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1. DUAL GRAPHS JMU REU 2019

1 Dual Graphs

1.1 The Critical Group

In this section, we consider a graph G to be a finite set of vertices VG together with a finite set of

undirected edges EG connecting them (we will drop subscripts if clear from context). We allow for multiple

edges between a given pair of vertices, but not for connections from a vertex to itself (“self-loops”). We

define E◦G to be the set of oriented edges of the graph, which includes two directed edges associated with

each of the undirected edges in G.

For any e ∈ E◦, let e ∈ E◦ denote the directed edge associated with the same undirected edge as e but

with opposite orientation, and let v+
e , v

−
e ∈ V denote the vertices at the head and tail of e respectively. We

then let ZE◦ be the free Z-module generated by the elements of E◦ mod the relation e = −e, and ZV be

the free Z-module generated by the set of vertices V .

We can define the linear map D1,G : ZE◦ → ZV which sends each directed edge to the difference of its

endpoints: D1(e) = v+
e − v−e . We can also define its adjoint, D∗1,G : ZV → ZE◦, which operates on vertices

by

D∗1(v) =
∑
e∈E◦
v=v+

e

e.

These are commonly referred to as the edge-vertex incidence matrices for G.

Now, consider the Laplacian LG = D1D
∗
1 : ZV → ZV . We have

L(v) = D1(D∗1(v)) = D1

∑
e∈E◦
v=v+

e

e

 =
∑
e∈E◦
v=v+

e

D1(e) =
∑
e∈E◦
v=v+

e

v+
e − v−e =

∑
v′∼v

v − v′,

where ∼ denotes adjacency. We are interested in the cokernel of L, Coker(L) = Codomain(L)/Im(L) =

ZV/L(ZV ). The rank of L is equal to |V | − n where n is the number of connected components of G, so

Coker(L) = Zn ⊕ κ(G), where κ(G) is a finite abelian group called the critical group of G.

For example, for the cycle graph C3,
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1. DUAL GRAPHS JMU REU 2019

the edge-vertex incidence matrix D1 is 
1 0 −1

−1 1 0

0 −1 1


and the Laplacian L is 

2 −1 −1

−1 2 −1

−1 −1 2

 .
The critical group is then Coker(L)/Z ∼= Z/3Z.

1.2 Dual Graphs

A 2-cell embedding Σ : G→M of a graph G into a 2-manifold M is an embedding such that the edges of

G partition M into a set of faces FG,Σ that are each homeomorphic to a disk. For any such embedding Σ,

there is an associated dual graph to G, denoted G∗Σ (and an associated class of embeddings Σ∗ : G∗Σ →M),

a member of which is constructed by placing a vertex on each face in Σ(G), and crossing each edge of Σ(G)

with an edge connecting the vertices of G∗Σ associated to the faces of Σ(G) incident on that edge. Note that

this operation satisfies (G∗Σ)∗Σ∗ = G.

We define the face-edge incidence matrices D2,G,Σ and D∗2,G,Σ of G as D∗1,G∗Σ
and D1,G∗Σ

respectively.

Since there is a canonical bijection between FG,Σ and VG∗Σ , and between VG and FG∗Σ,Σ∗ , we will consider

D2,G,Σ as a map from ZFG,Σ to ZE◦G. D∗2,G,Σ : ZE◦G → ZFG,Σ, of course, remains its adjoint. D2,G,Σ sends

faces of G to the (counterclockwise) sum of their surrounding edges and D∗2,G,Σ sends edges to the difference

of the faces they border. The face-edge incidence matrices of G∗ are precisely the vertex-edge incidence

matrices of G.

Because the image of D2 (for both a graph and its dual) is a sum of cycles, and sum of the differences

of the endpoints of edges in a cycle is zero, we have D1D2 = 0. This means that ZF , ZE◦, and ZV form a

chain complex for both the graph and its dual:

ZFG,Σ
D2,G−−−→ ZE◦G

D1,G−−−→ ZVG

and

ZFG∗
D2,G∗−−−−→ ZE◦G∗

D1,G∗−−−−→ ZVG∗

We will now prove the isomorphism κ(G) ∼= κ(G∗) for graphs embedded into the 2-sphere.

3
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First, note that for a graph with n connected components, the first homology group H0 = ZV/Im(D1) ∼=

Zn, so ZV/Zn ∼= Im(D1). This gives us

κ(G) = ZV/(Zn ⊕ Im(D1D
∗
1) ∼= Im(D1)/Im(D1D

∗
1).

Next, consider the group λ(G) = ZE◦/(Im(D2) ⊕ Im(D∗1)). The map D1 : ZE◦ → ZV induces a homo-

morphism

ZE◦/(Im(D2)⊕ Im(D∗1))
D′1−−→ Im(D1)/Im(D1D

∗
1).

Since D1D2 = 0, we have D1(Im(D2) ⊕ Im(D∗1)) = Im(D1D
∗
1), so on the left side, we have only modded

out things modded out on the right side; this means that the surjectivity of ZE◦ D1−−→ Im(D1) makes D′1

surjective as well. To show injectivity, note that if e ∈ ZE◦ satisfies D1(e) ∈ Im(D1D
∗
1), we must have

e = D∗1(v) + e′ for some v ∈ ZV and e′ ∈ Ker(D1).

If Ker(D1) = Im(D2), then e ∈ Im(D2)⊕ Im(D∗1) and so D′1 has trivial kernel; this means

ZE◦/(Im(D2)⊕ Im(D∗1)) ∼= Im(D1)/Im(D1D
∗
1) ∼= κ(G),

and since

λ(G) = ZE◦G/(Im(D2,G)⊕ Im(D∗1,G)) ∼= ZE◦G∗/(Im(D∗1,G∗)⊕ Im(D2,G∗)) = λ(G∗),

the critical group of G is isomorphic to the critical group of its dual.

Our proof only works under the assumption that Ker(D1) = Im(D2). Since Ker(D1) is the free abelian

group on cycles of edges, and Im(D2) is the free abelian group on boundaries of faces, we see that the

condition we need holds if and only if the face boundaries are a full basis for the cycles. This is the case

when G is embedded into a 2-sphere, which has trivial first homology group.

1.3 Graphs on Surfaces of Nonzero Genus

We now investigate the case in which this is not true. The existence of cycles that do not bound a sum

of face boundaries corresponds to the graph being 2-cell embedded into a surface of genus g > 0. We will

assume all embeddings are 2-cell; if they are not, though it might seem that we would recover the ‘all cycles

bound faces’ property, we also find that the dual of the dual graph is no longer isomorphic to the original

graph.

4
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The genus of a graph is the minimum genus of surface it has a planar embedding into. The maximal

genus of a graph is the maximal genus of surface it can be 2-cell embedded into. We wanted to investigate

the critical group and dual critical group of a planar graph on a surface of g > 0. Starting with the g = 1

case, we tried embedding graphs like K4 into the torus:

Figure 1: 2-cell embedding of K4 on the torus

Though both faces in this embedding are homeomorphic to disks, and as such the embedding meets the

conventional definition of being 2-cell, the ‘outer’ face is incident on itself, creating self-loops in the dual

graph. To avoid this, we modified the graph to

Figure 2: 2-cell embedding of Q3 on the torus

which is just the 3-cube Q3. As such, its critical group, and the critical group of its planar dual, is

Z/2Z×Z/8Z×Z/24Z. However, the critical group of its dual on the torus is (Z/2Z)2×Z/24Z, showing that

the isomorphism does indeed break. We explored the results of applying the explicit isomorphism between

κ(G) and κ(G∗) constructed in the referenced paper by Cori and Rossin to Q3 on the torus, focusing on

aspects such as the images of the generators of the group, but there was no clear pattern to the mapping.
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Figure 3: Q3 and its dual on the 2-sphere

Figure 4: Q3 and its dual on the torus

We next generalized this setup to surfaces of arbitrary genus: just as the torus can be represented as a

square with edges identified, a surface of genus g can be represented as a 4g-gon with edges identified as

follows:

Figure 5: Genus 3 surface, with colors denoting pairs of edges to identify

We can do the same thing to this 4g-gon as we did to the square:

6
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Figure 6: Q3
3 on genus 3 surface

so that each ‘hole’ in the surface is ‘2-cell cut’ by each subsequent set of 8 vertices. Since these 8-vertex

subgraphs are planar and just connected in a circle, it turns out that this generalized “multi-cube” graph is

planar for any g.

Figure 7: Q3
3 on the 2-sphere

We will denote these “multi-cubes” by Qg3 where g is their maximal genus. We conjecture (and experi-

mentally verified up to g = 25) that the critical groups of these graphs are

κ(Qg3) ∼= Zg2 × Zmin(2,g)
8 × Zmax(0,g−2)

80 × Z(24g)(10min(1, g-1)),

and the critical groups of their duals when embedded into a surface of genus g are

κ(Qg∗3 ) ∼= Z2
2 × Z2g−2

4 × Z24g.

7
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1.4 Different Embeddings

A basic fact about dual graphs is that the same graph can have different embeddings that produce non-

isomorphic dual graphs. When embedding a graph into a surface of genus g = 0, we know that each of these

non-isomorphic dual graphs must all have the same critical group; however, this is not true when g > 0; for

example, the 6 different embeddings of K5 into the torus

Figure 8: 2-cell embeddings of K5 on the torus (image from Gagarin, Kocay and Neilson)

have duals with critical groups Z3
5 (the first embedding is self-dual), Z2

3×Z5,Z3×Z5×Z7,Z3×Z2
5,Z5×Z11,

and Z5×Z19. However, if two embeddings differ in a ‘planar’ way–specifically, if they have the same Im(D2),

we conjecture that the critical groups of the dual graphs will be the same.

