Drisko [3] showed that the Alon-Tarsi Conjecture is true for dimension n = p + 1, where p is an odd
prime. Drisko’s method is to consider an action of Sn⊕Sn⊕Sn on the set of all Latin squares of size n. He
shows that the action respects the sign of a Latin square and that only a small number of orbits will have
non-zero size modulo p3, allowing him to analyze only these orbits. This analysis reveals that the difference
between the number of even and odd Latin squares of size n = p+ 1 is non-zero mod p3.

Glynn [4] proved that the number of even Latin squares of order p - 1 is not equal to the number of odd
Latin squares of that order. Therefore, Rota’s Basis Conjecture is true for a vector space of dimension p -
1 over any field of characterstic zero or p, besides ones that do not divide the number of even Latin squares
by the number of odd Latin squares.

Rota’s Basis Conjecture for Matroids. Wendy Chan [2] solved Rota’s Basis Conjecture for n = 3
bases in a rank 3 matroid. She used the Basis Exchange Theorem and solved the conjecture using 3 cases.

2 The Incidence Matrix of Disjoint Transversals

2.1 Transversals

Recall that Rota’s Basis Conjecture claims that given a set of n bases for an n-dimensional vector space,
one can always make n disjoint bases each containing one vector from each of the original bases. We can
look at the original set of bases as the rows of an n × n array. By giving each basis a different color, we
can interpret Rota’s Basis Conjecture as claiming that one can form n disjoint “rainbow” bases, “rainbow”
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indicating that the basis has each color appear exactly once among its constituent vectors.

a1 a2 · · · an
b1 b2 · · · bn
...

...
...

k1 k2 · · · kn

Then we will define a transversal as any rainbow set of vectors, whether they form a basis or not. There
are thus nn such transversals since we have n colors of bases and n vectors within each of those bases.

2.2 The Incidence Matrix

Consider the matrix An which has rows and columns indexed by the set of all transversals of dimension
n, and has a 1 in the (i, j)-th spot if the transversal indexing row i and the transversal indexing column j
are disjoint. If the transversals are not disjoint then the matrix has a 0. Recall the transversals are sets
of vectors, so two transversals being disjoint simply means that those two sets are disjoint. Then An will
always have dimension nn × nn since there exist nn distinct transversals of dimension n.


(a1, b1) (a1, b2) (a2, b1) (a2, b2)

(a1, b1) 0 0 0 1
(a1, b2) 0 0 1 0
(a2, b1) 0 1 0 0
(a2, b2) 1 0 0 0


An for n = 2

An is also the adjacency matrix for the graph for which the set of all transversals forms the set of vertices
and two vertices are connected by an edge if the transversals corresponding to them are disjoint. Below are
images of An for n = 3 and n = 5. Black pixels represent an entry with value 1 and white pixels represent
entries of 0.

Figure 1: An for n = 3, a 27× 27 matrix Figure 2: An for n = 5, a 3125× 3125 matrix
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It should be noted that the order in which we list the transversals when indexing this matrix is entirely
arbitrary. Thus, these example images only represent what the incidence matrix will look like for a specific
ordering of the transversals.

2.3 Why Consider An

We constructed the incidence matrix An in order to encapsulate information that would help us learn about
Rota’s Basis Conjecture. While not all transversals are bases, all bases are in fact transversals. Rota’s Basis
Conjecture requires finding n mutually disjoint rainbow bases, and disjointness of rainbow sets of vectors is
what the matrix An tells us about. Additionally, An is interesting in itself as it can represent a more general
combinatorial structure.

3 Smith normal form

3.1 Definition

Smith normal form is defined over any principle ideal domain, but for our purposes we consider it over the
integers. Let X be any matrix over the integers. Then there exist unimodular (determinant=±1) integer
matrices P and Q such that

PXQ =



s1 0 0 · · · 0
0 s2 0 · · · 0

0 0
. . . 0

sN
...

