A New Generalization of the Line Graph and its Spectral Characteristics

Connor Phillips and Robert Petro

James Madison University

November 2, 2024

A graph $\Gamma = \Gamma(V, E)$ is a finite set of vertices V coupled with a finite set of pairs of vertices called edges E.

A graph $\Gamma = \Gamma(V, E)$ is a finite set of vertices V coupled with a finite set of pairs of vertices called edges E.

A graph $\Gamma = \Gamma(V, E)$ is a finite set of vertices V coupled with a finite set of pairs of vertices called edges E.

 $A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 & 1 \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix}$

A graph Γ is **regular** with degree k (k-regular) if every vertex in Γ is adjacent to k other vertices.

э

< 1 k

A graph Γ is **regular** with degree k (k-regular) if every vertex in Γ is adjacent to k other vertices.

Definition

The **spectrum** of a graph Γ , is the set of eigenvalues of the adjacency matrix of Γ along with their multiplicities. It is denoted $\lambda_1^{\alpha_1}, \ldots, \lambda_m^{\alpha_m}$ where the exponent represents the multiplicity of that eigenvalue.

A **clique** of order ω , is a complete graph Γ with ω vertices. We call this an ω -clique.

A **clique** of order ω , is a complete graph Γ with ω vertices. We call this an ω -clique.

Image: A matrix and a matrix

æ

э

An open problem since 1969 is if there exists a 14-regular graph on 99 vertices with the property that each edge is in a unique triangle.

An open problem since 1969 is if there exists a 14-regular graph on 99 vertices with the property that each edge is in a unique triangle.

Conway's 99-graph

An open problem since 1969 is if there exists a 14-regular graph on 99 vertices with the property that each edge is in a unique triangle.

Conway's 99-graph

The **line graph** of a graph Γ , $L(\Gamma)$, is the graph with vertex set equal to the edge set of Γ where two edges of Γ are adjacent if and only if they share a vertex in Γ .

The **line graph** of a graph Γ , $L(\Gamma)$, is the graph with vertex set equal to the edge set of Γ where two edges of Γ are adjacent if and only if they share a vertex in Γ .

The **line graph** of a graph Γ , $L(\Gamma)$, is the graph with vertex set equal to the edge set of Γ where two edges of Γ are adjacent if and only if they share a vertex in Γ .

The ω -**Clique Graph** of a graph Γ , $C_{\omega}(\Gamma)$, is the graph with vertex set equal to the set of ω -cliques of Γ where two cliques are adjacent if and only if they have a nonempty intersection.

The ω -**Clique Graph** of a graph Γ , $C_{\omega}(\Gamma)$, is the graph with vertex set equal to the set of ω -cliques of Γ where two cliques are adjacent if and only if they have a nonempty intersection.

The ω -**Clique Graph** of a graph Γ , $C_{\omega}(\Gamma)$, is the graph with vertex set equal to the set of ω -cliques of Γ where two cliques are adjacent if and only if they have a nonempty intersection.

The ω -Clique Graph

Theorem

If Γ is a nonempty graph, then $C_2(\Gamma) \cong L(\Gamma)$.

э

The ω -Clique Graph

Theorem

If Γ is a nonempty graph, then $C_2(\Gamma) \cong L(\Gamma)$.

Since a 2-clique is a single edge.

A graph Γ is ω -Clique Regular if it has nonempty edge set and every edge of Γ is in a unique clique of order ω .

$\omega\text{-Clique}$ Regular Graphs

Definition

A graph Γ is ω -Clique Regular if it has nonempty edge set and every edge of Γ is in a unique clique of order ω .

ω -Clique Regular Graphs

Definition

A graph Γ is ω -**Clique Regular** if it has nonempty edge set and every edge of Γ is in a unique clique of order ω .

Lemma

If Γ is ω -clique regular, then $\omega = 2$ or ω is the order of Γ 's largest clique.