2 Strongly-Regular Graphs

2.1 Co-Prime Eigenvalues

2.1.1 General Results on the Critical Group of SRG

Let Γ be a strongly regular graph with parameters (v, k, λ, µ). It is well known that the Laplacian matrix of

Γ has three eigenvalues, 0 with multiplicity one (the trivial eigenvalue), rL with multiplicity f and sL with

multiplicity g. We consider the case where rL, sL ∈ N with gcd(rL, sL) = 1. In this instance, we write:

rL = ra1
1 . . . rann and sL = sb11 . . . sbmm

where r1, . . . , rn, s1, . . . , sm are distinct primes and ai, bi ∈ Z≥0 for all appropriate i.

8



2. STRONGLY-REGULAR GRAPHS JMU REU 2019

Lemma 1. The number of vertices v can be expressed in the form:

v = rγ1

1 . . . rγnn sµ1

1 . . . sµm
m (1)

for some values 0 ≤ γi ≤ aif and 0 ≤ µi ≤ big. Furthermore, the order of the critical group of Γ is:

|K(Γ)| = (ra1
1 . . . rann )f (sb11 . . . sbmm )g

rγ1

1 . . . rγnn sµ1

1 . . . sµm
m

= ra1f−γ1

1 . . . ranf−γnn sb1g−µ1

1 . . . sbmg−µm
m . (2)

Proof. From Kirchhoff’s matrix-tree Theorem, we have that:

K(Γ) =
rfLs

g
L

v
=

(ra1
1 . . . rann )f (sb11 . . . sbmm )g

v
.

Then for K(Γ) ∈ N, it is clear that v must be as in (1). That K(Γ) satisfies (2) is then easily verifiable.

It is also a well known result that for strongly regular graphs, the elementary divisors of the Laplacian

must divide rL · sL. In our case, this means that:

θ|ra1
1 . . . rann sb11 . . . sbmm (3)

where θ denotes an elementary divisor of Γ.

2.1.2 Zeroing in on a Prime

In this section, we find the Sylow r1-subgroup of K(Γ), working over the ring Z(r1). From (3), we know that

the critical group will take the form:

Kr1(Γ) ∼= (Z/r1Z)e1 ⊕ (Z/r2
1Z)e2 ⊕ · · · ⊕ (Z/ra1

1 Z)ea1 .

We must find the values of e1, . . . , ea1
∈ N. One easily obtainable expression is:

e0 + e1 + · · ·+ ea1
= v − 1 = f + g (4)

where e0 is the number of ones in the Smith Normal Form of the Laplacian of Γ over Z(r1) (called the r1-rank

of L over Z(r1)). Brouwer informs us that, in our specific relatively-prime case, e0 = g or g+1. Furthermore,

e0 = g if and only if r1|µ. In general (for our purposes) we will find that e0 = g or g+ 1 if we are considering

some ri and e0 = f or f + 1 if we are considering an si, with an analogous criterion to determine which of

9
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these values is actually the ri-rank of L. Hence, (4) reduces to:

e1 + · · ·+ ea1 = f when e0 = g, (5)

e1 + · · ·+ ea1
= f − 1 when e0 = g + 1. (6)

Additionally, we surmise from (2) that:

e1 + 2e2 + · · ·+ (a1 − 1)ea1−1 + a1ea1
= a1f − γ1. (7)

We need to find one more equation before we can proceed. This motivates the following definition. Let:

Mi = {x ∈ Zn(p) : pi|Lx}.

Then M0 ⊇M1 ⊇M2 ⊇ · · · ⊇Ma1 ⊇ ker(L). Hence, Er ∩M0 ⊆Ma1 . Finally, we have that:

f = dimEr ∩ Zv(r1) ≤ dimMa1 = ea1 + 1,

or, stated more compactly that:

f − 1 ≤ ea1
. (8)

Our next result yields an even sharper constraint on ea1
.

Lemma 2. The inequality f − 1 ≤ ea1
≤ f is satisfied. Furthermore, ea1

= f if and only if γ1 = 0.

Proof. Assume ea1
> f . Then:

e1 + 2e2 + · · ·+ (a1 − 1)ea1−1 + a1ea1
≥ a1ea1

≥ a1(f + 1) = a1f + a1 > a1f − γ1

which contradicts (7), so f − 1 ≤ ea1
≤ f holds. We delay a proof of the second part of the Lemma, though

we will eventually find that it is indeed true.

We must now consider two cases, when e0 = g and when e0 = g + 1. For the latter case, notice then

that ea1
= f − 1. For the former, ea1

= f or ea1
= f − 1 are both possibilities. We now account for the

fact that ea1 must be at least f − 1, with the knowledge that ea1 = f is also possible when e0 = g. Let

ea1
= ea1

− (f − 1). Hence ea1
equals zero or one. Notice then that (5) reduces to:

e1 + · · ·+ ea1−1 + ea1
+ (f − 1) = f ⇐⇒ e1 + · · ·+ ea1−1 + ea1

= 1.

10
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Hence exactly one of e1, . . . , ea1−1, ea1 is non-zero. Furthermore, substituting into (7) yields:

e1 + 2e2 + · · ·+ (a1 − 1)ea1−1 + a1ea1 + a1(f − 1) = a1f − γ1

⇐⇒e1 + 2e2 + · · ·+ (a1 − 1)ea1−1 + a1ea1
+ a1f − a1 = a1f − γ1

⇐⇒e1 + 2e2 + · · ·+ (a1 − 1)ea1−1 + a1ea1
= a1 − γ1.

Since exactly one of the ei is non-zero, it must be that ea1−γ1
= 1 so that the identity is satisfied. On this

note, we arrive at our main result for the section.

Theorem 1. Let Γ, rL, and sL be stated above. Then, the r1 part of the critical group K(Γ) is:

Kr1(Γ) ∼= (Z/ra1
1 Z)f−1 ⊕ Z/ra1−γ1

1 Z.

Proof. For the most part, the above argument suffices. We saw that there were f − 1 copies of ea1
corre-

sponding to Z/ra1
1 Z, as well as one additional factor of Z/ra1−γ1

1 Z corresponding to eα1−γ1 .

We conclude this section with a pair of corollaries, concerning applications of Theorem 1 to boundary

cases.

Corollary 1. When γ1 = 0, we have that K(Γ) ∼= (Z/ra1
1 Z)f−1 ⊕ Z/ra1

1 Z = (Z/ra1
1 Z)f .

Proof. In this case, the additional factor is ea1−0 = ea1
(meaning that in the above expression ea1

= 1).

The takeaway from Corollary 1 is that ea1
= f if and only if γ1 = 0, as promised previously.

Corollary 2. When a1 = 1 and γ 6= 0, we have that K(Γ) ∼= (Z/r1Z)f−1 ⊕ Z/r0
1Z = (Z/r1Z)f−1

2.1.3 Putting it all Together

Applying the techniques of Section 2.1.2 to each of our distinct primes, we arrive at our main result.

Theorem 2. For any SRG with eigenvalues rL and sL as stated before, we have that:

K(Γ) ∼=(Z/ra1
1 Z)f−1 ⊕ (Z/ra1−γ1

1 Z)⊕ · · · ⊕ (Z/rann Z)f−1 ⊕ (Z/ran−γnn Z)⊕

(Z/sb11 Z)g−1 ⊕ (Z/sb1−µ1

1 Z)⊕ · · · ⊕ (Z/sm1
m Z)g−1 ⊕ (Z/sbm−µm

m Z)

Proof. Iteration of our procedure in Section 2.1.2 for each distinct prime yields the desired result.

11
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Notice that our result in Theorem 2 completely characterizes the critical group for SRG whose eigenvalues

are relatively prime. Corollaries 1 and 2 have direct extensions to this more general case. We conclude this

section with a pair of examples applying our theory.

Example 1. It is unknown if an SRG Γ with parameters (190,84,33,40) exists. However if such a graph

exists, then its non-trivial eigenvalues are rfL = 80133 and sgL = 9556. Let’s compute the Sylow 2-subgroup

of K(Γ). Notice that 24||rL whilst 2 6 |sL. Furthermore, 21||190, meaning that γ = 1. Applying Theorem 1,

we find that:

K2(Γ) ∼= (Z/24Z)133−1 ⊕ (Z/24−1Z) = (Z/16Z)132 ⊕ (Z/8Z).

Example 2. Conway’s 99-graph problem posits the existence of an SRG Γ with parameters (99,14,1,2). It

is known that its non-trivial eigenvalues of this hypothetical graph are rfL = 1154 and sL = 1844. Notice

then that gcd(rL, sL) = 1. Hence we can apply Theorem 2 to obtain its critical group. Doing so, we find

that:

K(Γ) ∼= (Z/11Z)53 ⊕ (Z/2Z)44 ⊕ (Z/9Z)43

2.2 SRG with Common Factors

We now discuss SRG whose eigenvalues share common prime factors. Unfortunately, our characterization

for this case is not as complete; we were only able to work out a couple of cases in detail.

2.2.1 Square-Free

First consider the case where rL and sL have a common prime factor, but gcd(rL, sL) does not contain a

square. We consider the primes that rL and sL share, as our work for the distinct primes will be as before.

Recycling notation from above, suppose p||rL (with multiplicity f) and p||sL (with multiplicity g) for p is

prime. Then, by the Matrix-Tree Theorem:

|Kp(Γ)| = pf+g

pγ
= pf+g−γ ,

where 0 ≤ γ ≤ f + g. As with above, we know that the invariant factors will divide rLsL = p2. Hence:

Kp(Γ) ∼= (Z/pZ)e1 ⊕ (Z/p2Z)e2 .

