A New Generalization of the Line Graph and its Spectral Characteristics

Connor Phillips and Robert Petro

James Madison University

November 2, 2024

A graph $\Gamma = \Gamma(V, E)$ is a finite set of vertices V coupled with a finite set of pairs of vertices called edges E .

€⊡

A graph $\Gamma = \Gamma(V, E)$ is a finite set of vertices V coupled with a finite set of pairs of vertices called edges E.

A graph $\Gamma = \Gamma(V, E)$ is a finite set of vertices V coupled with a finite set of pairs of vertices called edges E .

A graph Γ is regular with degree k (k-regular) if every vertex in Γ is adjacent to k other vertices.

4 D F

●▶

A graph Γ is regular with degree k (k-regular) if every vertex in Γ is adjacent to k other vertices.

Definition

The spectrum of a graph Γ, is the set of eigenvalues of the adjacency matrix of Γ along with their multiplicities. It is denoted $\lambda_1^{\alpha_1},\ldots,\lambda_m^{\alpha_m}$ where the exponent represents the multiplicity of that eigenvalue.

A clique of order ω , is a complete graph Γ with ω vertices. We call this an ω -clique.

 QQ

A clique of order ω , is a complete graph Γ with ω vertices. We call this an ω -clique.

B

 \leftarrow \Box

- ← 冊 → ×. × \mathcal{A} . ÷,

 \leftarrow \Box \rightarrow

- ← 冊 → \mathcal{A} × ÷,

An open problem since 1969 is if there exists a 14-regular graph on 99 vertices with the property that each edge is in a unique triangle.

An open problem since 1969 is if there exists a 14-regular graph on 99 vertices with the property that each edge is in a unique triangle.

Conway's 99-graph

An open problem since 1969 is if there exists a 14-regular graph on 99 vertices with the property that each edge is in a unique triangle.

Conway's 99-graph

The line graph of a graph Γ , $L(\Gamma)$, is the graph with vertex set equal to the edge set of Γ where two edges of Γ are adjacent if and only if they share a vertex in Γ.

The line graph of a graph Γ , $L(\Gamma)$, is the graph with vertex set equal to the edge set of Γ where two edges of Γ are adjacent if and only if they share a vertex in Γ.

The line graph of a graph Γ , $L(\Gamma)$, is the graph with vertex set equal to the edge set of Γ where two edges of Γ are adjacent if and only if they share a vertex in Γ.

The ω -**Clique Graph** of a graph Γ, $C_{\omega}(\Gamma)$, is the graph with vertex set equal to the set of ω -cliques of Γ where two cliques are adjacent if and only if they have a nonempty intersection.

The ω -**Clique Graph** of a graph Γ, $C_{\omega}(\Gamma)$, is the graph with vertex set equal to the set of ω -cliques of Γ where two cliques are adjacent if and only if they have a nonempty intersection.

The ω -**Clique Graph** of a graph Γ, $C_{\omega}(\Gamma)$, is the graph with vertex set equal to the set of ω -cliques of Γ where two cliques are adjacent if and only if they have a nonempty intersection.

つひひ

The ω -Clique Graph

Theorem

If Γ is a nonempty graph, then $C_2(\Gamma) \cong L(\Gamma)$.

4 D F

●▶

э

The ω -Clique Graph

Theorem

If Γ is a nonempty graph, then $C_2(\Gamma) \cong L(\Gamma)$.

Since a 2-clique is a single edge.

€⊡

A graph Γ is ω -**Clique Regular** if it has nonempty edge set and every edge of Γ is in a unique clique of order ω .

ω -Clique Regular Graphs

Definition

A graph Γ is ω -**Clique Regular** if it has nonempty edge set and every edge of Γ is in a unique clique of order ω .

ω -Clique Regular Graphs

Definition

A graph Γ is ω -**Clique Regular** if it has nonempty edge set and every edge of Γ is in a unique clique of order ω .

Lemma

If Γ is ω -clique regular, then $\omega = 2$ or ω is the order of Γ 's largest clique.

