Integer Invariants of Abelian Cayley Graphs

Deelan Jalil
James Madison University

July 26, 2013

Cube example.

Cube example.

$(0,0,0) \quad(0,0,1) \quad(0,1,0) \quad(0,1,1) \quad(1,0,0) \quad(1,0,1) \quad(1,1,0) \quad(1,1,1)$
$(0,0,0)$
$(0,0,1)$
$(0,1,0)$
$(0,1,1)$
$(1,0,0)$
$(1,0,1)$
$(1,1,0)$
$(1,1,1)$

Cube example.

$(0,0,0)$
$(0,0,1)$
$(0,1,0)$
$(0,1,1)$
$(1,0,0)$
$(1,0,1)$
$(1,1,0)$
$(1,1,1)$$\left(\begin{array}{cccccccc}0 & (0,0,1) & (0,1,0) & (0,1,1) & (1,0,0) & (1,0,1) & (1,1,0) & (1,1,1) \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0\end{array}\right)$

Cube example.

Cube example.

$$
\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 3
\end{array}\right)
$$

Smith normal form.

- Given any integer matrix A, we can perform row and column operations so that:

$$
A=\left(\begin{array}{ccccc}
d_{1} & 0 & 0 & \cdots & 0 \\
0 & d_{2} & 0 & \cdots & 0 \\
0 & 0 & d_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & d_{n}
\end{array}\right) \text { where } d_{1}\left|d_{2}, d_{2}\right| d_{3}, \ldots, d_{n-1} \mid d_{n} .
$$

Smith normal form.

- Given any integer matrix A, we can perform row and column operations so that:

$$
A=\left(\begin{array}{ccccc}
d_{1} & 0 & 0 & \cdots & 0 \\
0 & d_{2} & 0 & \cdots & 0 \\
0 & 0 & d_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & d_{n}
\end{array}\right) \text { where } d_{1}\left|d_{2}, d_{2}\right| d_{3}, \ldots, d_{n-1} \mid d_{n}
$$

- Swap any two rows/columns.

Smith normal form.

- Given any integer matrix A, we can perform row and column operations so that:

$$
A=\left(\begin{array}{ccccc}
d_{1} & 0 & 0 & \cdots & 0 \\
0 & d_{2} & 0 & \cdots & 0 \\
0 & 0 & d_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & d_{n}
\end{array}\right) \text { where } d_{1}\left|d_{2}, d_{2}\right| d_{3}, \ldots, d_{n-1} \mid d_{n}
$$

- Swap any two rows/columns.
- Multiply any row/column by a nonzero integer.

Smith normal form.

- Given any integer matrix A, we can perform row and column operations so that:

$$
A=\left(\begin{array}{ccccc}
d_{1} & 0 & 0 & \cdots & 0 \\
0 & d_{2} & 0 & \cdots & 0 \\
0 & 0 & d_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & d_{n}
\end{array}\right) \text { where } d_{1}\left|d_{2}, d_{2}\right| d_{3}, \ldots, d_{n-1} \mid d_{n}
$$

- Swap any two rows/columns.
- Multiply any row/column by a nonzero integer.
- Add a integer multiple of one row/column to another.

Cube example part 2.

$(0,0,0)$
$(0,0,1)$
$(0,1,0)$
$(0,1,1)$
$(1,0,0)$
$(1,0,1)$
$(1,1,0)$
$(1,1,1)$$\left(\begin{array}{cccccccc}0 & (0,0,1) & (0,1,0) & (0,1,1) & (1,0,0) & (1,0,1) & (1,1,0) & (1,1,1) \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ \end{array}\right.$

Cube example part 2.

$(0,0,0)$
$(0,0,1)$
$(0,1,0)$
$(0,1,1)$
$(1,0,0)$
$(1,0,1)$
$(1,1,0)$
$(1,1,1)$$\left(\begin{array}{cccccccc}0 & (0,0,1) & (0,1,0) & (0,1,1) & (1,0,0) & (1,0,1) & (1,1,0) & (1,1,1) \\ 0 & -1 & -1 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 & 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 \\ 0 & -1 & -1 & 0 & 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 & 0 & -1 & -1 & 0 \\ 0 & -1 & 0 & 0 & -1 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 & -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & -1 & -1 & 0\end{array}\right)$

Cube example part 2.