12
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We now have the expressions:

e0 + e1 + e2 = f + g (9)

and e1 + 2e2 = f + g − γ. (10)

Unfortunately, we have not been able to a closed form solution for this system of equations (i.e. another

equation or constraint that would enable us to solve for e0, e1, and e2). However, we can find some conditions

on the ei. For instance, subtracting (10) from (9) and rearranging yields:

e0 = e2 + γ. (11)

Furthermore, [1] informs us that e0 ≤ min{f − 1, g − 1}. Fix e0 = n. Then, from (11), e2 = n− γ. Working

with (9) informs us that:

e1 = f + g + γ − 2n.

We thereby conclude that:

Kp(Γ) ∼= (Z/pZ)f+g+γ−2n ⊕ (Z/p2Z)n−γ . (12)

Notice then that f + g + γ − 2n ≥ 0 and n − γ ≥ 0. As a minor result, we have slightly improved upon

Brouwer’s condition for e0.

Corollary 3. The inequality on the p-rank γ ≤ e0 ≤ f+g+γ
2 holds.

Example 3. An SRG Γ with parameters (85, 27, 6, 9) is unknown to exist. The eigenvalues of this graph

would necessarily be rfL = 2455 and sgL = 3332. Let’s use (12) to study the Sylow 3-subgroup of K(Γ). Fix

e0 = n. Notice that γ = 0 since 30||85. Since rL = 3 · 23, and sL = 3 · 11, we find that:

K3(Γ) ∼= (Z/3Z)55+32+0−2n ⊕ (Z/32Z)n−0 = (Z/3Z)87−2n ⊕ (Z/9Z)n.

2.2.2 p and p2

For prime p, when p||rL and p2||sL, we obtain the following result:

Kp(Γ) ∼= (Z/pZ)f−n ⊕ (Z/p2Z)g−n+γ ⊕ (Z/p3Z)n−γ ,

or

Kp(Γ) ∼= (Z/pZ)f−n+1 ⊕ (Z/p2Z)g−n+γ−2 ⊕ (Z/p3Z)n−γ+1,

13
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where n is the p-rank of L, and γ is as before. That is, given the p-rank of L, there are only two options for

Kp(Γ). Similarly, when p2||rL and p||sL:

Kp(Γ) ∼= (Z/pZ)g−n ⊕ (Z/p2Z)f−n+γ ⊕ (Z/p3Z)n−γ ,

or

Kp(Γ) ∼= (Z/pZ)g−n+1 ⊕ (Z/p2Z)f−n+γ−2 ⊕ (Z/p3Z)n−γ+1.

2.2.3 pj and pj+1

Let rL = pj and sL = pj+1 for some j ∈ N. Then:

|Kp(Γ)| = pjf+(j+1)g

pγ
= pjf+(j+1)g−γ .

Following the same process as before, we derive the identities:

e0 + e1 + · · ·+ e2j + e2j+1 = f + g,

e1 + 2e2 + · · ·+ 2je2j + (2j + 1)e2j+1 = jf + (j + 1)g − γ,

and using the other expressions (working with Mi and Ni), we find that:

f ≤ e0 + e1 + · · ·+ ej ≤ f + 1

and,

g − 1 ≤ ej+1 + · · ·+ e2j + e2j+1 ≤ g.

2.3 Table of SRG

A table of strongly regular graphs of up to 35 vertices from A. Brouwer’s website, including their non-

zero Laplacian eigenvalues, existence, and classification based on eigenvalue primeness (in accordance to the

classification presented above), is present on the next page. Refer to the appendix for a longer table of SRG

on less than 200 vertices.

14



2. STRONGLY-REGULAR GRAPHS JMU REU 2019

v k λ µ Laplacian Eigenvalues Existence Primeness

5 2 0 1 1.38196601125011 3.61803398874989 Exists Error

9 4 1 2 3 6 Exists Square Free

10 3 0 1 2 5 Exists Relatively prime

6 3 4 5 8 Exists Relatively prime

13 6 2 3 4.69722436226801 8.30277563773199 Exists Error

15 6 1 3 5 9 Exists Relatively prime

8 4 4 6 10 Exists Square Free

16 5 0 2 4 8 Exists NA

10 6 6 8 12 Exists NA

16 6 2 2 4 8 Exists NA

9 4 6 8 12 Exists NA

17 8 3 4 6.43844718719117 10.5615528128088 Exists Error

21 10 3 6 9 14 Exists Relatively prime

10 5 4 7 12 Exists Relatively prime

21 10 4 5 8.20871215252208 12.7912878474779 DNE Error

25 8 3 2 5 10 Exists Square Free

16 9 12 15 20 Exists Square Free

25 12 5 6 10 15 Exists Square Free

26 10 3 4 8 13 Exists Relatively prime

15 8 9 13 18 Exists Relatively prime

27 10 1 5 9 15 Exists P, P2

16 10 8 12 18 Exists P, P2

28 9 0 4 8 14 DNE P, P2

18 12 10 14 20 DNE P, P2

28 12 6 4 8 14 Exists P, P2

15 6 10 14 20 Exists P, P2

29 14 6 7 11.8074175964327 17.1925824035673 Exists Error

33 16 7 8 13.627718676731 19.372281323269 DNE Error

35 16 6 8 14 20 Exists P, P2

18 9 9 15 21 Exists Square Free
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2.4 Latin Square Graphs

Conjecture: For a Latin Square graph, with n2 vertices, that is constructed from the corresponding back-

circulant Latin Square, the critical group is as follows when n ≥ 5:

κ(Γ) ≈


(Z/n2Z)⊕ (Z/nZ)2 ⊕ (Z/3nZ)n

2−6n+6 ⊕ (Z/6nZ)2 ⊕ (Z/12nZ)2 ⊕ (Z/6n2Z)3n−8 n is even

(Z/nZ)⊕ (Z/3nZ)n
2−6n+5 ⊕ (Z/6nZ)5 ⊕ (Z/6n2Z)3n−8 n is odd

This was found through observation, but has not been proven.

3 Grid Graphs

The behavior of sandpiles on finite subgraphs of the Z2 lattice has been long studied. Primarily, interest has

been in describing the identity of such graphs (typically on square or rectangular subsections of the lattice)

and the result of stabilizing a configuration where a single vertex has a large number of chips and all other

vertices has a constant number, less than their degree (a process we will refer to as single pile toppling).

Deepak Dahr conjectures that on a square grid, there is a square central region of dimensions proportional

to that of the grid with two chips on each vertex and Yvan Le Borgne and Dominique Rossin describe the

identity on a certain class of rectangular grids more fully in On the identity of the sandpile group. However,

full descriptions and explanation of behaviors exhibited in such identities have yet to be made.

Here, we look at finite subgraphs based on three grid graphs as shown below and discuss some observed

behavior.

C4 tiling Skewed triangle tiling K4 tiling
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For all examples shown, we approximate the sink at infinity by connecting it to all boundary vertices,

i.e. those with non-maximal degree. Moreover, we allow multiedges to the sink so that all vertices of each

graph has the same degree.

We focus primarily on the K4 tiling though we will start with some results on the C4 and skewed triangle

tilings.

3.1 Graphs on the C4 tiling

Graph on 60× 60 vertices Graph on a circular graph of radius 30 Graph on a circular graph of radius 60

Darker orange represents more chips on the vertex (0 to 3 chips possible), with the central square regions of

each graph having 2 chips per vertex.

Like with the square, there is clear structure on the C4 tiling with a circular boundary with the central

region having 2 chips and a cross of vertices with 1 chip and square of vertices with 3 chips.

An example of a subgraph with a non-convex boundary

Note, there are vertices with 0 chips at each of the 8 corners
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3.2 Graphs on the skewed triangle tiling

Single pile toppling with 1000 chips Identity on 60× 60 vertices Identity on a circular graph of radius 30

We can see how the additional diagonals present results in the chips traveling further on one diagonal axis

than the other as expected. The identity’s central region is likewise stretched out with the central constant

region having 4 chips per vertex.

3.3 Graphs on the K4 tiling

Identity on 12× 12 vertices Identity on 28× 28 vertices Identity on 55× 55 vertices
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Identity on 60× 60 vertices Identity on 80× 80 vertices Identity on 90× 90 vertices

Identity on 120× 120 vertices Identity on 140× 140 vertices Identity on 160× 160 vertices

Identity on 80× 54 vertices Identity with a non-convex boundary

We observe that on a square grid, these identities have a central region of vertices with 6 chips each,

similar to that of the C4tiling. Here, however, it is a curving diamond shape. In addition, like with the C4

tiling, grids of odd length also have a cross through the center with half the number of chips and the center

vertex has 0 chips. We note that with the C4, skewed triangle, and K4 grids, the constant central region has

degree− 2 chips on each vertex.

We can also observe that the length of the central region of the K4 tiling grids are proportional to that of

the overall graph (this has likewise been conjectured for the C4 tiling grid) and there exists a fractal structure
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within the identities with patterns repeating in the corners. It is believed but unproven that if ever larger

grids were normalized (as they are in these images so that they are of the same size), as the dimension goes

to infinity, the central region would converge to a continuous region for which a boundary function could be

found.

In addition, since K4 can also be interpreted as a tetrahedral, this graph could be realized as stitched

together tetrahedrals in 3-space (not space filing). Such a graph would have equal length edges, unlike this

projection. As a result, this un-equal edge length projection has a strong impact on the resulting shape of

the central region, though the impact of such an observation is unknown.

4 Indivisible Sandpiles

4.1 Sandpiles

Let Γ be a graph on n vertices with n− 1 edges at every vertex. The Laplacian matrix L is an n×n matrix

defined by

L = D −A

where A is the adjacency matrix and D is the incidence matrix. Assign a sink to a vertex on Γ and delete the

corresponding row and column from the Laplacian to produce the reduced Laplacian, L′, an (n−1)× (n−1)

matrix

L′ =



n− 1 −1 . . . −1

−1 n− 1 . . . −1

...
...

. . .
...

