Integer Invariants of Abelian Cayley Graphs

Deelan Jalil

James Madison University

July 26, 2013

Deelan Jalil (2013)

Integer Invariants of Abelian Cayley Graphs

July 26, 2013 1 / 29

Deelan Jalil (2013)

Integer Invariants of Abelian Cayley Graphs

э July 26, 2013 2 / 29

∃ →

• • • • • • • • • • • •

 $\begin{array}{c} (0,0,0) & (0,0,1) & (0,1,0) & (0,1,1) & (1,0,0) & (1,0,1) & (1,1,0) & (1,1,1) \\ (0,0,0) & \\ (0,0,1) & \\ (0,1,0) & \\ (1,0,1) & \\ (1,0,0) & \\ (1,1,1) & \\ \end{array} \right)$

Deelan Jalil (2013)

	(0, 0, 0)	(0, 0, 1)	(0, 1, 0)	(0, 1, 1)	(1, 0, 0)	(1, 0, 1)	(1, 1, 0)	(1, 1, 1)
(0,0,0)	(0	1	1	0	1	0	0	0)
(0,0,1)	1	0	0	1	0	1	0	0
(0, 1, 0)	1	0	0	1	0	0	1	0
(0, 1, 1)	0	1	1	0	0	0	0	1
(1,0,0)	1	0	0	0	0	1	1	0
(1, 0, 1)	0	1	0	0	1	0	0	1
(1,1,0)	0	0	1	0	1	0	0	1
(1, 1, 1)	0	0	0	1	0	1	1	0 /
						┓┢ ╡∄┣┢ ╡		= ~~~

Deelan Jalil (2013)

Integer Invariants of Abelian Cayley Graphs

July 26, 2013 4 / 29

▶ < 불 ▶ 불 ∽ ९. July 26, 2013 5 / 29

→ < ∃ >

• Given any integer matrix *A*, we can perform row and column operations so that:

$$A = \begin{pmatrix} d_1 & 0 & 0 & \cdots & 0 \\ 0 & d_2 & 0 & \cdots & 0 \\ 0 & 0 & d_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_n \end{pmatrix} \text{ where } d_1 | d_2 \ , \ d_2 | d_3, \ \dots \ , d_{n-1} | d_n.$$

• Given any integer matrix *A*, we can perform row and column operations so that:

$$A = \begin{pmatrix} d_1 & 0 & 0 & \cdots & 0 \\ 0 & d_2 & 0 & \cdots & 0 \\ 0 & 0 & d_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_n \end{pmatrix} \text{ where } d_1 | d_2 \ , \ d_2 | d_3, \ \dots \ , d_{n-1} | d_n.$$

• Swap any two rows/columns.

• Given any integer matrix A, we can perform row and column operations so that:

$$A = \begin{pmatrix} d_1 & 0 & 0 & \cdots & 0 \\ 0 & d_2 & 0 & \cdots & 0 \\ 0 & 0 & d_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_n \end{pmatrix} \text{ where } d_1 | d_2 \text{ , } d_2 | d_3, \text{ ... } , d_{n-1} | d_n.$$

- Swap any two rows/columns.
- Multiply any row/column by a nonzero integer.

• Given any integer matrix *A*, we can perform row and column operations so that:

$$A = \begin{pmatrix} d_1 & 0 & 0 & \cdots & 0 \\ 0 & d_2 & 0 & \cdots & 0 \\ 0 & 0 & d_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_n \end{pmatrix} \text{ where } d_1 | d_2 \text{ , } d_2 | d_3, \text{ ... , } d_{n-1} | d_n.$$

- Swap any two rows/columns.
- Multiply any row/column by a nonzero integer.
- Add a integer multiple of one row/column to another.

	(0,0,0)	(0,0,1)	(0,1,0)	(0,1,1)	(1,0,0)	(1,0,1)	(1,1,0)	(1, 1, 1)
(0, 0, 0)	(0	1	1	0	1	0	0	0 \
(0, 0, 1)	1	0	0	1	0	1	0	0
(0, 1, 0)	1	0	0	1	0	0	1	0
(0, 1, 1)	0	1	1	0	0	0	0	1
(1, 0, 0)	1	0	0	0	0	1	1	0
(1, 0, 1)	0	1	0	0	1	0	0	1
(1, 1, 0)	0	0	1	0	1	0	0	1
(1, 1, 1)	0 /	0	0	1	0	1	1	0 /