Examples of Clique Regular Graphs

э

4日下

∢母→

重

• Line Graphs of Regular Graphs

4 0 8

э

 QQ

- Line Graphs of Regular Graphs
- Square Rook Graphs

э

 \leftarrow \Box

 QQ

- **Line Graphs of Regular Graphs**
- **•** Square Rook Graphs
- Generalized Quadrangle Graphs

- Line Graphs of Regular Graphs
- **•** Square Rook Graphs
- **Generalized Quadrangle Graphs**
- Orthogonal Array Graphs

- Line Graphs of Regular Graphs
- **•** Square Rook Graphs
- **Generalized Quadrangle Graphs**
- Orthogonal Array Graphs
- **Triangular Graphs**

- Line Graphs of Regular Graphs
- **•** Square Rook Graphs
- **Generalized Quadrangle Graphs**
- Orthogonal Array Graphs
- **Triangular Graphs**
- Locally Linear Graphs

Theorem

Suppose Γ is ω -clique regular and $L(\Gamma)$ has eigenvalues $\mu_1 \leq \cdots \leq \mu_m$. Then every eigenvalue λ of $C_{\omega}(\Gamma)$ is bounded by

$$
\frac{\omega}{\omega-1}\left(\frac{\mu_1}{2}+1\right)-\omega\leq\lambda\leq\frac{\omega}{\omega-1}\left(\frac{\mu_m}{2}+1\right)-\omega.
$$

Theorem

Suppose Γ is ω -clique regular and $L(\Gamma)$ has eigenvalues $\mu_1 \leq \cdots \leq \mu_m$. Then every eigenvalue λ of $C_{\omega}(\Gamma)$ is bounded by

$$
\frac{\omega}{\omega-1}\left(\frac{\mu_1}{2}+1\right)-\omega\leq\lambda\leq\frac{\omega}{\omega-1}\left(\frac{\mu_m}{2}+1\right)-\omega.
$$

 $\Delta(\Gamma)$ is the largest degree of a vertex in Γ .

Corollary

Suppose Γ is ω -clique regular. Then every eigenvalue λ of $C_{\omega}(\Gamma)$ is bounded by

$$
-\omega \leq \lambda \leq \omega \left(\frac{\Delta(\Gamma)}{\omega - 1} - 1 \right).
$$

 QQ

Theorem

Suppose Γ is ω -clique regular and $L(\Gamma)$ has eigenvalues $\mu_1 \leq \cdots \leq \mu_m$. Then every eigenvalue λ of $C_{\omega}(\Gamma)$ is bounded by

$$
\frac{\omega}{\omega-1}\left(\frac{\mu_1}{2}+1\right)-\omega\leq\lambda\leq\frac{\omega}{\omega-1}\left(\frac{\mu_m}{2}+1\right)-\omega.
$$

 $\Delta(\Gamma)$ is the largest degree of a vertex in Γ .

Corollary

Suppose Γ is ω -clique regular. Then every eigenvalue λ of $C_{\omega}(\Gamma)$ is bounded by

$$
-\omega \leq \lambda \leq \omega \left(\frac{\Delta(\Gamma)}{\omega - 1} - 1 \right).
$$

These bounds are the same and tight if Γ is regular.

 QQ

(ロ) (_何) (ヨ) (ヨ

Spectral Theorems

 $p(\Gamma; \lambda)$ is the characteristic polynomial of the adjacency matrix of Γ.

Theorem

Suppose Γ is ω -clique regular and *k*-regular on *n* vertices. Then

$$
p(C_{\omega}(\Gamma); \lambda) = (\lambda + \omega)^{\frac{nk}{\omega(\omega - 1)} - n} p\left(\Gamma; \lambda + \omega - \frac{k}{\omega - 1}\right).
$$

Spectral Theorems

 $p(\Gamma; \lambda)$ is the characteristic polynomial of the adjacency matrix of Γ .

Theorem

Suppose Γ is ω -clique regular and k-regular on *n* vertices. Then

$$
p(C_{\omega}(\Gamma); \lambda) = (\lambda + \omega)^{\frac{nk}{\omega(\omega - 1)} - n} p\left(\Gamma; \lambda + \omega - \frac{k}{\omega - 1}\right).
$$

The roots of $p(\Gamma; \lambda)$ are the eigenvalues of Γ.

Spectral Theorems

 $p(\Gamma; \lambda)$ is the characteristic polynomial of the adjacency matrix of Γ .