−1 −1 . . . n− 1


(n−1)×(n−1)

Let the set of all nonsink vertices be V ′ such that V ′ ∼= {v1, v2, . . . , vn−1}. A stable sandpile is one such that

the number of chips at each vertex v ∈ V ′ is less than the degree of that vertex (in the case of the complete

graph, σ < n − 1 everywhere). An unstable sandpile on the graph is σ ≥ n − 1 for at least one vertex. A

sandpile is stabilized by firing every v ∈ V ′ until everywhere σ < d − 1. The stabilized sandpile may be

defined as τ . The number of times a vertex is fired to reach τ is denoted by ũ. Let ũ, d, and σ be vectors

where each element corresponds to the value at one vertex.
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4.2 Odometer

Definition 4.1. The odometer u is the minimum u : V ′ → Z satisfying

σ − L′u ≤ d− 1 (13)

u ≥ 0 (14)

Theorem 3. Let σ be a sandpile on any graph Γ and consider ũ : V ′ → Z which satisfies

σ − L′ũ = d− 1 (15)

ũ ≥ 0 (16)

Then ũ is the odometer.

Proof. We can rearrange (13) and (15) such that

L′ũ = σ − d+ 1 and L′u ≥ σ − d+ 1

Then

L′u ≥ L′ũ

L′u− L′ũ ≥ 0

L′(u− ũ) ≥ 0

Let q = u− ũ ≤ 0 because u is the minimum, and

L′q ≥ 0 (17)

L′ is a positive definite matrix and thus has the property that, for any vector x, the inner product 〈x, L′x〉 ≥ 0.

Hence,

0 ≤ 〈q, L′q〉 =
∑
v∈V ′

q(v)(L′q)(v) ≤ 0
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Then, from the restrictions on either side, 〈q, L′q〉 = 0 which is only true for q = 0. Therefore,

u = ũ

Definition 4.2. The d-odometer ud is the minimum ud : V ′ → R satisfying

σ − L′ud ≤ d− 1 (18)

ud ≥ 0 (19)

Theorem 4. Let σ be a sandpile on any graph Γ and consider some ũ : V ′ → R which satisfies

σ − L′ũ = d− 1

ũ ≥ 0

Then ud = ũ is the d-odometer.

Proof. The same method we used for proving 3 applies here.

4.3 Inverse Reduced Laplacian

The inverse reduced Laplacian (L′)−1 is a key element of classifying the indivisible sandpiles on different

types of graph. We will discuss the properties of (L′)−1 for the complete graph, cycle graph, wheel graph,

and path graph.

Let E(Γ) ≡ elementary divisors of Γ and Emax ≡ max(E(Γ)).

4.3.1 Complete Graph

The general form of (L′)−1 for the complete graph Kn is

(L′)−1 =
1

Emax



2 1 . . . 1

1 2 . . . 1

...
...

. . .
...

1 1 . . . 2
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In the case of Kn, Emax = n such that

(L′)−1 =
1

n



2 1 . . . 1

1 2 . . . 1

...
...

. . .
...

1 1 . . . 2


(20)

4.3.2 Cycle Graph

The general form of (L′)−1 for the cycle graph on n vertices is

(L′)−1 =
1

Emax



n− 1 n− 2 n− 3 . . . 3 2 1

n− 2 2(n− 2) 2(n− 3) . . . 2 · 3 2 · 2 2 · 1

n− 3 3(n− 2) 3(n− 3) . . . 3 · 3 3 · 2 3 · 1
...

...
...

. . .
...

...
...

3 · 1 3 · 2 3 · 3 . . . 3(n− 3) 2(n− 2) (n− 2)

2 · 1 2 · 2 2 · 3 . . . 2(n− 3) 2(n− 2) (n− 2)

1 2 3 . . . n− 3 n− 2 n− 1



(21)

4.3.3 Wheel Graph

The general form of (L′)−1 for the cycle graph on n vertices is dependent on the Fibonacci numbers when n

is even and the Lucas numbers when n is odd.

• Consider when n is even. The ith number of Fibonacci sequence is Fi.

(L′)−1 =
1

Emax



Fn Fn−2 Fn−4 . . . F2 F2 . . . Fn−2

Fn−2 Fn Fn−2 . . . F2 F2 . . . Fn−4

...
...

...
...

...
...

. . .
...

F2 F4 . . . Fn−2 Fn Fn−2 . . . F2

...
. . .

...
...

...
...

...
...

Fn−2 Fn−4 . . . F2 F2 . . . Fn−2 Fn


(n−1)×(n−1)

(22)

The sequence Fn, Fn−2, . . . , F4, F2, F2, F4, . . . , Fn−2 cycles through every row where, for the jth row,

Fn starts in the jth column, such that 0 ≤ j < n.
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• Consider when n is odd. The ith number of the Lucas numbers is Ai.

(L′)−1 =
1

Emax



An−1 An−3 An−5 . . . A2 . . . An−3

An−3 An−1 An−3 . . . A2 . . . An−5

...
...

...
...

...
. . .

...

A2 A4 . . . An−3 An−1 An−3 . . .

...
. . .

...
...

...
...

...

An−3 An−5 . . . A2 . . . An−3 An−1


(n−1)×(n−1)

(23)

The sequence An−1, An−3, . . . , A4, A2, A4, . . . , An−3 cycles through every row where, for the jth row,

An starts in the jth column, such that 0 ≤ j < n.

4.3.4 Path Graph

The general form of (L′)−1 for the path graph on n nodes is

(L′)−1 =
1

Emax



1 1 1 . . . 1

1 2 2 . . . 2

1 2 3 . . . 3

...
...

...
. . .

...

1 2 3 . . . n− 1


(n−1)×(n−1)

(24)

Emax = 1 for every path graph. Every sandpile on a path graph is indivisible as long as at least one vertex

is unstable.

4.4 Indivisible Sandpiles

Definition 4.3. A sandpile on any graph is indivisible if and only if ud = u.

4.4.1 Wheel Graph on n = 2k + 1 vertices

The wheel graph on n = 2k + 1 vertices is a special family of the wheel graphs. First, let’s look at the

maximum elementary divisors, in reference to 23.
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Emax prime factorization

k = 2 5, 3

k = 3 5, 3, 7

k = 4 5, 3, 7, 47

k = 5 5, 3, 7, 47, 2207

k = 6 5, 3, 7, 47, 1087, 2207, 4481

...
...

Conjecture 1. Let Li be the ith Lucas number. The maximum elementary divisor for a Wheel graph on

n = 2k + 1 vertices while k ≥ 2 is

Emax = 5 ·
k∏
j=2

L2j−1 (25)

Conjecture 2. Let Li be the ith Lucas number. Then every L2j−1 is relatively prime, for j ≥ 1.

Conjecture 3. Let A = (L′)−1 ·Emax be a 2k × 2k matrix. A sandpile σ on Γ will be indivisible if and only

if the vertices v ∈ V ′ satisfy conditions on the prime factorization of Emax for the given k.

Conjecture 4. For i, ` ∈ Z, set

ζ(i, `) := 2`−1(2i+ 1)− 1

For 1 ≤ ` ≤ k − 1 and 0 ≤ j ≤ 2` − 1,

0 mod L2` =

2k−l−1∑
i=0

(−1)i

[
L0xζ(i,`)+j +

`−1∑
n=1

L2n(xζ(i,`)+j+n + xζ(i,`)+j−n

]
(26)

The four conjectures given above (1, 2, 3, and 4) are not proven.

4.4.2 Complete Graph

Theorem 5. A sandpile σ : V ′ → Z which satisfies σ ≥ d− 1 on a complete graph Kn on n ≥ 3 vertices is

indivisible if and only if the difference between any two vertices vi, vj ∈ V ′ is given by

σi − σj = 0 mod n

Proof.

(⇐) Assume σi − σj = 0 mod n for all i, j. Then there exists k such that, for all i, σi = k mod n. From
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15, and (L′)−1 from 20,

u =
1

n



2 1 . . . 1

1 2 . . . 1

...
...

. . .
...

1 1 . . . 2


·



σ1 − n+ 2

σ2 − n+ 2

...

σn−1 − n+ 2



ui =
2(σi − n+ 2)

n
+

(∑n−1
x=1,x 6=i(σx − n+ 2)

)
n

ui =
(σi − n+ 2)

n
+

(∑n−1
x=1(σx − n+ 2)

)
n

ui =
σi +

(∑n−1
x=1 σx

)
n

− (n− 2)(1 + (n− 1))

n

ui =
σi +

(∑n−1
x=1 σx

)
n

− n(n− 2)

n

ui =
σi +

(∑n−1
x=1 σx

)
n

− (n− 2) (27)

Let us consider just σi +
(∑n−1

x=1 σx

)
. We stated in the begining of the proof that there exists k such

that, for all i, σi = k mod n.

σi +

(
n−1∑
x=1

σx

)
= k + k(n− 1) mod n

= k(1 + n− 1) mod n

= k ∗ n mod n

If we consider the whole
σi+(

∑n−1
x=1 σx)
n , then we have

σi +
(∑n−1

x=1 σx

)
n

=
k ∗ n
n

mod n

= k mod n

Now, applying modular arithmetic with 27, we have

ui = k − n+ 2 mod n

ui = k + 2 mod n
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We know k ∈ Z, and hence u ∈ Z.

(⇒) Assume u ∈ Z. From 15,

σ = L′u+ d− 1 on a graph Γ

σ = L′u+ n− 2 on a complete graph Kn

σ =



n− 1 −1 . . . −1

−1 n− 1 . . . −1

...
...

. . .
...