$(0,0,0)$
$(0,0,1)$
$(0,1,0)$
$(0,1,1)$
$(1,0,0)$
$(1,0,1)$
$(1,1,0)$
$(1,1,1)$$\left(\begin{array}{cccccccc}3 & (0,0,1) & (0,1,0) & (0,1,1) & (1,0,0) & (1,0,1) & (1,1,0) & (1,1,1) \\ -1 & -1 & -1 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & -1 & -1 & -1 & 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & -1 & 0 & 0 & -1 & -1 & -1 & 0 \\ 0 & 0 & -1 & 0 & -1 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & -1 & -1 & 3\end{array}\right)$

Cube example part 2.

$$
\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 24 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Smith normal form.

- Given any integer matrix A, we can perform row and column operations so that:

$$
A=\left(\begin{array}{ccccc}
d_{1} & 0 & 0 & \cdots & 0 \\
0 & d_{2} & 0 & \cdots & 0 \\
0 & 0 & d_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & d_{n}
\end{array}\right) \text { where } d_{1}\left|d_{2}, d_{2}\right| d_{3}, \cdots, d_{n-1} \mid d_{n} .
$$

Smith normal form.

- Given any integer matrix A, we can perform row and column operations so that:

$$
A=\left(\begin{array}{ccccc}
d_{1} & 0 & 0 & \cdots & 0 \\
0 & d_{2} & 0 & \cdots & 0 \\
0 & 0 & d_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & d_{n}
\end{array}\right) \text { where } d_{1}\left|d_{2}, d_{2}\right| d_{3}, \cdots, d_{n-1} \mid d_{n} .
$$

- Invariant factors.

Smith normal form.

- Given any integer matrix A, we can perform row and column operations so that:

$$
A=\left(\begin{array}{ccccc}
d_{1} & 0 & 0 & \cdots & 0 \\
0 & d_{2} & 0 & \cdots & 0 \\
0 & 0 & d_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & d_{n}
\end{array}\right) \text { where } d_{1}\left|d_{2}, d_{2}\right| d_{3}, \cdots, d_{n-1} \mid d_{n} .
$$

- Invariant factors.
- Elementary divisors.

Invariant factors vs. Elementary divisors

- $\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 60\end{array}\right)$

Invariant factors vs. Elementary divisors

- $\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 60\end{array}\right)$
- Invariant factors: 1,3,6,60

Invariant factors vs. Elementary divisors

- $\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 60\end{array}\right)$
- Invariant factors: $1,3,6,60$
- $\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 \cdot 2 & 0 \\ 0 & 0 & 0 & 5 \cdot 3 \cdot 2^{2}\end{array}\right)$

Invariant factors vs. Elementary divisors

- $\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 60\end{array}\right)$
- Invariant factors: $1,3,6,60$
- $\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 \cdot 2 & 0 \\ 0 & 0 & 0 & 5 \cdot 3 \cdot 2^{2}\end{array}\right)$
- Elementary divisors: $2,2^{2}, 3,3,3,5$

Back to the title.

- Integer

Back to the title.

- Integer
- Invariants

Back to the title.

- Integer
- Invariants
- Abelian Cayley Graphs

Back to the title.

- Integer
- Invariants
- Abelian Cayley Graphs
- Graph: edges and vertices

Back to the title.

- Integer
- Invariants
- Abelian Cayley Graphs
- Graph: edges and vertices
- If vertices come from finite abelian group \Rightarrow abelian Cayley graph

Group.

- Group: set of elements with an operation
$(0,0,0) \quad(1,1,1)$
$(1,0,0) \quad(1,1,0)$
$(0,1,0) \quad(0,1,1)$
$(0,0,1) \quad(1,0,1)$

Group.

- Group: set of elements with an operation

$$
\begin{array}{ll}
(0,0,0) & (1,1,1) \\
(1,0,0) & (1,1,0) \\
(0,1,0) & (0,1,1) \\
(0,0,1) & (1,0,1)
\end{array}
$$

- Closure

Associativity
Identity
Inverses

Connecting set E.

- When is there an edge between two vertices?

Connecting set E.

- When is there an edge between two vertices?
- Define E.

Connecting set E.

- When is there an edge between two vertices?
- Define E.
- $E=\{(0,0,1),(0,1,0),(1,0,0)\}$

Connecting set E.

- When is there an edge between two vertices?
- Define E.
- $E=\{(0,0,1),(0,1,0),(1,0,0)\}$
- Edge between g and h if $g-h$ is in E.

Goals.

- Predict the elementary divisors and their multiplicities for various incidence matrices.

Goals.

- Predict the elementary divisors and their multiplicities for various incidence matrices.
- Recover the results of others in the field, but using a different technique.

Relationship between eigenvalues and Smith normal form.

- Spectrum $=$ eigenvalues and their multiplicities

Relationship between eigenvalues and Smith normal form.

- Spectrum $=$ eigenvalues and their multiplicities
- A number λ is an eigenvalue of A if there exists a nonzero vector v such that $A v=\lambda v$.