Examples of Clique Regular Graphs

æ

< □ > < 同 >

• Line Graphs of Regular Graphs

- Line Graphs of Regular Graphs
- Square Rook Graphs

- Line Graphs of Regular Graphs
- Square Rook Graphs
- Generalized Quadrangle Graphs

- Line Graphs of Regular Graphs
- Square Rook Graphs
- Generalized Quadrangle Graphs
- Orthogonal Array Graphs

- Line Graphs of Regular Graphs
- Square Rook Graphs
- Generalized Quadrangle Graphs
- Orthogonal Array Graphs
- Triangular Graphs

- Line Graphs of Regular Graphs
- Square Rook Graphs
- Generalized Quadrangle Graphs
- Orthogonal Array Graphs
- Triangular Graphs
- Locally Linear Graphs

Theorem

Suppose Γ is ω -clique regular and $L(\Gamma)$ has eigenvalues $\mu_1 \leq \cdots \leq \mu_m$. Then every eigenvalue λ of $C_{\omega}(\Gamma)$ is bounded by

$$rac{\omega}{\omega-1}\left(rac{\mu_1}{2}+1
ight)-\omega\leq\lambda\leqrac{\omega}{\omega-1}\left(rac{\mu_m}{2}+1
ight)-\omega.$$

Theorem

Suppose Γ is ω -clique regular and $L(\Gamma)$ has eigenvalues $\mu_1 \leq \cdots \leq \mu_m$. Then every eigenvalue λ of $C_{\omega}(\Gamma)$ is bounded by

$$\frac{\omega}{\omega-1}\left(\frac{\mu_1}{2}+1\right)-\omega \leq \lambda \leq \frac{\omega}{\omega-1}\left(\frac{\mu_m}{2}+1\right)-\omega.$$

 $\Delta(\Gamma)$ is the largest degree of a vertex in Γ .

Corollary

Suppose Γ is ω -clique regular. Then every eigenvalue λ of $C_{\omega}(\Gamma)$ is bounded by

$$-\omega \leq \lambda \leq \omega \left(rac{\Delta(\Gamma)}{\omega-1}-1
ight).$$

- **(周) (3) (3)**

Theorem

Suppose Γ is ω -clique regular and $L(\Gamma)$ has eigenvalues $\mu_1 \leq \cdots \leq \mu_m$. Then every eigenvalue λ of $C_{\omega}(\Gamma)$ is bounded by

$$\frac{\omega}{\omega-1}\left(\frac{\mu_1}{2}+1\right)-\omega \leq \lambda \leq \frac{\omega}{\omega-1}\left(\frac{\mu_m}{2}+1\right)-\omega.$$

 $\Delta(\Gamma)$ is the largest degree of a vertex in Γ .

Corollary

Suppose Γ is ω -clique regular. Then every eigenvalue λ of $C_{\omega}(\Gamma)$ is bounded by

$$-\omega \leq \lambda \leq \omega \left(\frac{\Delta(\Gamma)}{\omega - 1} - 1
ight).$$

These bounds are the same and tight if Γ is regular.

Spectral Theorems

 $p(\Gamma; \lambda)$ is the characteristic polynomial of the adjacency matrix of Γ .

Theorem

Suppose Γ is ω -clique regular and k-regular on n vertices. Then

$$p(C_{\omega}(\Gamma); \lambda) = (\lambda + \omega)^{\frac{nk}{\omega(\omega-1)}-n} p\left(\Gamma; \lambda + \omega - \frac{k}{\omega-1}\right).$$

Spectral Theorems

 $p(\Gamma; \lambda)$ is the characteristic polynomial of the adjacency matrix of Γ .

Theorem

Suppose Γ is ω -clique regular and k-regular on n vertices. Then

$$p(C_{\omega}(\Gamma);\lambda) = (\lambda + \omega)^{\frac{nk}{\omega(\omega-1)}-n} p\left(\Gamma;\lambda + \omega - \frac{k}{\omega-1}\right)$$

The roots of $p(\Gamma; \lambda)$ are the eigenvalues of Γ .