... 0
...

0 · · · 0


and si divides si+1 for all 1 ≤ i ≤ N . This matrix PXQ is called the Smith normal form of X. PXQ
is diagonal and the diagonal entries si are called the invariant factors. Smith normal form exists for any
matrix over the integers.

X =

(
1 2 3
4 5 6

)
, P =

(
1 0
4 −1

)
, Q =

1 −2 1
0 1 −2
0 0 1


SNF (X) = PXQ =

(
1 0 0
0 3 0

)
Example of a non-square matrix put in Smith normal form
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3.2 Smith normal form as an Equivalence Class Representative

From linear algebra over a field, such as the real numbers, we know that it is possible to multiply any matrix,
X, on the left and right side by invertible square matrices, P and Q, such that the result is a matrix with
some ones down the diagonal and zeroes everywhere else. We say this matrix is equivalent to the original
matrix. This property defines equivalence classes that contain all matrices equivalent to exactly one such
matrix with ones down the diagonal and zeros everywhere else.

PXQ =



1 0 0 · · · 0
0 1 0 · · · 0

0 0
. . . 0

1
...

... 0
...

0 · · · 0


Smith normal form can be considered the counterpart to this over the integers, but yielding a matrix with
the invariant factors instead of ones down the diagonal that we may call integer equivalent to a given integer
matrix. It similarly forms an equivalence class, and as a result the Smith normal form of a matrix is unaffected
by permuting the rows and columns of the matrix because that is essentially multiplying the matrix on the
left and right side by permutation matrices. Permutation matrices are unimodular so the resulting product
does not leave the equivalence class, in which there is a unique matrix that is the Smith normal form of
all the integer equivalent matrices in that equivalence class. This fact is particularly useful since the order
in which we put the transversals when indexing the incidence matrix for disjointness of transversals, An,
is arbitrary, but when considering Smith normal form that doesn’t matter, making Smith normal form a
natural choice when trying to analyze An.

4 Conjecture About the Smith normal form of An

Smith normal form is very computationally complex, so it is difficult to calculate it for matrices as large as
An. However, we calculated the Smith normal form of An for n = 2, 3, 4, 5. We now explain the notation
we will be using in the following table. The first entry in the ordered pair denotes the value of the integer
that appears in Smith normal form and the second entry denotes its multiplicity (i.e. (1, 10) indicates that

1 appears on the Smith normal form diagonal 10 times.) Thus the matrix

(
1 0 0
0 3 0

)
would correspond to

((1, 1), (3, 1))

Dimension Smith normal form
2 ((1,4))
3 ((1,8),(2,12),(4,6),( 8,1))
4 ((1,81),(3,108),(9,54),(27,12),(81,1))
5 ((1,1024),(4,1280),(16,640),(64,160),(256,20),(1024,1))

The values of the invariant factors seem to have a pattern, that they are powers of n− 1, but the multi-
plicities seem somewhat more difficult. However, let us split the multiplicities for the 1s in dimension 2 and
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remake our table.

Dimension Smith normal form
2 ((1,1),(1,2),(1,1))
3 ((1,8),(2,12),(4,6),( 8,1))
4 ((1,81),(3,108),(9,54),(27,12),(81,1))
5 ((1,1024),(4,1280),(16,640),(64,160),(256,20),(1024,1))

Now a pattern in the multiplicities seems to be emerging. Interested in the fact that we have powers of
n− 1 let us multiply each value with its multiplicity (i.e. multiply together the entries of each ordered pair)
and factor out (n− 1)n.