- ∢ 🗇 እ

	(0,0,0)	(0,0,1)	(0, 1, 0)	(0,1,1)	(1,0,0)	(1,0,1)	(1,1,0)	(1, 1, 1)
(0, 0, 0)	(0	$^{-1}$	$^{-1}$	0	$^{-1}$	0	0	0 \
(0, 0, 1)	-1	0	0	-1	0	$^{-1}$	0	0
(0, 1, 0)	-1	0	0	$^{-1}$	0	0	$^{-1}$	0
(0, 1, 1)	0	$^{-1}$	$^{-1}$	0	0	0	0	-1
(1, 0, 0)	-1	0	0	0	0	$^{-1}$	$^{-1}$	0
(1, 0, 1)	0	$^{-1}$	0	0	$^{-1}$	0	0	-1
(1, 1, 0)	0	0	$^{-1}$	0	$^{-1}$	0	0	-1
(1, 1, 1)	0	0	0	-1	0	-1	-1	0 /

э

Image: A matrix

- - E

	(0,0,0)	(0,0,1)	(0,1,0)	(0,1,1)	(1,0,0)	(1,0,1)	(1,1,0)	(1, 1, 1)
(0, 0, 0)	(3	$^{-1}$	-1	0	$^{-1}$	0	0	0 \
(0, 0, 1)	-1	3	0	-1	0	$^{-1}$	0	0
(0, 1, 0)	-1	0	3	$^{-1}$	0	0	$^{-1}$	0
(0, 1, 1)	0	$^{-1}$	$^{-1}$	3	0	0	0	-1
(1, 0, 0)	-1	0	0	0	3	$^{-1}$	$^{-1}$	0
(1, 0, 1)	0	$^{-1}$	0	0	$^{-1}$	3	0	-1
(1, 1, 0)	0	0	$^{-1}$	0	$^{-1}$	0	3	-1
(1, 1, 1)	0	0	0	-1	0	-1	-1	3 /

< 一型

• Given any integer matrix *A*, we can perform row and column operations so that:

$$A = \begin{pmatrix} d_1 & 0 & 0 & \cdots & 0 \\ 0 & d_2 & 0 & \cdots & 0 \\ 0 & 0 & d_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_n \end{pmatrix}$$

where $d_1|d_2$, $d_2|d_3$, ..., $d_{n-1}|d_n$.

• Given any integer matrix *A*, we can perform row and column operations so that:

$$A = \begin{pmatrix} d_1 & 0 & 0 & \cdots & 0 \\ 0 & d_2 & 0 & \cdots & 0 \\ 0 & 0 & d_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_n \end{pmatrix}$$

where $d_1|d_2$, $d_2|d_3$, \cdots , $d_{n-1}|d_n$.

Invariant factors.

• Given any integer matrix *A*, we can perform row and column operations so that:

$$A = \begin{pmatrix} d_1 & 0 & 0 & \cdots & 0 \\ 0 & d_2 & 0 & \cdots & 0 \\ 0 & 0 & d_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_n \end{pmatrix}$$

where $d_1|d_2$, $d_2|d_3,$ \cdots , $d_{n-1}|d_n$.

- Invariant factors.
- Elementary divisors.

Invariant factors vs. Elementary divisors

$$\bullet \left(\begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 60 \end{matrix} \right)$$

Deelan Jalil (2013)

► < ∃ ►</p>

$$\bullet \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 60 \end{array} \right)$$

• Invariant factors: 1, 3, 6, 60

$$\bullet \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 60 \end{array} \right)$$

• Invariant factors: 1, 3, 6, 60

$$\bullet \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 \cdot 2 & 0 \\ 0 & 0 & 0 & 5 \cdot 3 \cdot 2^2 \end{pmatrix}$$

$$\bullet \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 60 \end{array} \right)$$

• Invariant factors: 1, 3, 6, 60

$$\bullet \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 \cdot 2 & 0 \\ 0 & 0 & 0 & 5 \cdot 3 \cdot 2^2 \end{pmatrix}$$

• Elementary divisors: 2, 2², 3, 3, 3, 5

Back to the title.