Spectral Theorems

 $p(\Gamma; \lambda)$ is the characteristic polynomial of the adjacency matrix of Γ .

Theorem

Suppose Γ is ω -clique regular and k-regular on n vertices. Then

$$p(C_{\omega}(\Gamma);\lambda) = (\lambda + \omega)^{\frac{nk}{\omega(\omega-1)}-n} p\left(\Gamma;\lambda + \omega - \frac{k}{\omega-1}\right)$$

The roots of $p(\Gamma; \lambda)$ are the eigenvalues of Γ . So if Γ has spectrum

$$\lambda_1^{\alpha_1},\ldots,\lambda_m^{\alpha_m},k^1$$

then $C_{\omega}(\Gamma)$ has spectrum

$$-\omega^{\frac{nk}{\omega(\omega-1)}-n}, \left(\frac{k}{\omega-1}+\lambda_1-\omega\right)^{\alpha_1}, \ldots, \ \omega\left(\frac{k}{\omega-1}-1\right)^1$$

$$-3^{132}, 0^{44}, 7^{54}, 18^1.$$

$$-3^{132}, 0^{44}, 7^{54}, 18^1.$$

$$-3^{132}, 0^{44}, 7^{54}, 18^1.$$

Conway's 99-graph belongs to a list of graphs called strongly regular graphs. Strongly regular graphs are written as $srg(v, k, \lambda, \mu)$ where

• v vertices

$$-3^{132}, 0^{44}, 7^{54}, 18^1.$$

- v vertices
- k-regular

$$-3^{132}, 0^{44}, 7^{54}, 18^1.$$

- v vertices
- k-regular
- λ is the number of vertices two adjacent vertices share

$$-3^{132}, 0^{44}, 7^{54}, 18^1.$$

- v vertices
- k-regular
- λ is the number of vertices two adjacent vertices share
- μ is the number of vertices two non-adjacent vertices share

$$-3^{132}, 0^{44}, 7^{54}, 18^1.$$

- v vertices
- k-regular
- λ is the number of vertices two adjacent vertices share
- μ is the number of vertices two non-adjacent vertices share Conway's 99-graph is an srg(99,14,1,2).

The spectrum of the 3-clique graph of srg(9,4,1,2) is

 $-3^1, 0^4, 3^1.$

< 47 ▶

Applications

The spectrum of the 3-clique graph of srg(9,4,1,2) is

 $-3^1, 0^4, 3^1.$

The spectrum of the 3-clique graph of srg(243,22,1,2) is

 $-3^{648}, 3^{110}, 12^{132}, 30^1.$

The spectrum of the 3-clique graph of srg(9,4,1,2) is

 $-3^1, 0^4, 3^1.$

The spectrum of the 3-clique graph of srg(243,22,1,2) is

 $-3^{648}, 3^{110}, 12^{132}, 30^1.$

The spectrum of the 3-clique graph of srg(6273,112,1,2) is

 $-3^{110823}, 42^{2992}, 63^{3280}165^1.$

The spectrum of the 3-clique graph of srg(9,4,1,2) is

 $-3^1, 0^4, 3^1.$

The spectrum of the 3-clique graph of srg(243,22,1,2) is

 $-3^{648}, 3^{110}, 12^{132}, 30^1.$

The spectrum of the 3-clique graph of srg(6273,112,1,2) is $-3^{110823}, 42^{2992}, 63^{3280}165^{1}.$

The spectrum of the 3-clique graph of srg(494019,994,1,2) is

 $-3^{81348462}, 462^{243104}, 525^{250914}, 1488^{1}$

- 4 回 ト 4 三 ト - 三 - うくや

Questions?

æ

We are grateful to the Robert E. Tickle foundation for funding our research, and to Dr. Joshua Ducey for mentoring us.