Dimension

2 (12
(
2
0

)
, 12
(
2
1

)
, 12
(
2
2

)
)

3 (23
(
3
0

)
, 23
(
3
1

)
, 23
(
3
2

)
, 23
(
3
3

)
)

4 (34
(
4
0

)
, 34
(
4
1

)
, 34
(
4
2

)
, 34
(
4
3

)
, 34
(
4
4

)
)

5 (45
(
5
0

)
, 45
(
5
1

)
, 45
(
5
2

)
, 45
(
5
3

)
, 45
(
5
4

)
, 45
(
5
5

)
)

We can see that from each product we can actually factor out (n − 1)n and then we are left with the
entries of Pascal’s Triangle, the binomial coefficients. Since we already saw a pattern in the values of the
invariant factors, we are now ready to make our conjecture about what the Smith normal form for An will
be.

4.1 Conjecture

The Smith normal form of An, which denotes the incidence matrix of disjoint transversals for dimension n,
will have invariant factors with value

(n− 1)k

and multiplicity

(n− 1)n−k
(
n

k

)
for 0 ≤ k ≤ n.

5 Eigenvalues

5.1 Introduction

The data we collected on the incidence matrix of disjoint transversals for dimensions n = 2, 3, 4, 5 suggest
that the eigenvalues of this matrix are, up to sign, the same as the invariant factors. This is a remarkable
suggestion because little is known in general on the relationship between eigenvalues and invariant factors.
Further, because An corresponds to the adjacency matrix of a graph, its eigenvalues are of interest to graph
theorists. We were able to compute certain eigenvalues of a non-symmetric version of An. This matrix, which
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we will call A′n is obtained by indexing of the rows and columns of An non-arbitrarily, then reversing the
column order. As we will see, this reversal of column order simplifies eigenvalue computations without losing
information about the incidence of any transversals. Additionally, permuting the columns of any matrix
leaves the Smith normal form of that matrix unchanged, so it is relevant to our monomaniacal pursuit of
the Smith normal form of An. However, permuting the columns of a matrix in general may change the
eigenvalues, so we may need to account for this in future work. Despite these misgivings, we were able to
show that (n − 1)k is an eigenvalue of A′n for each k = 0, 1, . . . , n. We will need a couple lemmas to show
this, but first a word on notation.

Let Tn be the set of n-dimensional transversals. Fix some z ∈ Tn and denote by T k
n,z the set of transversals

with exactly k elements in common with z. For example, if n = 3 and z = (a1, b1, c1) then (a2, b2, c2) ∈ T 0
3,z,

(a1, b2, c2) ∈ T 1
3,z, (a1, b1, c2) ∈ T 2

3,z and (a1, b1, c1) ∈ T 3
3,z. We use the T k

n,z’s to index the rows and columns
of An in increasing order from transversals in T 0

n,z to transversals in Tn
n,z, where we order the elements within

any T k
n,z in an arbitrary but fixed way. Thus we have

An =


A0,0 A0,1 · · · A0,n

A1,0 A1,1 · · · A1,n

...
...

. . .
...

An,0 An,1 · · · An,n

 ,

where each Ai,j is a block of An with rows indexed by elements of T i
n,z and columns indexed by T j

n,z.

5.2 Row Sums

Lemma 1: Let aij denote the sum of all the elements in a row of Ai,j . Then aij = (n−1)i(n−2)(n−i−j)
(
n−i
j

)
.

Proof : Let zk ∈ T i
n,z, that is zk indexes a row of Ai,j . Then, by the incidence relation, the row sum of

row zk in Ai,j is equal to the number of transversals in T j
n,z that are disjoint from zk. Now zk has i entries

in common with our original fixed transversal, z. This means that for any transversal disjoint to zk, we have
n− 1 choices for these entries, yielding (n− 1)i choices for such a transversal so far. For the remaining n− i
entries, we must have j entries in common with z. This yields

(
n−i
j

)
choices. We now have n− i− j entries

to fill, each of which must be different from the corresponding entries in z and zk. We know these entries
of z and zk are distinct because we have already accounted for those entries shared by z and zk. Thus we
have (n− 2)(n−i−j) choices for these entries. Putting this all together, we have that the row sum of row zk
of Ai,j is equal to (n − 1)i(n − 2)(n−i−j)

(
n−i
j

)
. This is independent of zk so the row sums of each of these

submatrices are constant. ♦

5.3 Finding Eigenvalues

Lemma 2 (Van Lint)[7]: Let M be a matrix of size m by m which has the form

M =


M1,1 M1,2 · · · M1,k

M2,1 M2,2 · · · M2,k

... · · ·
. . .