Theorem

Suppose Γ is ω -clique regular and k-regular on *n* vertices. Then

$$
p(C_{\omega}(\Gamma); \lambda) = (\lambda + \omega)^{\frac{nk}{\omega(\omega - 1)} - n} p\left(\Gamma; \lambda + \omega - \frac{k}{\omega - 1}\right)
$$

The roots of $p(\Gamma; \lambda)$ are the eigenvalues of Γ . So if Γ has spectrum

$$
\lambda_1^{\alpha_1},\ldots,\lambda_m^{\alpha_m},k^1
$$

then $C_{\omega}(\Gamma)$ has spectrum

$$
-\omega^{\frac{nk}{\omega(\omega-1)}-n},\left(\frac{k}{\omega-1}+\lambda_1-\omega\right)^{\alpha_1},\ldots,\,\,\omega\left(\frac{k}{\omega-1}-1\right)^1
$$

 200

.

.

$$
-3^{132}, 0^{44}, 7^{54}, 18^1. \\
$$

 \leftarrow \Box

 QQ

$$
-3^{132}, 0^{44}, 7^{54}, 18^1.\\
$$

Conway's 99-graph belongs to a list of graphs called strongly regular graphs. Strongly regular graphs are written as srg(v, k, λ, μ) where

$$
-3^{132}, 0^{44}, 7^{54}, 18^1.\\
$$

Conway's 99-graph belongs to a list of graphs called strongly regular graphs. Strongly regular graphs are written as srg(v, k, λ, μ) where

v vertices

$$
-3^{132}, 0^{44}, 7^{54}, 18^1.\\
$$

Conway's 99-graph belongs to a list of graphs called strongly regular graphs. Strongly regular graphs are written as srg(v, k, λ, μ) where

- **v** vertices
- \bullet k-regular

$$
-3^{132}, 0^{44}, 7^{54}, 18^1.\\
$$

Conway's 99-graph belongs to a list of graphs called strongly regular graphs. Strongly regular graphs are written as srg(v, k, λ, μ) where

- **v** vertices
- \bullet k-regular
- \bullet λ is the number of vertices two adjacent vertices share

 $-3^{132}, 0^{44}, 7^{54}, 18^1.$

Conway's 99-graph belongs to a list of graphs called strongly regular graphs. Strongly regular graphs are written as srg(v, k, λ, μ) where

- **v** vertices
- \bullet k-regular
- \bullet λ is the number of vertices two adjacent vertices share
- \bullet μ is the number of vertices two non-adjacent vertices share

$$
-3^{132}, 0^{44}, 7^{54}, 18^1.\\
$$

Conway's 99-graph belongs to a list of graphs called strongly regular graphs. Strongly regular graphs are written as srg(v, k, λ, μ) where

- **v** vertices
- \bullet k-regular
- \bullet λ is the number of vertices two adjacent vertices share
- \bullet μ is the number of vertices two non-adjacent vertices share Conway's 99-graph is an srg(99,14,1,2).

 $-3^1, 0^4, 3^1.$

造

 \rightarrow \equiv

IN

4 D F

∢ 何 ≯ →

 $-3^1, 0^4, 3^1.$

The spectrum of the 3-clique graph of srg(243,22,1,2) is

 $-3^{648}, 3^{110}, 12^{132}, 30^1.$

K 個 ▶ K 重 ▶ K 重 ▶ │ 重 │ Ю Q (2)

 \leftarrow \Box

 $-3^1, 0^4, 3^1.$

The spectrum of the 3-clique graph of srg(243,22,1,2) is

 $-3^{648}, 3^{110}, 12^{132}, 30^1.$

The spectrum of the 3-clique graph of srg(6273,112,1,2) is

$$
-3^{110823}, 42^{2992}, 63^{3280}165^1. \\
$$

KHT → KE → KE → E → YOU → KE

 $-3^1, 0^4, 3^1.$

The spectrum of the 3-clique graph of srg(243,22,1,2) is

 $-3^{648}, 3^{110}, 12^{132}, 30^1.$

The spectrum of the 3-clique graph of srg(6273,112,1,2) is $-3^{110823}, 42^{2992}, 63^{3280}165^1.$

The spectrum of the 3-clique graph of srg(494019,994,1,2) is

 $-381348462, 462243104, 525250914, 14881$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 로 - K 9 Q @

Questions?

B J.

4日下

∢母→

重

We are grateful to the Robert E. Tickle foundation for funding our research, and to Dr. Joshua Ducey for mentoring us.