Relationship between eigenvalues and Smith normal form.

$$
-\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

$$
\cdot\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

Relationship between eigenvalues and Smith normal form.

- $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$
- Eigenvalues: 2, 2, 2
- $\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$
- Eigenvalues: 2, 2, 2

Relationship between eigenvalues and Smith normal form.

- $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$
- Eigenvalues: 2, 2, 2
- SNF: 2, 2, 2
- $\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$
- Eigenvalues: 2, 2, 2

Relationship between eigenvalues and Smith normal form.

- $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right)$
- Eigenvalues: 2, 2, 2
- SNF: 2, 2, 2
- $\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$
- Eigenvalues: 2, 2, 2
- SNF: 1, 1, 8

Relationship between eigenvalues and Smith normal form.

- Theorem: For primes not dividing $|G|$, the multiplicity of p^{i} as an elementary divisor of A, is the same as the number of eigenvalues exactly divisible by p^{i}. [Sin, 2012]

Eigenvalues as character Sums.

- Theorem: $\frac{1}{|G|} M A \bar{M}^{t}=\operatorname{diag}\left(\sum_{e \in E} \chi(e)\right)$ where $\chi \in \operatorname{Irred}(G)$ [MacWilliams-Mann, 1968]

Hamming association scheme $H(n, q)$.

- Let G be the set of all tuples of length n, with coordinates taken from some alphabet of size q.

Hamming association scheme $H(n, q)$.

- Let G be the set of all tuples of length n, with coordinates taken from some alphabet of size q.
- Two tuples are k-th associates if they differ in exactly k coordinate positions.

Hamming association scheme $H(n, q)$.

- Let G be the set of all tuples of length n, with coordinates taken from some alphabet of size q.
- Two tuples are k-th associates if they differ in exactly k coordinate positions.
- $G=Z_{q} \times Z_{q} \times \cdots \times Z_{q}$ (n times)

Connecting set E_{k} : set of tuples with exactly k components that are not the identity.

Hamming association scheme $H(n, q)$.

- Let G be the set of all tuples of length n, with coordinates taken from some alphabet of size q.
- Two tuples are k-th associates if they differ in exactly k coordinate positions.
- $G=Z_{q} \times Z_{q} \times \cdots \times Z_{q}$ (n times)

Connecting set E_{k} : set of tuples with exactly k components that are not the identity.

- The Hamming distance k between APPLE and SMILE is 3 .

Hamming association scheme $H(n, q)$.

- Let G be the set of all tuples of length n, with coordinates taken from some alphabet of size q.
- Two tuples are k-th associates if they differ in exactly k coordinate positions.
- $G=Z_{q} \times Z_{q} \times \cdots \times Z_{q}$ (n times)

Connecting set E_{k} : set of tuples with exactly k components that are not the identity.

- The Hamming distance k between APPLE and SMILE is 3 .
- The Hamming distance between between MATH and COOL is 4 .

Hamming association scheme $H(n, q)$.

- Let G be the set of all tuples of length n, with coordinates taken from some alphabet of size q.
- Two tuples are k-th associates if they differ in exactly k coordinate positions.
- $G=Z_{q} \times Z_{q} \times \cdots \times Z_{q}$ (n times)

Connecting set E_{k} : set of tuples with exactly k components that are not the identity.

- The Hamming distance k between APPLE and SMILE is 3 .
- The Hamming distance between between MATH and COOL is 4 .
- The distance between $(0,1,2,2,1)$ and $(1,1,2,2,0)$ is 2 .

Hamming association scheme $H(n, q)$.

- Let G be the set of all tuples of length n, with coordinates taken from some alphabet of size q.
- Two tuples are k-th associates if they differ in exactly k coordinate positions.
- $G=Z_{q} \times Z_{q} \times \cdots \times Z_{q}$ (n times)

Connecting set E_{k} : set of tuples with exactly k components that are not the identity.

- The Hamming distance k between APPLE and SMILE is 3 .
- The Hamming distance between between MATH and COOL is 4 .
- The distance between $(0,1,2,2,1)$ and $(1,1,2,2,0)$ is 2 .
- Construct adjacency matrix A_{k}.

Hamming association scheme $H(n, q)$

- Can find the p-elementary divisor multiplicities for primes p not dividing $|G|$.

The n-cube graph.

- Fix $q=2$ and $k=1$.

The n-cube graph.

- Fix $q=2$ and $k=1$.
- Length n is the dimension you're working in.

The n-cube graph.

- Fix $q=2$ and $k=1$.
- Length n is the dimension you're working in.

The n-cube graph.