...
Mk,1 Mk,2 · · · Mk,k

 ,
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where each Mi,j is a submatrix of size mi by mj (i = 1, 2, . . . , k; j = 1, 2, . . . , k). Suppose that for each i
and j the matrix Mi,j has constant row sums bij . Let B be the matrix with entries bij . Then each eigenvalue
of B is an eigenvalue of M .

Proof : Let Bx = λx where x = (x1, x2, . . . , xk). Define y by

y = (x1, x1, . . . , x1, x2, x2, . . . , x2, . . . , xk, xk, . . . , xk)

Where each xi is repeated mi times. Then by the definition of B, My = λy. ♦
We now return to the eigenvalues of An.
Theorem: Let An be the incidence matrix of transversals of dimension n with rows and columns indexed

as in lemma 1. Reverse the column order of An and denote this new asymmetric matrix by A′n. Then for
each i ∈ {0, 1 . . . , n}, (n− 1)i is an eigenvalue of A′n.

Proof : Reverse the column order of An yielding the following block partition of A′n

A′n =


A′0,n A′0,n−1 · · · A′0,0
A′1,n A′1,n−1 · · · A′1,0

...
...

. . .
...

A′n,n A′n,n−1 · · · A′n,0

 .

Now by Lemma 1, each A′i,j corresponds to the submatrix Ai,j above with reversed column order. Now in

permuting the column order of a matrix, row sums are preserved so each A′i,j has constant row sum (n−1)i(n−
2)(n−i−j)

(
n−i
j

)
so Lemma 2 is applicable. Define the “matrix of row sums”, B′n corresponding to A′n as in

Lemma 2. Then the i, jth entry of B′n now corresponds to block Ai,n−j . So bij is obtained by replacing j with
(n− j) in the formula above for the row sums the blocks of An. Thus bij = (n−1)i(n−2)(n−i−(n−j))

(
n−i
n−j
)

=

(n−1)i(n−2)(j−i)
(
n−i
n−j
)
. Now if i > j then n−j > n−i so

(
n−i
n−j
)

= 0 so bij = (n−1)i(n−2)(n−i−j)
(
n−i
j

)
= 0.

And if i = j Then bij = (n − 1)i(n − 2)(j−i)
(
n−i
n−j
)

= (n − 1)i(n − 2)0
(
n−i
n−i
)

= (n − 1)i. Thus B is upper

triangular with diagonal entries (n− 1)i, where i ranges from 0 to n. Thus these (n− 1)i’s are eigenvalues
of B and therefore, by Lemma 2, eigenvalues of A′n. ♦

6 Future Work

6.1 Effect of Column Permutations on Eigenvalues

By definition, an adjacency matrix is symmetric. This symmetry is a nice property that we could possibly
exploit. For instance, symmetric matrices have orthonormal bases of eigenvectors. Given that it appears
the eigenvalues of An are the invariant factors, it seems plausible that such an eigenbasis may not only be
a basis for Rn, but for Zn as well. This would also simplify the proof of the Smith normal form by the
fact that we would only need to show that one set of vectors is a basis of Zn. This is why we are currently
investigating how permuting the columns of An changes the eigenvalues. One lemma that may help is due to
Brouwer and Haemers[1]. It states that if A is an adjacency matrix for some graph Γ and P is a permutation
matrix corresponding to an automorphism of Γ with order m, then the eigenvalues of AP are m-th roots
of unity times the eigenvalues of A. In our case, our permutation matrix just reverses column order, which
can be shown to never correspond to an automorphism of our graph corresponding to An. One could also
imagine some permutation of the columns of An such that the resulting matrix still has the form of A′n,
only the columns within some submatrices Ai,j have been permuted in a more complex way to make such
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a permutation an automorphism. This, as appealing as it may seem, also is probably impossible. So this
lemma serves more as inspiration to investigate eigenvalues of the product of an adjacency matrix and a
permutation matrix rather than a tool we can use directly.