−1 −1 . . . n− 1


·



u1

u2

...

un−1


+



n− 2

n− 2

...

n− 2



σi = (n− 1)ui −

 n−1∑
x=1,x 6=i

ux

+ n− 2

σi = n(ui) + n− ui −

 n−1∑
x=1,x 6=i

ux

− 2

σi = n(ui + 1)− 2−

(
n−1∑
x=1

ux

)

σj = n(uj + 1)− 2−

(
n−1∑
x=1

ux

)

σi − σj = n(ui + 1)− n(uj + 1)

σi − σj = n(ui − uj)

σi − σj = n(ui − uj) mod n

We began with the assumption that all u ∈ Z. Therefore,

σi − σj = 0 mod n

4.4.3 Wheel Graph

Theorem 6. Let W5 be a wheel graph on 5 vertices, with the sink located at the vertex with the highest degree.

Label v ∈ V ′ as a, b, c, d such that a, c are not adjacent and b, d are not adjacent. A sandpile σ : V ′ → R on
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W5 which satisfies σ ≥ 2 is indivisible if and only if

a = c mod 3 (28)

b = d mod 3 (29)

a 6= b mod 3

a+ c = b+ d mod 5 (30)

Proof.

(⇒) Assume 28, 29, and 30. Let us consider some ũ. Because σ ≥ 2, we know ũ ≥ 0 and satisfies

σ − L′ũ = d− 1. Then ũ = ud from Theorem 4.

Working with 15, we have

ũ = (L′)−1(σ − d+ 1)

We know (L′)−1 from 23, and that d− 1 on any wheel graph is 2.

ũ =
1

15



7 3 2 3

3 7 3 2

2 3 7 3

3 2 3 7


(σ − 2)

Let a = σ1, b = σ2, c = σ3, and d = σ4.

Consider the ith component of ũ.

15ũi = 7σi + 3σi+1 + 2σi+2 + 3σi+3 − 30

15ũi = σi + 2σi+2 mod 3

From 28 and 29, we can say that σi = σi+2 mod 3

15ũi = σi + 2σi mod 3

15ũi = 3σi mod 3
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15ũi = 0 mod 3⇒ ũi ∈ Z

We have shown that ũ ∈ Z such that ũ = u. Then ũ = u = ud and therefore ũ is the odometer and σ

is indivisible.

(⇐) Assume σ is indivisible such that u = ud. Since σ ≥ 2, then ũ ≥ 0 and satisfies σ − L′ = d− 1. From

Theorem 4, ũ = ud = u is the odometer.

15ũi = 7σi + 3σi+1 + 2σi+2 + 3σi+3 − 30

Let 7σi+3σi+1 +2σi+2 +3σi+3−30 = x. For what conditions on x does 15|x? The prime factorization

of 15 is 3, 5. If 3|x and 5|x then 15|x.

− Determine when 3|x. There is some i ∈ Z such that x = 3i.

7σi + 3σi+1 + 2σi+2 + 3σi+3 − 30 = 3i

7σi + 2σi+2 = 3i

If σi+2 = σi + 3m for some m ∈ Z, then

7σi + 2(σi + 3m) = 3i

9σi + 6m = 3i

6m = 3i

2m = i

3|x

− Determine when 5|x. There is some j ∈ Z such that x = 5j.

7σi + 3σi+1 + 2σi+2 + 3σi+3 − 30 = 5j

5σi + 2σi + σi+1 + 2σi+1 + 2σi+2 + σi+3 + 2σi+3 − 30 = 5j

5σi + σi+1 + σi+3 + 2(σi + σi+1 + σi+2 + σi+3)− 30 = 5j
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If σi + σi+2 = σi+1 + σi+3 + 5n for some n ∈ Z, (equivalently, σi + σi+2 = σi+1 + σi+3 mod 5,

then

5σi + σi+1 + σi+3 + 2(2(σi+1 + σi+3) + 5n)− 30 = 5j

5σi + 5σi+1 + 5σi+3 + 10n− 30 = 5j

σi + σi+1 + σi+3 + 2n− 6 = j

The left side is all integer valued, and the right side is an integer.

5|x

We have shown that, when σi = σi+2 mod 3 and σi + σi+2 = σi+1 + σi+3 mod 5, 3|x and 5|x. Then

15|x, satisfying that ũ = u.

The wheel graph on 6 vertices, W6, has indivisible sandpiles which satisfy different conditions. One case

is where all σ are equal mod 11, such that

σ1 = σ2 = σ3 = σ4 = σ5 mod 11

Another case is discussed in the following theorem.

Theorem 7. The following conditions satisfy that σ be indivisible on W6.

σ1 = σ4 mod 11 (31)

σ2 = σ3 mod 11 (32)

σ1 6= σ2 mod 11

2σ1 + σ2 = 3σ5 mod 11 (33)

3σ2 + 2σ5 = 5σ1 mod 11 (34)

Proof. Assume the four equations given above. Let σ ≥ 2 such that ũ ≥ 0 for ũ : V ′ → R. Then we know ũ
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satisfies ũ = (L′)−1(σ − d+ 1). From 22, we have

(L′)−1 =
1

11



5 2 1 1 2

2 5 2 1 1

1 2 5 2 1

1 2 5 2 1

2 1 1 2 5



11ũ =



5 2 1 1 2

2 5 2 1 1

1 2 5 2 1

1 2 5 2 1

2 1 1 2 5





σ1 − 2

σ2 − 2

σ3 − 2

σ4 − 2

σ5 − 2


We will prove that ũ = u = ud with one component of ũ at a time.

ũ1:

11ũ1 = 5σ1 + 2σ2 + σ3 + σ4 + 2σ5

Apply 31 and 32

11ũ1 = 5σ1 + 2σ2 + σ2 + σ1 + 2σ5 mod 11

11ũ1 = 6σ1 + 3σ2 + 2σ5 mod 11

11ũ1 = 3(2σ1 + σ2) + 2σ5 mod 11

Apply 33

11ũ1 = 3(3σ5) + 2σ5 mod 11

11ũ1 = 11σ5 mod 11

11ũ1 = 0 mod 11

Then ũ1 must be integer valued.

ũ2:

11ũ2 = 2σ1 + 5σ2 + 2σ3 + σ4 + σ5
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Apply 31 and 32

11ũ2 = 2σ1 + 5σ2 + 2σ2 + σ1 + σ5 mod 11

11ũ2 = 3σ1 + 7σ2 + σ5 mod 11

11ũ2 = σ1 + (2σ1 + σ2) + 6σ2 + σ5 mod 11

Apply 33

11ũ2 = σ1 + 6σ2 + 4σ5 mod 11

11ũ2 = σ1 + 2(3σ2 + 2σ5) mod 11

Apply 34

11ũ2 = σ1 + 2(5σ1) mod 11

11ũ2 = 11σ1 mod 11

11ũ2 = 0 mod 11

Then ũ2 must be integer valued.

The same method works for proving ũ3, ũ4, and ũ5.

ũ: All components of ũ are integer valued. Then ũ is integral, and therefore ũ = u = ud is the odometer.

4.4.4 Path Graph

Theorem 8. All sandpiles σ : V ′ → Z satisfying σ ≥ d− 1 are indivisible.

Proof. Let ũ = (L′)−1(σ − d+ 1).

ũ =



1 1 1 . . . 1

1 2 2 . . . 2

1 2 3 . . . 3

...
...

...
. . .

...

1 2 3 . . . n− 1


(σ − d+ 1)

From 24, the inverse reduced Laplacian for any path graph is integral. We know that σ − d+ 1 is integral.

Therefore, ũ = u for all σ ≥ d− 1.
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5 Sources in Graphs

We will define a source to be the only vertex in sandpile that chips are allowed to be placed on before

stabilization. For example, before stabilization, a sandpile configuration with a source will have zero chips

on every (non-sink) vertex, and any non-negative number of chips on the source.

5.1 Sources in Wheel Graphs

Conjecture: For wheel graphs, when the sink is the central vertex and the source is one of the vertices on

the outside of the wheel, then the number of stable configurations reachable through stabilization is equal

to the last non-zero entry in the diagonal of the corresponding laplacian matrix (i.e. the largest elementary

divisor).

This was tested up to 30 vertices (after that the program takes a while to give an output), and in those

cases the conjecture held.

Thus, we believe that if x is the last non-zero entry on the diagonal of a wheel graph’s corresponding

laplacian matrix, then, by placing chips on the source, there are are only x reachable stable configurations.

In fact, if you repeatedly increment the number of the chips on the source by one, you will cycle through all

of the reachable stable configurations.

5.2 ’Super’ Sources

We define a super source to be a source vertex that is connected to every non-sink vertex in a graph.

We define a super sink to be a sink vertex that is connected to every non-source vertex in a graph.

Conjecture: If a graph contains a super source and a super sink, then the number of stable sandpile config-

urations that can be reached by placing chips on the source is equal to the degree of the source (i.e. it is

equal to the number of non-sink and non-sink vertices in the graph).

This was not proven, but it held for the examples it was tested on.

Since the sink and source are connect to all the same vertices, we can collapse them. Thus, this conjecture

is about what happens when you allow a super sink to be the source for a sandpile.
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5.3 Multiple Sources and Sinks

Nothing interesting was observed when multiple source vertices and/or multiple sink vertices are designated

in a graph.

6 Induced Subgraphs

We wanted to explore the critical groups of induced subgraphs of strongly regular graphs. We looked at two

questions:

Question 1: How many different critical groups are there for the v different subgraphs formed by taking a

strongly regular graph Γ and removing one vertex along with all of its neighbors from Γ.

To do this, we wrote a program that would start with vertex 0, remove that vertex and its neighbors from

Γ, and then note the corresponding critical group. Then the original Γ is restored and the process starts

again with vertex 1. This repeats for every vertex. We kept track of which induced subgraphs produced the

same critical groups as other induced subgraphs.