- Fix $q=2$ and $k=1$.
- Length n is the dimension you're working in.

- $G=Z_{2} \times Z_{2} \times \cdots \times Z_{2}$ (n times)

Connecting set E_{1}

The n-cube graph.

- Fix $q=2$ and $k=1$.
- Length n is the dimension you're working in.

- $G=Z_{2} \times Z_{2} \times \cdots \times Z_{2}$ (n times)

Connecting set E_{1}

- When n is odd.

The n-cube graph.

- Fix $q=2$ and $k=1$.
- Length n is the dimension you're working in.

- $G=Z_{2} \times Z_{2} \times \cdots \times Z_{2}$ (n times)

Connecting set E_{1}

- When n is odd.
- When n is even.

When n is odd.

- Let $n=3$, the order of our group is 8 .

When n is odd.

- Let $n=3$, the order of our group is 8 .
- Eigenvalues: $-n+2 j$ for $0 \leq j \leq n$, with multiplicity $\binom{n}{j}$.

When n is odd.

- Let $n=3$, the order of our group is 8 .
- Eigenvalues: $-n+2 j$ for $0 \leq j \leq n$, with multiplicity $\binom{n}{j}$.
- (Eigenvalue $)^{(\text {multiplicity })}:-3^{1},-1^{3}, 1^{3}, 3^{1}$

When n is odd.

- Let $n=3$, the order of our group is 8 .
- Eigenvalues: $-n+2 j$ for $0 \leq j \leq n$, with multiplicity $\binom{n}{j}$.
- (Eigenvalue $)^{(\text {multiplicity })}:-3^{1},-1^{3}, 1^{3}, 3^{1}$

$$
\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 3
\end{array}\right)
$$

When n is even.

- Let $n=6$, the order of our group is 64 .

When n is even.

- Let $n=6$, the order of our group is 64 .
- Eigenvalues: $-n+2 j$ for $0 \leq j \leq n$, with multiplicity $\binom{n}{j}$.

When n is even.

- Let $n=6$, the order of our group is 64 .
- Eigenvalues: $-n+2 j$ for $0 \leq j \leq n$, with multiplicity $\binom{n}{j}$.
- (Eigenvalue $)^{(\text {multiplicity })}:-6^{1},-4^{6},-2^{15}, 0^{20}, 2^{15}, 4^{6}, 6^{1}$

When n is even.

- Let $n=6$, the order of our group is 64 .
- Eigenvalues: $-n+2 j$ for $0 \leq j \leq n$, with multiplicity $\binom{n}{j}$.
- (Eigenvalue $)^{(\text {multiplicity })}:-6^{1},-4^{6},-2^{15}, 0^{20}, 2^{15}, 4^{6}, 6^{1}$

When n is even.

- Let $n=6$, the order of our group is 64 .
- Eigenvalues: $-n+2 j$ for $0 \leq j \leq n$, with multiplicity $\binom{n}{j}$.
- (Eigenvalue) $)^{(\text {multiplicity })}:-6^{1},-4^{6},-2^{15}, 0^{20}, 2^{15}, 4^{6}, 6^{1}$
- Elementary divisors are $2^{12}, 3^{2}$

When n is even.

- Let $n=6$, the order of our group is 64 .
- Eigenvalues: $-n+2 j$ for $0 \leq j \leq n$, with multiplicity $\binom{n}{j}$.
- (Eigenvalue) $)^{(\text {multiplicity })}:-6^{1},-4^{6},-2^{15}, 0^{20}, 2^{15}, 4^{6}, 6^{1}$
- Elementary divisors are $2^{12}, 3^{2}$
- Conjecture: The multiplicity of 2^{i} as an elementary divisor is equal to the number of eigenvalues exactly divisible by 2^{i+1}.

Generalizations.

- $G=Z_{q_{1}} \times Z_{q_{2}} \times \cdots \times Z_{q_{n}}$ Any connecting set E

Generalizations.

- $G=Z_{q_{1}} \times Z_{q_{2}} \times \cdots \times Z_{q_{n}}$ Any connecting set E
- Laplacian

Signless Laplacian Seidel

Generalizations.

- $G=Z_{q_{1}} \times Z_{q_{2}} \times \cdots \times Z_{q_{n}}$ Any connecting set E
- Laplacian

Signless Laplacian Seidel

- H. Bai, 2002

Jacobson-Niedermaier-Reiner, 2003

Acknowledgements.

- Mentor Dr. Joshua Ducey
- Dr. Minah Oh
- Justin and Brock
- JMU Department of Mathematics and Statistics

Questions?

125×125 incidence matrix for the parameters $n=3, q=5$, and $k=2$.