6.2 Determinant of An

Determinants of Submatrices. Smith normal form can actually be calculated from the determinants of
submatrices of a matrix. Let di(X) denote the i− th determinant divisor of matrix X, the greatest common
divisor of the determinants of all i× i submatrices of X. Then

k∏
i=1

si = dk(X)

where the si denote the the invariant factors of X down the diagonal in Smith normal form.
From the fact about the relationship between the invariant factors of a matrix X and its determinant

divisors, we decided to try to analyze the determinants of the submatrices of our matrix of interest, An.
Unfortunately, this had little success as the determinants of the submatrices proved adequately difficult to
work with. We then decided to just look at the determinant of the whole matrix An. In the case in which
n = p + 1 where p is any prime, showing that the determinant is a power of p would be sufficient to show
that all the invariant factors of An are powers of p as well. We were unable to find the determinant of An,
but we were able to create a different problem which would give us the determinant. The determinant of
a matrix is n-linear which means that we can express one column of An as the sum of two column vectors,
call them ~x and ~y, and the determinant of An will be equal to the sum of the determinants of the matrices
formed by replacing the column vector with ~x and ~y, respectively.

Notice that An will always have (n− 1)n ones in each row and column, which is a result of there being
n−1 vectors of a given color that are not in a particular transversal, and thus (n−1)n transversals which are
disjoint to that transversal. An has nn columns, so by repeatedly using the n-linearity of the determinant
we can get that the determinant of An is equal to the sum of the determinants of ((n− 1)n)n

n

= (n− 1)n
n+1

nn × nn matrices with only a single one in each column. Of these matrices, only the ones that also have a
one in every row will have nonzero determinants since an entire row of zeros will give a zero determinant.
However, a matrix that has a exactly a single one in every column and row can be interpreted as a permutation
matrix. The determinants of the permuations matrices will always be ±1 with the sign corresponding to
the sign of the permutation. However, not all permutation matrices of dimension nn × nn can be created
by decomposing An as described. Thus finding the determinant of An would be equivalent to finding the
number of even and odd permutation matrices whose ones all correspond to spots with ones in An. This
however, appears to be a difficult problem that we have yet to solve.

6.3 Powers of An

6.3.1 The Minimal Polynomial

The minimal polynomial of a square matrix X over a field is the polynomial P of least degree with leading
coefficient 1 such that P (X) = 0. All other polynomials Q such that Q(X) = 0 will be multiples of the
minimal polynomial, including the characteristic polynomial. The roots of the minimal polynomial are then
all eigenvalues of the matrix X.
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6.3.2 A2
n

We wanted to find the minimal polynomial for An so we tried to express A2
n in terms of An and possibly

some other matrices such as the identity matrix or the all-ones matrix. Whereas An indicates whether the
transversal marking row i, call it ti, and the transversal marking column j, call it tj , are disjoint with a 1,
A2

n indicates how many transversals are mutually disjoint to transversals ti and tj . We can think of these
transversals in terms of how many elements they have in common, that is the size of the intersection of the
two “rainbow” sets of vectors. Suppose that two transversals have k elements in common 0 ≤ k ≤ n. One
extreme is k = 0 in which case the transversals are actually disjoint and the other extreme is k = n in which
case the transversals are actually the same, just one is indexing the rows and one is indexing the columns.
Then in all k spots that the transversals have in common there are n− 1 choices of possible vectors since we
have only used 1 vector out of the n vectors of that color. In the other n − k spots there are n − 2 choices
of possible vectors the two transversals together have used 2 of the vectors of that color. Thus, if ti and tj
have k elements in common then the (i, j)th entry in A2

n will be

(n− 2)n−k(n− 1)k.