Integer

Deelan Jalil (2013)

э

- A 🖃

- Integer
- Invariants

- 一司

- A 🖃

- Integer
- Invariants
- Abelian Cayley Graphs

- Integer
- Invariants
- Abelian Cayley Graphs
- Graph: edges and vertices

- Integer
- Invariants
- Abelian Cayley Graphs
- Graph: edges and vertices
- \bullet If vertices come from finite abelian group \Rightarrow abelian Cayley graph

• Group: set of elements with an operation

$$\begin{array}{rrrr} (0,0,0) & (1,1,1) \\ (1,0,0) & (1,1,0) \\ (0,1,0) & (0,1,1) \\ (0,0,1) & (1,0,1) \end{array}$$

• Group: set of elements with an operation

$$\begin{array}{rrrr} (0,0,0) & (1,1,1) \\ (1,0,0) & (1,1,0) \\ (0,1,0) & (0,1,1) \\ (0,0,1) & (1,0,1) \end{array}$$

Closure

Associativity

Identity

Inverses

• When is there an edge between two vertices?

- When is there an edge between two vertices?
- Define *E*.

- When is there an edge between two vertices?
- Define E.
- $E = \{(0,0,1), (0,1,0), (1,0,0)\}$

- When is there an edge between two vertices?
- Define *E*.
- $E = \{(0,0,1), (0,1,0), (1,0,0)\}$
- Edge between g and h if g h is in E.

• Predict the elementary divisors and their multiplicities for various incidence matrices.

- Predict the elementary divisors and their multiplicities for various incidence matrices.
- Recover the results of others in the field, but using a different technique.

• Spectrum = eigenvalues and their multiplicities

- Spectrum = eigenvalues and their multiplicities
- A number λ is an eigenvalue of A if there exists a nonzero vector v such that Av = λv.

• Eigenvalues: 2, 2, 2

• Eigenvalues: 2, 2, 2

- Eigenvalues: 2, 2, 2
- SNF: 2, 2, 2

• Eigenvalues: 2, 2, 2

- Eigenvalues: 2, 2, 2
- SNF: 2, 2, 2

- Eigenvalues: 2, 2, 2
- SNF: 1, 1, 8

• Theorem: For primes not dividing |G|, the multiplicity of p^i as an elementary divisor of A, is the same as the number of eigenvalues exactly divisible by p^i . [Sin, 2012]

• Theorem: $\frac{1}{|G|}MA\overline{M}^t = diag(\sum_{e \in E} \chi(e))$ where $\chi \in Irred(G)$ [MacWilliams-Mann, 1968]

• Let G be the set of all tuples of length n, with coordinates taken from some alphabet of size q.

- Let G be the set of all tuples of length n, with coordinates taken from some alphabet of size q.
- Two tuples are *k*-th associates if they differ in exactly *k* coordinate positions.

- Let G be the set of all tuples of length n, with coordinates taken from some alphabet of size q.
- Two tuples are *k*-th associates if they differ in exactly *k* coordinate positions.
- G = Z_q × Z_q × ··· × Z_q (n times) Connecting set E_k: set of tuples with exactly k components that are not the identity.

- Let G be the set of all tuples of length n, with coordinates taken from some alphabet of size q.
- Two tuples are *k*-th associates if they differ in exactly *k* coordinate positions.
- G = Z_q × Z_q × ··· × Z_q (n times) Connecting set E_k: set of tuples with exactly k components that are not the identity.
- The Hamming distance k between APPLE and SMILE is 3.

- Let G be the set of all tuples of length n, with coordinates taken from some alphabet of size q.
- Two tuples are *k*-th associates if they differ in exactly *k* coordinate positions.
- G = Z_q × Z_q × ··· × Z_q (n times) Connecting set E_k: set of tuples with exactly k components that are not the identity.
- The Hamming distance k between APPLE and SMILE is 3.
- The Hamming distance between between MATH and COOL is 4.

- Let G be the set of all tuples of length n, with coordinates taken from some alphabet of size q.
- Two tuples are *k*-th associates if they differ in exactly *k* coordinate positions.
- G = Z_q × Z_q × ··· × Z_q (n times) Connecting set E_k: set of tuples with exactly k components that are not the identity.
- The Hamming distance k between APPLE and SMILE is 3.
- The Hamming distance between between MATH and COOL is 4.
- The distance between (0, 1, 2, 2, 1) and (1, 1, 2, 2, 0) is 2.

- Let G be the set of all tuples of length n, with coordinates taken from some alphabet of size q.
- Two tuples are *k*-th associates if they differ in exactly *k* coordinate positions.
- G = Z_q × Z_q × ··· × Z_q (n times) Connecting set E_k: set of tuples with exactly k components that are not the identity.
- The Hamming distance k between APPLE and SMILE is 3.
- The Hamming distance between between MATH and COOL is 4.
- The distance between (0, 1, 2, 2, 1) and (1, 1, 2, 2, 0) is 2.
- Construct adjacency matrix A_k.