The results of doing this are summarized in the following table:
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(v, k ,λ, µ) Number of critical groups for subgraphs

(9, 4, 1, 2) 1

(10, 3, 0, 1) 1

(10, 6, 3, 4) 1

(13, 6, 2, 3) 1

(15, 6, 1, 3) 1

(15, 8, 4, 4) 1

(16, 5, 0, 2) 1

(16, 10, 6, 6) 1

(16, 6, 2, 2) 1

(16, 9, 4, 6) 1

(17, 8, 3, 4) 1

(21, 10, 3, 6) 1

(21, 10, 5, 4) 1

(25, 8, 3, 2) 1

(25, 16, 9, 12) 1

(25, 12, 5, 6) 1

(26, 10, 3, 4) 2

(26, 15, 8, 9) 2

(27, 10, 1, 5) 1

(27, 16, 10, 8) 1

(28, 12, 6, 4) 1

(28, 15, 6, 10) 1

(29, 14, 6, 7) 1

(35, 16, 6, 8) 2

(35, 18, 9, 9) 2

(36, 10, 4, 2) 1

(36, 25, 16, 20) 1

(36, 14, 4, 6) 12

(36, 21, 12, 12) 10

(36, 14, 7, 4) 1

(36, 21, 10, 15) 1

(36, 15, 6, 6) 1

(36, 20, 10, 12) 1

(37, 18, 8, 9) 1

(40, 12, 2, 4) 1

(40, 27, 18, 18) 1

(41, 20, 9, 10) 1

(45, 12, 3, 3) 1

(45, 16, 8, 4) 1

(45, 28, 15, 21) 1

(45, 22, 10, 11) 5

(49, 12, 5, 2) 1

(49, 36, 25, 30) 1

(49, 18, 7, 6) 1

(49, 30, 17, 20) 1

(49, 24, 11, 12) 1

(50, 7, 0, 1) 1

(50, 42, 35, 36) 1

(50, 21, 8, 9) 2

(50, 28, 15, 16) 2

(53, 26, 12, 13) 1

(55, 18, 9, 4) 1

(55, 36, 21, 28) 1

(56, 10, 0, 2) 1

(56, 45, 36, 36) 1

(57, 24, 11, 9) 21

(57, 32, 16, 20) 21

(61, 30, 14, 15) 1

(63, 30, 13, 15) 1
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(63, 32, 16, 16) 1

(64, 14, 6, 2) 1

(64, 49, 36, 42) 1

(64, 18, 2, 6) 1

(64, 45, 32, 30) 1

(64, 21, 8, 6) 1

(64, 42, 26, 30) 1

(64, 27, 10, 12) 1

(64, 36, 20, 20) 1

(64, 28, 12, 12) 1

(64, 35, 18, 20) 1

(66, 20, 10, 4) 1

(66, 45, 28, 36) 1

(70, 27, 12, 9) 2

(70, 42, 23, 28) 2

(73, 36, 17, 18) 1

(77, 16, 0, 4) 1

(77, 60, 47, 45) 1

(78, 22, 11, 4) 1

(78, 55, 36, 45) 1

(81, 16, 7, 2) 1

(81, 64, 49, 56) 1

(81, 20, 1, 6) 1

(81, 60, 45, 42) 1

(81, 24, 9, 6) 1

(81, 56, 37, 42) 1

(81, 30, 9, 12) 1

(81, 50, 31, 30) 1

(81, 32, 13, 12) 1

(81, 48, 27, 30) 1

(81, 40, 19, 20) 1

(82, 36, 15, 16) 2

(82, 45, 24, 25) 2

(85, 20, 3, 5) 1

(85, 64, 48, 48) 1

(89, 44, 21, 22) 1

(91, 24, 12, 4) 1

(91, 66, 45, 55) 1

(96, 19, 2, 4) 1

(96, 76, 60, 60) 1

(96, 20, 4, 4) 1

(96, 75, 58, 60) 1

(97, 48, 23, 24) 1

(99, 48, 22, 24) 2

(99, 50, 25, 25) 2

(100, 18, 8, 2) 1

(100, 81, 64, 72) 1

(100, 22, 0, 6) 1

(100, 77, 60, 56) 1

(100, 27, 10, 6) 1

(100, 72, 50, 56) 1

(100, 33, 14, 9) 36

(100, 66, 41, 48) 36

(100, 36, 14, 12) 19

(100, 63, 38, 42) 19
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Question 2: How many different critical groups are there for the v different subgraphs formed by taking

a strongly regular graph Γ and removing a vertex from Γ?

The program to do this was similar to the one previously mentioned, except only a single vertex was deleted

in each iteration, instead of a vertex and all of its neighbors.

The resulting number of different critical groups for the subgraphs of strongly regular graphs was the

same as the numbers shown in the previous table, except in one case. For srg(36, 14, 4, 6), there were

actually 13 different critical groups instead of only 12. We are unsure as to why this is the case and if it has

any significance.

7 Appendix

Existence and primeness of Laplacian Eigenvalues of Strongly Regular Graphs
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v k λ µ Laplacian Eigenvalues Existence Primeness

5 2 0 1 1.38196601125011 3.61803398874989 Exists Error

9 4 1 2 3 6 Exists Square Free

10 3 0 1 2 5 Exists Relatively prime

6 3 4 5 8 Exists Relatively prime

13 6 2 3 4.69722436226801 8.30277563773199 Exists Error

15 6 1 3 5 9 Exists Relatively prime

8 4 4 6 10 Exists Square Free

16 5 0 2 4 8 Exists NA

10 6 6 8 12 Exists NA

16 6 2 2 4 8 Exists NA

9 4 6 8 12 Exists NA

17 8 3 4 6.43844718719117 10.5615528128088 Exists Error

21 10 3 6 9 14 Exists Relatively prime

10 5 4 7 12 Exists Relatively prime

21 10 4 5 8.20871215252208 12.7912878474779 DNE Error

25 8 3 2 5 10 Exists Square Free

16 9 12 15 20 Exists Square Free

25 12 5 6 10 15 Exists Square Free

26 10 3 4 8 13 Exists Relatively prime

15 8 9 13 18 Exists Relatively prime

27 10 1 5 9 15 Exists P, P2

16 10 8 12 18 Exists P, P2

28 9 0 4 8 14 DNE P, P2

18 12 10 14 20 DNE P, P2

28 12 6 4 8 14 Exists P, P2

15 6 10 14 20 Exists P, P2

29 14 6 7 11.8074175964327 17.1925824035673 Exists Error

33 16 7 8 13.627718676731 19.372281323269 DNE Error
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v k λ µ Laplacian Eigenvalues Existence Primeness

35 16 6 8 14 20 Exists P, P2

18 9 9 15 21 Exists Square Free

36 10 4 2 6 12 Exists P, P2

25 16 20 24 30 Exists P, P2

36 14 4 6 12 18 Exists P, P2

21 12 12 18 24 Exists P, P2

36 14 7 4 9 16 Exists Relatively prime

21 10 15 20 27 Exists Relatively prime

36 15 6 6 12 18 Exists P, P2

20 10 12 18 24 Exists P, P2

37 18 8 9 15.4586187348509 21.5413812651491 Exists Error

40 12 2 4 10 16 Exists P, P2

27 18 18 24 30 Exists P, P2

41 20 9 10 17.2984378812836 23.7015621187164 Exists Error

45 12 3 3 9 15 Exists P, P2

32 22 24 30 36 Exists P, P2

45 16 8 4 10 18 Exists Square Free

28 15 21 27 35 Exists Relatively prime

45 22 10 11 19.1458980337503 25.8541019662497 Exists Error

49 12 5 2 7 14 Exists Square Free

36 25 30 35 42 Exists Square Free

49 16 3 6 14 21 DNE Square Free

32 21 20 28 35 DNE Square Free

49 18 7 6 14 21 Exists Square Free

30 17 20 28 35 Exists Square Free

49 24 11 12 21 28 Exists Square Free

50 7 0 1 5 10 Exists Square Free

42 35 36 40 45 Exists Square Free

50 21 4 12 20 30 DNE P, P2

28 18 12 20 30 DNE P, P2
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v k λ µ Laplacian Eigenvalues Existence Primeness

50 21 8 9 18 25 Exists Relatively prime

28 15 16 25 32 Exists Relatively prime

53 26 12 13 22.8599450553597 30.1400549446403 Exists Error

55 18 9 4 11 20 Exists Relatively prime

36 21 28 35 44 Exists Relatively prime

56 10 0 2 8 14 Exists P, P2

45 36 36 42 48 Exists P, P2

56 22 3 12 21 32 DNE Relatively prime

33 22 15 24 35 DNE Relatively prime

57 14 1 4 12 19 DNE Relatively prime

42 31 30 38 45 DNE Relatively prime

57 24 11 9 19 27 Exists Relatively prime

32 16 20 30 38 Exists Square Free

57 28 13 14 24.7250827823646 32.2749172176354 DNE Error

61 30 14 15 26.5948751620467 34.4051248379533 Exists Error

63 22 1 11 21 33 DNE Square Free

40 28 20 30 42 DNE Square Free

63 30 13 15 27 35 Exists Relatively prime

32 16 16 28 36 Exists NA

64 14 6 2 8 16 Exists NA

49 36 42 48 56 Exists NA

64 18 2 6 16 24 Exists NA

45 32 30 40 48 Exists NA

64 21 0 10 20 32 DNE NA

42 30 22 32 44 DNE NA

64 21 8 6 16 24 Exists NA

42 26 30 40 48 Exists NA

64 27 10 12 24 32 Exists NA

36 20 20 32 40 Exists NA

64 28 12 12 24 32 Exists NA

35 18 20 32 40 Exists NA
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v k λ µ Laplacian Eigenvalues Existence Primeness