Though we could not find a way to express A2
n in terms of An and the identity and all-ones matrix, we

did find a way to describe it in terms of other matrices. Let T
(k)
n be the incidence matrix of transversals

with intersection of size k. This matrix has its rows and columns indexed by transversals, exactly like An,

and has a 1 in the (i, j)th entry if ti ∩ tj = k. Then we can see that we have the special cases An = T
(0)
n ,

since ti ∩ tj = 0 means disjointness, and T
(n)
n is the identity matrix if the rows and columns are indexed in

the same order, since ti ∩ tj = n implies i = j. We can then express A2
n as

A2
n =

n∑
k=0

(n− 2)n−k(n− 1)kT (k)
n .

6.4 Group Action

One idea to consider is to try to count the multiplicities of the invariant factors using a group action. To do
this we use an action of Snn on two sets of vectors. The first set is the set of vectors of the form A′nzi where
A′n is some matrix obtained by permuting the rows of An and zi is a fixed column of An. Permuting the rows
of An only changes the position of the entries in the vector Anzi, not the values, so stab(Anzi) is the set of
all permutations which send entries of Anzi to another entry with the same value. Now the entries of Anzi
are given by

∑n
k=0(n− 2)n−k(n− 1)kT

(k)
n , so when this stabilizer acts on the set of indices 1, 2, . . . , nn the

orbits are all of order |T (k)
n | = (n− 1)n−k

(
n
k

)
. Now Snn acts on a different set of vectors, namely (PAnQ)′x

where (PAnQ)′ is some matrix obtained by a permutation of the rows of the SNF of An and x is the vector
with every entry 1. Like in the action described above stab(PAnQ)x must only send entries of (PAnQ)x
to another entry with the same value. But the entries of (PAnQ)x are exactly the invariant factors of
An including multiplicities. So when this stabilizer acts on the set of indices 1, 2, . . . , nn, the orbits are
exactly the multiplicities of the invariant factors of An. So showing that the stabilizers described above are
isomorphic would show that the invariant factors each have multiplicity (n− 1)n−k

(
n
k

)
.

6.5 The case n = p2 + 1

Some aspects of Drisko’s method seem to lend promise to the case n = p2 +1. For example, Drisko’s analysis
of the orbits relies on there being a small number of neofields of size n = p + 1 because there are a small
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number of groups of order p, and every neofield of order n has an underlying group of order n− 1. While for
every prime p, there is only one group of order p, there are also only two groups of order p2, meaning there
are few neofields of order n = p2 + 1, creating the impression of a possible way to extend Drisko’s result.
This is especially interesting in the unsolved case n = 26, because not only are there only two groups of
order 25, but also only two groups of order 26, probably meaning there are very few neofields of this order.
Now when trying to extend Drisko’s method to the case n = p2 + 1, the cause for concern is the question of
counting modulo what. As Drisko shows, the order of the stabilizer of any Latin square must divide n!n, so
when n = p+ 1, the order of the stablizer must either have 0 or 1 factors of p meaning the order of the orbit
must have either p3 or p2 as a divisor because the order of Sn ⊕ Sn ⊕ Sn is (n!)3 = p3k for some constant k.
This greatly simplifies matters because the order of any orbit of with p3 as a divisor is going to be equal to
0 mod p3, so Drisko needs only consider those orbits with p2 as a divisor. In the case n = p2 + 1 however,
n! = (p2 + 1)! = pp+1j where j is some constant. This means that even though the order of the stabilizer
divides n!n = (p2 + 1)!n = pp+1jn, the order of the stabilizer may contain up to p+ 1 factors of p as opposed
to 0 or 1 factors, so the matter is much more complicated than in Drisko’s case.
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