• Can find the *p*-elementary divisor multiplicities for primes *p* not dividing |*G*|.

• Fix
$$q = 2$$
 and $k = 1$.

э

- Fix q = 2 and k = 1.
- Length *n* is the dimension you're working in.

- Fix q = 2 and k = 1.
- Length *n* is the dimension you're working in.

- Fix q = 2 and k = 1.
- Length *n* is the dimension you're working in.

• $G = Z_2 \times Z_2 \times \cdots \times Z_2$ (*n* times) Connecting set E_1

- Fix q = 2 and k = 1.
- Length *n* is the dimension you're working in.

- $G = Z_2 \times Z_2 \times \cdots \times Z_2$ (*n* times) Connecting set E_1
- When *n* is odd.

- Fix q = 2 and k = 1.
- Length *n* is the dimension you're working in.

- $G = Z_2 \times Z_2 \times \cdots \times Z_2$ (*n* times) Connecting set E_1
- When *n* is odd.
- When *n* is even.

• Let n = 3, the order of our group is 8.

When *n* is odd.

- Let n = 3, the order of our group is 8.
- Eigenvalues: -n + 2j for $0 \le j \le n$, with multiplicity $\binom{n}{j}$.

When *n* is odd.

- Let n = 3, the order of our group is 8.
- Eigenvalues: -n + 2j for $0 \le j \le n$, with multiplicity $\binom{n}{i}$.
- (Eigenvalue)^(multiplicity) : $-3^1, -1^3, 1^3, 3^1$

When *n* is odd.

۲

- Let n = 3, the order of our group is 8.
- Eigenvalues: -n + 2j for $0 \le j \le n$, with multiplicity $\binom{n}{j}$.
- (Eigenvalue)^(multiplicity) : $-3^1, -1^3, 1^3, 3^1$

/1	0	0	0	0	0	0	0\
0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	3	0
/0	0	0	0	0	0	0	3/

• Let n = 6, the order of our group is 64.

- Let n = 6, the order of our group is 64.
- Eigenvalues: -n + 2j for $0 \le j \le n$, with multiplicity $\binom{n}{j}$.

- Let n = 6, the order of our group is 64.
- Eigenvalues: -n + 2j for $0 \le j \le n$, with multiplicity $\binom{n}{j}$.
- (Eigenvalue)^(multiplicity) : $-6^1, -4^6, -2^{15}, 0^{20}, 2^{15}, 4^6, 6^1$

- Let n = 6, the order of our group is 64.
- Eigenvalues: -n + 2j for $0 \le j \le n$, with multiplicity $\binom{n}{j}$.
- (Eigenvalue)^(multiplicity) : $-6^1, -4^6, -2^{15}, 0^{20}, 2^{15}, 4^6, 6^1$

- Let n = 6, the order of our group is 64.
- Eigenvalues: -n + 2j for $0 \le j \le n$, with multiplicity $\binom{n}{j}$.
- (Eigenvalue)^(multiplicity) : $-6^1, -4^6, -2^{15}, 0^{20}, 2^{15}, 4^6, 6^1$
- Elementary divisors are 2¹², 3²

- Let n = 6, the order of our group is 64.
- Eigenvalues: -n + 2j for $0 \le j \le n$, with multiplicity $\binom{n}{j}$.
- (Eigenvalue)^(multiplicity) : $-6^1, -4^6, -2^{15}, 0^{20}, 2^{15}, 4^6, 6^1$
- Elementary divisors are 2¹², 3²
- Conjecture: The multiplicity of 2ⁱ as an elementary divisor is equal to the number of eigenvalues exactly divisible by 2ⁱ⁺¹.

• $G = Z_{q_1} \times Z_{q_2} \times \cdots \times Z_{q_n}$ Any connecting set E

Generalizations.

- $G = Z_{q_1} \times Z_{q_2} \times \cdots \times Z_{q_n}$ Any connecting set E
- Laplacian
 Signless Laplacian
 Seidel

- $G = Z_{q_1} \times Z_{q_2} \times \cdots \times Z_{q_n}$ Any connecting set E
- Laplacian
 Signless Laplacian
 Seidel
- H. Bai, 2002 Jacobson-Niedermaier-Reiner, 2003

- Mentor Dr. Joshua Ducey
- Dr. Minah Oh
- Justin and Brock
- JMU Department of Mathematics and Statistics

Questions?

 125×125 incidence matrix for the parameters n = 3, q = 5, and k = 2.

.