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Cube example.



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3
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Smith normal form.

Given any integer matrix A, we can perform row and column
operations so that:

A =


d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
...

. . .
...

0 0 0 · · · dn

 where d1|d2 , d2|d3, ... ,dn−1|dn.

Swap any two rows/columns.

Multiply any row/column by a nonzero integer.

Add a integer multiple of one row/column to another.
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Cube example part 2.



(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

(0, 0, 0) 0 1 1 0 1 0 0 0
(0, 0, 1) 1 0 0 1 0 1 0 0
(0, 1, 0) 1 0 0 1 0 0 1 0
(0, 1, 1) 0 1 1 0 0 0 0 1
(1, 0, 0) 1 0 0 0 0 1 1 0
(1, 0, 1) 0 1 0 0 1 0 0 1
(1, 1, 0) 0 0 1 0 1 0 0 1
(1, 1, 1) 0 0 0 1 0 1 1 0
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(0, 0, 1) −1 3 0 −1 0 −1 0 0
(0, 1, 0) −1 0 3 −1 0 0 −1 0
(0, 1, 1) 0 −1 −1 3 0 0 0 −1
(1, 0, 0) −1 0 0 0 3 −1 −1 0
(1, 0, 1) 0 −1 0 0 −1 3 0 −1
(1, 1, 0) 0 0 −1 0 −1 0 3 −1
(1, 1, 1) 0 0 0 −1 0 −1 −1 3
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Cube example part 2.



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 8 0 0
0 0 0 0 0 0 24 0
0 0 0 0 0 0 0 0


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Smith normal form.

Given any integer matrix A, we can perform row and column
operations so that:

A =


d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
...

. . .
...

0 0 0 · · · dn

 where d1|d2 , d2|d3, · · · , dn−1|dn.

Invariant factors.

Elementary divisors.
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Invariant factors vs. Elementary divisors


1 0 0 0

0 3 0 0

0 0 6 0

0 0 0 60



Invariant factors: 1, 3, 6, 60
1 0 0 0

0 3 0 0

0 0 3 · 2 0

0 0 0 5 · 3 · 22


Elementary divisors: 2, 22, 3, 3, 3, 5
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Back to the title.

Integer

Invariants

Abelian Cayley Graphs

Graph: edges and vertices

If vertices come from finite abelian group ⇒ abelian Cayley graph
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Group.

Group: set of elements with an operation

(0, 0, 0) (1, 1, 1)
(1, 0, 0) (1, 1, 0)
(0, 1, 0) (0, 1, 1)
(0, 0, 1) (1, 0, 1)

Closure
Associativity
Identity
Inverses
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Connecting set E .

When is there an edge between two vertices?

Define E .

E = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
Edge between g and h if g − h is in E .
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Goals.

Predict the elementary divisors and their multiplicities for various
incidence matrices.

Recover the results of others in the field, but using a different
technique.
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Relationship between eigenvalues and Smith normal form.

Spectrum = eigenvalues and their multiplicities

A number λ is an eigenvalue of A if there exists a nonzero vector v
such that Av = λv .
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Relationship between eigenvalues and Smith normal form.

 2 0 0

0 2 0

0 0 2



Eigenvalues: 2, 2, 2

SNF: 2, 2, 2

 2 1 0

0 2 1

0 0 2



Eigenvalues: 2, 2, 2

SNF: 1, 1, 8
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Relationship between eigenvalues and Smith normal form.

Theorem: For primes not dividing |G |, the multiplicity of pi as an
elementary divisor of A, is the same as the number of eigenvalues
exactly divisible by pi . [Sin, 2012]
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Eigenvalues as character Sums.

Theorem: 1
|G |MAM

t
= diag(

∑
e∈E

χ(e)) where χ ∈ Irred(G )

[MacWilliams-Mann, 1968]
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Hamming association scheme H(n, q).

Let G be the set of all tuples of length n, with coordinates taken from
some alphabet of size q.

Two tuples are k-th associates if they differ in exactly k coordinate
positions.

G = Zq × Zq × · · · × Zq (n times)
Connecting set Ek : set of tuples with exactly k components that are
not the identity.

The Hamming distance k between APPLE and SMILE is 3.

The Hamming distance between between MATH and COOL is 4.

The distance between (0, 1, 2, 2, 1) and (1, 1, 2, 2, 0) is 2.

Construct adjacency matrix Ak .
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Hamming association scheme H(n, q)

Can find the p-elementary divisor multiplicities for primes p not
dividing |G |.
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The n-cube graph.

Fix q = 2 and k = 1.

Length n is the dimension you’re working in.

G = Z2 × Z2 × · · · × Z2 (n times)
Connecting set E1

When n is odd.

When n is even.
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When n is odd.

Let n = 3, the order of our group is 8.

Eigenvalues: −n + 2j for 0 ≤ j ≤ n, with multiplicity
(n
j

)
.

(Eigenvalue)(multiplicity) : −31,−13, 13, 31

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3


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When n is even.

Let n = 6, the order of our group is 64.

Eigenvalues: −n + 2j for 0 ≤ j ≤ n, with multiplicity
(n
j

)
.

(Eigenvalue)(multiplicity) : −61,−46,−215, 020, 215, 46, 61

Elementary divisors are 212, 32

Conjecture: The multiplicity of 2i as an elementary divisor is equal to
the number of eigenvalues exactly divisible by 2i+1.
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Generalizations.

G = Zq1 × Zq2 × · · · × Zqn

Any connecting set E

Laplacian
Signless Laplacian
Seidel

H. Bai, 2002
Jacobson-Niedermaier-Reiner, 2003
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Questions?

125× 125 incidence matrix for the parameters n = 3, q = 5, and k = 2.
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