64 30 18 10 20 32 DNE NA

33 12 22 32 44 DNE NA

65 32 15 16 28.4688711258507 36.5311288741493 Unknown Error

66 20 10 4 12 22 Exists P, P2

45 28 36 44 54 Exists P, P2

69 20 7 5 15 23 Unknown Relatively prime

48 32 36 46 54 Unknown Square Free

69 34 16 17 30.346688068541 38.653311931459 DNE Error

70 27 12 9 21 30 Exists Square Free

42 23 28 40 49 Exists Relatively prime

73 36 17 18 32.2279981273412 40.7720018726588 Exists Error

75 32 10 16 30 40 DNE P, P2

42 25 21 35 45 DNE Square Free

76 21 2 7 19 28 DNE Relatively prime

54 39 36 48 57 DNE Square Free

76 30 8 14 28 38 DNE P, P2

45 28 24 38 48 DNE P, P2

76 35 18 14 28 38 DNE P, P2

40 18 24 38 48 DNE P, P2

77 16 0 4 14 22 Exists Square Free

60 47 45 55 63 Exists Relatively prime

77 38 18 19 34.1125178063039 42.8874821936961 DNE Error

78 22 11 4 13 24 Exists Relatively prime

55 36 45 54 65 Exists Relatively prime

81 16 7 2 9 18 Exists NA

64 49 56 63 72 Exists NA

81 20 1 6 18 27 Exists NA

60 45 42 54 63 Exists NA

81 24 9 6 18 27 Exists NA

56 37 42 54 63 Exists NA
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v k λ µ Laplacian Eigenvalues Existence Primeness

81 30 9 12 27 36 Exists NA

50 31 30 45 54 Exists NA

81 32 13 12 27 36 Exists NA

48 27 30 45 54 Exists NA

81 40 13 26 39 54 DNE P, P2

40 25 14 27 42 DNE P, P2

81 40 19 20 36 45 Exists NA

82 36 15 16 32 41 Exists Relatively prime

45 24 25 41 50 Exists Relatively prime

85 14 3 2 10 17 Unknown Relatively prime

70 57 60 68 75 Unknown Relatively prime

85 20 3 5 17 25 Exists Relatively prime

64 48 48 60 68 Exists NA

85 30 11 10 25 34 Unknown Relatively prime

54 33 36 51 60 Unknown Square Free

85 42 20 21 37.8902277713536 47.1097722286464 Unknown Error

88 27 6 9 24 33 Unknown Square Free

60 41 40 55 64 Unknown Relatively prime

89 44 21 22 39.7830094339717 49.2169905660283 Exists Error

91 24 12 4 14 26 Exists Square Free

66 45 55 65 77 Exists Relatively prime

93 46 22 23 41.6781746195035 51.3218253804965 DNE Error

95 40 12 20 38 50 DNE Square Free

54 33 27 45 57 DNE P, P2

96 19 2 4 16 24 Exists NA

76 60 60 72 80 Exists NA

96 20 4 4 16 24 Exists NA

75 58 60 72 80 Exists NA

96 35 10 14 32 42 Unknown P, P2

60 38 36 54 64 Unknown P, P2

96 38 10 18 36 48 DNE NA

57 36 30 48 60 DNE NA
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v k λ µ Laplacian Eigenvalues Existence Primeness

96 45 24 18 36 48 DNE NA

50 22 30 48 60 DNE NA

97 48 23 24 43.5755710991019 53.424428900898 Exists Error

99 14 1 2 11 18 Unknown Relatively prime

84 71 72 81 88 Unknown Relatively prime

99 42 21 15 33 45 Unknown P, P2

56 28 36 54 66 Unknown P, P2

99 48 22 24 44 54 Exists P, P2

50 25 25 45 55 Exists Square Free

100 18 8 2 10 20 Exists P, P2

81 64 72 80 90 Exists P, P2

100 22 0 6 20 30 Exists P, P2

77 60 56 70 80 Exists P, P2

100 27 10 6 20 30 Exists P, P2

72 50 56 70 80 Exists P, P2

100 33 8 12 30 40 Unknown P, P2

66 44 42 60 70 Unknown P, P2

100 33 14 9 25 36 Exists Relatively prime

66 41 48 64 75 Exists Relatively prime

100 33 18 7 20 35 DNE Square Free

66 39 52 65 80 DNE Square Free

100 36 14 12 30 40 Exists P, P2

63 38 42 60 70 Exists P, P2

100 44 18 20 40 50 Exists P, P2

55 30 30 50 60 Exists P, P2

100 45 20 20 40 50 Exists P, P2

54 28 30 50 60 Exists P, P2

101 50 24 25 45.4750621894396 55.5249378105605 Exists Error

105 26 13 4 15 28 Exists Relatively prime

78 55 66 77 90 Exists Relatively prime

105 32 4 12 30 42 Exists Square Free

72 51 45 63 75 Exists P, P2
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v k λ µ Laplacian Eigenvalues Existence Primeness

105 40 15 15 35 45 Unknown Square Free

64 38 40 60 70 Unknown P, P2

105 52 21 30 50 63 Unknown Relatively prime

52 29 22 42 55 Unknown Relatively prime

105 52 25 26 47.3765246170202 57.6234753829798 DNE Error

109 54 26 27 49.2798467455447 59.7201532544553 Exists Error

111 30 5 9 27 37 Unknown Relatively prime

80 58 56 74 84 Unknown P, P2

111 44 19 16 37 48 Exists Relatively prime

66 37 42 63 74 Exists Relatively prime

112 30 2 10 28 40 Exists NA

81 60 54 72 84 Exists NA

112 36 10 12 32 42 Unknown P, P2

75 50 50 70 80 Unknown P, P2

113 56 27 28 51.1849270936327 61.8150729063673 Exists Error

115 18 1 3 15 23 Unknown Relatively prime

96 80 80 92 100 Unknown NA

117 36 15 9 27 39 Exists P, P2

80 52 60 78 90 Exists P, P2

117 58 28 29 53.091673086804 63.908326913196 Unknown Error

119 54 21 27 51 63 Exists P, P2

64 36 32 56 68 Exists NA

120 28 14 4 16 30 Exists P, P2

91 66 78 90 104 Exists P, P2

120 34 8 10 30 40 Unknown P, P2

85 60 60 80 90 Unknown P, P2

120 35 10 10 30 40 Unknown P, P2

84 58 60 80 90 Unknown P, P2

120 42 8 18 40 54 Exists P, P2

77 52 44 66 80 Exists P, P2

120 51 18 24 48 60 Exists NA

68 40 36 60 72 Exists NA
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v k λ µ Laplacian Eigenvalues Existence Primeness

120 56 28 24 48 60 Exists NA

63 30 36 60 72 Exists NA

121 20 9 2 11 22 Exists Square Free

100 81 90 99 110 Exists Square Free

121 30 11 6 22 33 Exists Square Free

90 65 72 88 99 Exists Square Free

121 36 7 12 33 44 Unknown Square Free

84 59 56 77 88 Unknown Square Free

121 40 15 12 33 44 Exists Square Free

80 51 56 77 88 Exists Square Free

121 48 17 20 44 55 Unknown Square Free

72 43 42 66 77 Unknown Square Free

121 50 21 20 44 55 Exists Square Free

70 39 42 66 77 Exists Square Free

121 56 15 35 55 77 DNE Square Free

64 42 24 44 66 DNE P, P2

121 60 29 30 55 66 Exists Square Free

122 55 24 25 50 61 Exists Relatively prime

66 35 36 61 72 Exists Relatively prime

125 28 3 7 25 35 Exists P, P2

96 74 72 90 100 Exists P, P2

125 48 28 12 30 50 DNE P, P2

76 39 57 75 95 DNE P, P2

125 52 15 26 50 65 Exists P, P2

72 45 36 60 75 Exists P, P2

125 62 30 31 56.9098300562505 68.0901699437495 Exists Error

126 25 8 4 18 28 Exists P, P2

100 78 84 98 108 Exists P, P2

126 45 12 18 42 54 Exists P, P2

80 52 48 72 84 Exists NA

126 50 13 24 48 63 Exists P, P2

75 48 39 63 78 Exists P, P2
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v k λ µ Laplacian Eigenvalues Existence Primeness

126 60 33 24 48 63 Exists P, P2

65 28 39 63 78 Exists P, P2

129 64 31 32 58.8210916541997 70.1789083458003 DNE Error

130 48 20 16 40 52 Exists NA

81 48 54 78 90 Exists P, P2

133 24 5 4 19 28 Unknown Relatively prime

108 87 90 105 114 Unknown Square Free

133 32 6 8 28 38 Unknown P, P2

100 75 75 95 105 Unknown Square Free

133 44 15 14 38 49 Unknown Relatively prime

88 57 60 84 95 Unknown Relatively prime

133 66 32 33 60.7337187026646 72.2662812973354 DNE Error

135 64 28 32 60 72 Exists NA

70 37 35 63 75 Exists P, P2

136 30 8 6 24 34 Unknown P, P2

105 80 84 102 112 Unknown P, P2

136 30 15 4 17 32 Exists Relatively prime

105 78 91 104 119 Exists Relatively prime

136 60 24 28 56 68 Exists NA

75 42 40 68 80 Exists NA

136 63 30 28 56 68 Exists NA

72 36 40 68 80 Exists NA

137 68 33 34 62.6476500446402 74.3523499553598 Exists Error

141 70 34 35 64.562828956481 76.437171043519 DNE Error

143 70 33 35 65 77 Exists Relatively prime

72 36 36 66 78 Exists Square Free

144 22 10 2 12 24 Exists NA

121 100 110 120 132 Exists NA

144 33 12 6 24 36 Exists NA

110 82 90 108 120 Exists NA

144 39 6 12 36 48 Exists NA

104 76 72 96 108 Exists NA
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v k λ µ Laplacian Eigenvalues Existence Primeness

144 44 16 12 36 48 Exists NA

99 66 72 96 108 Exists NA

144 52 16 20 48 60 Unknown NA

91 58 56 84 96 Unknown NA

144 55 22 20 48 60 Exists NA

88 52 56 84 96 Exists NA

144 65 16 40 64 90 DNE P, P2

78 52 30 54 80 DNE P, P2

144 65 28 30 60 72 Exists NA

78 42 42 72 84 Exists NA

144 66 30 30 60 72 Exists NA

77 40 42 72 84 Exists NA

145 72 35 36 66.4792027106039 78.5207972893961 Unknown Error

147 66 25 33 63 77 Unknown Square Free

80 46 40 70 84 Unknown P, P2

148 63 22 30 60 74 Unknown P, P2

84 50 44 74 88 Unknown P, P2

148 70 36 30 60 74 Unknown P, P2

77 36 44 74 88 Unknown P, P2

149 74 36 37 68.3967221921332 80.6032778078668 Exists Error

153 32 16 4 18 34 Exists Square Free

120 91 105 119 135 Exists Relatively prime

153 56 19 21 51 63 Unknown P, P2

96 60 60 90 102 Unknown P, P2

153 76 37 38 70.3153415615735 82.6846584384265 Unknown Error

154 48 12 16 44 56 Unknown NA

105 72 70 98 110 Unknown Square Free

154 51 8 21 49 66 DNE Relatively prime

102 71 60 88 105 DNE Relatively prime

154 72 26 40 70 88 Unknown P, P2

81 48 36 66 84 Unknown P, P2
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v k λ µ Laplacian Eigenvalues Existence Primeness

155 42 17 9 31 45 Exists Relatively prime

112 78 88 110 124 Exists P, P2

156 30 4 6 26 36 Exists P, P2

125 100 100 120 130 Exists P, P2

157 78 38 39 72.2350179569292 84.7649820430708 Exists Error

160 54 18 18 48 60 Unknown NA

105 68 70 100 112 Unknown NA

161 80 39 40 74.1557112297752 86.8442887702248 DNE Error

162 21 0 3 18 27 Unknown NA

140 121 120 135 144 Unknown NA

162 23 4 3 18 27 Unknown NA

138 117 120 135 144 Unknown NA

162 49 16 14 42 54 Unknown P, P2

112 76 80 108 120 Unknown NA

162 56 10 24 54 72 Exists NA

105 72 60 90 108 Exists NA

162 69 36 24 54 72 Unknown NA

92 46 60 90 108 Unknown NA

165 36 3 9 33 45 Exists P, P2

128 100 96 120 132 Exists NA

165 82 40 41 76.0773837106674 88.9226162893326 DNE Error

169 24 11 2 13 26 Exists Error

144 121 132 143 156 Exists Error

169 36 13 6 26 39 Exists Error

132 101 110 130 143 Exists Error

169 42 5 12 39 52 Unknown Error

126 95 90 117 130 Unknown Error

169 48 17 12 39 52 Exists Error

120 83 90 117 130 Exists Error

169 56 15 20 52 65 Unknown Error

112 75 72 104 117 Unknown Error
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v k λ µ Laplacian Eigenvalues Existence Primeness

169 60 23 20 52 65 Exists Error

108 67 72 104 117 Exists Error

169 70 27 30 65 78 Unknown Error

98 57 56 91 104 Unknown Error

169 72 31 30 65 78 Exists Error

96 53 56 91 104 Exists Error

169 84 41 42 78 91 Exists Error

170 78 35 36 72 85 Exists Relatively prime

91 48 49 85 98 Exists Relatively prime

171 34 17 4 19 36 Exists Relatively prime

136 105 120 135 152 Exists Relatively prime

171 50 13 15 45 57 Unknown P, P2

120 84 84 114 126 Unknown P, P2

171 60 15 24 57 72 Unknown P, P2

110 73 66 99 114 Unknown P, P2

173 86 42 43 79.9235267810171 93.076473218983 Exists Error

175 30 5 5 25 35 Exists P, P2

144 118 120 140 150 Exists P, P2

175 66 29 22 55 70 Unknown Square Free

108 63 72 105 120 Unknown Square Free

175 72 20 36 70 90 Exists Square Free

102 65 51 85 105 Exists Square Free

176 25 0 4 22 32 Unknown P, P2

150 128 126 144 154 Unknown P, P2

176 40 12 8 32 44 Exists NA

135 102 108 132 144 Exists NA

176 45 18 9 33 48 Exists Square Free

130 93 104 128 143 Exists Relatively prime

176 49 12 14 44 56 Exists NA

126 90 90 120 132 Exists NA

176 70 18 34 68 88 Exists NA

105 68 54 88 108 Exists NA
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176 70 24 30 66 80 Unknown P, P2

105 64 60 96 110 Unknown P, P2

176 70 42 18 44 72 DNE NA

105 52 78 104 132 DNE NA

176 85 48 34 68 88 Exists NA

90 38 54 88 108 Exists NA

177 88 43 44 81.847932652175 95.152067347825 DNE Error

181 90 44 45 83.7731879764631 97.2268120235369 Exists Error

183 52 11 16 48 61 Unknown Relatively prime

130 93 90 122 135 Unknown Relatively prime

183 70 29 25 61 75 Exists Relatively prime

112 66 72 108 122 Exists P, P2

184 48 2 16 46 64 DNE P, P2

135 102 90 120 138 DNE P, P2

185 92 45 46 85.6992647456323 99.3007352543677 Unknown Error

189 48 12 12 42 54 Unknown P, P2

140 103 105 135 147 Unknown P, P2

189 60 27 15 45 63 Unknown NA

128 82 96 126 144 Unknown NA

189 88 37 44 84 99 Unknown P, P2

100 55 50 90 105 Unknown P, P2

189 94 46 47 87.6261364575663 101.373863542434 DNE Error

190 36 18 4 20 38 Exists P, P2

153 120 136 152 170 Exists P, P2

190 45 12 10 38 50 Unknown Square Free

144 108 112 140 152 Unknown NA

190 84 33 40 80 95 Unknown Square Free

105 60 55 95 110 Unknown Square Free

190 84 38 36 76 90 Exists P, P2

105 56 60 100 114 Exists P, P2

190 90 45 40 80 95 Unknown Square Free

99 48 55 95 110 Unknown Square Free
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193 96 47 48 89.5537780052751 103.446221994725 Exists Error

195 96 46 48 90 104 Exists P, P2

98 49 49 91 105 Exists Square Free

196 26 12 2 14 28 Exists P, P2

169 144 156 168 182 Exists P, P2

196 39 2 9 36 49 Unknown Relatively prime

156 125 120 147 160 Unknown Relatively prime

196 39 14 6 28 42 Exists P, P2

156 122 132 154 168 Exists P, P2

196 45 4 12 42 56 Unknown P, P2

150 116 110 140 154 Unknown P, P2

196 52 18 12 42 56 Exists P, P2

143 102 110 140 154 Exists P, P2

196 60 14 20 56 70 Exists P, P2

135 94 90 126 140 Exists P, P2

196 60 23 16 49 64 Exists Relatively prime

135 90 99 132 147 Exists Square Free

196 65 24 20 56 70 Exists P, P2

130 84 90 126 140 Exists P, P2

196 75 26 30 70 84 Unknown P, P2

120 74 72 112 126 Unknown P, P2

196 78 32 30 70 84 Exists P, P2

117 68 72 112 126 Exists P, P2

196 81 42 27 63 84 Unknown P, P2

114 59 76 112 133 Unknown Square Free

196 85 18 51 84 119 DNE Square Free

110 75 44 77 112 DNE Square Free

196 90 40 42 84 98 Unknown P, P2

105 56 56 98 112 Unknown P, P2

196 91 42 42 84 98 Exists P, P2

104 54 56 98 112 Exists P, P2

197 98 48 49 91.4821655761909 105.517834423809 Exists Error

51



REFERENCES JMU REU 2019

References

[1] https://doi.org/10.1023/A:1022438616684

[2] Cori, Robert and Dominique Rossin. On the Sandpile Group of Dual Graphs. European Journal of

Combinatorics (2000), vol. 21, pp. 447-459.

[3] Gagarin, Andrei, William Kocay and Daniel Neilson. Embeddings of Small Graphs on the Torus. Uni-

versity of Manitoba. Jun 2001.

[4] Scott Corry and David Perkinson (2010) Divisors and Sandpiles

[5] Yvan Le Borgne and Dominique Rossin (2001) On the Identity of the Sandpile Group Discrete Mathe-

matics 256 (2002) 775 – 790

[6] Lionel Levine and James Propp (2010) What is a Sandpile? American Mathematical Society 57(8), 976

– 979.

52

https://doi.org/10.1023/A:1022438616684
https://doi.org/10.1016/S0012-365X(02)00347-3
https://doi.org/10.1016/S0012-365X(02)00347-3
http://pi.math.cornell.edu/~levine/what-is-a-sandpile.pdf
http://pi.math.cornell.edu/~levine/what-is-a-sandpile.pdf

	Dual Graphs
	The Critical Group
	Dual Graphs
	Graphs on Surfaces of Nonzero Genus
	Different Embeddings

	Strongly-Regular Graphs
	Co-Prime Eigenvalues
	General Results on the Critical Group of SRG
	Zeroing in on a Prime
	Putting it all Together

	SRG with Common Factors
	Square-Free
	p and p2
	pj and pj+1

	Table of SRG
	Latin Square Graphs

	Grid Graphs
	Graphs on the C4 tiling
	Graphs on the skewed triangle tiling
	Graphs on the K4 tiling

	Indivisible Sandpiles
	Sandpiles
	Odometer
	Inverse Reduced Laplacian
	Complete Graph
	Cycle Graph
	Wheel Graph
	Path Graph

	Indivisible Sandpiles
	Wheel Graph on n = 2k + 1 vertices
	Complete Graph
	Wheel Graph
	Path Graph


	Sources in Graphs
	Sources in Wheel Graphs
	'Super' Sources
	Multiple Sources and Sinks

	Induced Subgraphs
	Appendix

