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Abstract. We give simple arithmetic conditions that force the
Sylow p-subgroup of the critical group of a strongly regular graph
to take a specific form. These conditions depend only on the pa-
rameters (v, k, λ, µ) of the strongly regular graph under consider-
ation. We give many examples, including how the theory can be
used to compute the critical group of Conway’s 99-graph and to
give an elementary argument that no srg(28, 9, 0, 4) exists.

1. Introduction

Given a finite, connected graph Γ, one can construct an interesting
graph invariant K(Γ) called the critical group. This is a finite abelian
group that captures non-trivial graph-theoretic information of Γ, such
as the number of spanning trees of Γ; precise definitions are given in
Section 2. This group K(Γ) goes by several other names in the lit-
erature (e.g., the Jacobian group and the sandpile group), reflecting
its appearance in several different areas of mathematics and physics;
see [15] for a good introduction and [12] for a recent survey. Corre-
spondingly, the critical group can be presented and studied by various
methods. These methods include analyzing various chip-firing games
on the vertices of Γ [13], framing the critical group in terms of the
free group on the directed edges of Γ subject to some natural relations
[7], computing (e.g., via unimodular row/column operators) the Smith
normal form of a Laplacian matrix of the graph, and considering the
underlying matroid of Γ [19].
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Despite the variety of tools available, computing the critical group
for an arbitrarily chosen graph can be computationally expensive. In-
stead, one often searches for families of graphs for which specific graph-
theoretic knowledge can be used to streamline the computations in-
volved. From this perspective, the class of strongly regular graphs
(srgs) provides a particularly interesting family. To paraphrase Peter
Cameron, srgs lie on the boundary of the highly structured yet seem-
ingly random. Computations have born witness to this, in that the
critical groups of many subfamilies of srgs have been computed, while
many more remain unknown. Examples of interesting subfamilies of
srgs that have proven to be amenable to critical group computation in-
clude the Paley graphs [5], the n×n rook graphs [9], Grassmann graphs
on lines in projective space [11], and Kneser graphs on 2-element sub-
sets [10] (and the complements of all these). Some very recent progress
deals with polar graphs [17] and the van Lint-Schrijver cyclotomic srgs
[16].

To each srg, one can associate parameters (v, k, λ, µ) describing the
number and valence of the vertices, as well as adjacency information.
The families of srgs listed above are each such that these parameters
vary over the family. An alternative approach for studying srgs is to fix
the parameters (v, k, λ, µ) and explore what can be deduced about an
srg having these as its parameters. It is this approach that is taken here;
see also [14, Section 3] and [1, Section 10] for similar approaches along
these lines. More specifically, we show that the parameter set (v, k, λ, µ)
determines arithmetic conditions that constrain the Sylow p-subgroup
of K(Γ) for any graph Γ that is an srg with these parameters.

The aforementioned Sylow p-subgroup constraints arise through an
extension of the analysis in [2] of the p-ranks of the Laplacian matrix
L. The need for such an extension stems from the observation that,
though knowing the critical group of Γ gives you the p-rank of L for
any prime p, the converse need not hold. The smallest counterexample
is the 4 × 4 rook graph and the Shrikhande graph. These are both
strongly regular graphs with parameters (16, 6, 2, 2) and both of their
Laplacian matrices have 2-rank equal to 6. However the critical group
of the rook graph is

(Z/8Z)5 ⊕ (Z/32Z)4

while the Shrikhande graph has critical group

Z/2Z⊕ (Z/8Z)2 ⊕ (Z/16Z)2 ⊕ (Z/32Z)4 .

Nevertheless, these two critical groups can be distinguished by consid-
ering the Sylow 2-subgroup of each (which happens to recover the full
critical group, in both cases).
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The approach we take here may be of limited use in distinguishing
non-isomorphic srgs with same parameter set. However, as we demon-
strate in Example 3.7, our approach may be able to be used to show
that there cannot exist srgs with certain given parameter sets.

2. Preliminaries

2.1. Strongly Regular Graphs. Let Γ = Γ(V,E) denote a con-
nected, finite undirected graph, as in the introduction. If every vertex
in V is adjacent to k other vertices, we say that Γ is k-regular. Fix an
ordering of the vertices. Then the adjacency matrix A = (ai,j) of Γ is
defined

ai,j =

{
1, if vertex i and vertex j are adjacent

0, otherwise.

Let D denote the |V| × |V| diagonal matrix with (i, i)-entry equal to
the degree of vertex i. The Laplacian matrix of Γ is L = D − A. We
will use I and J to respectively denote the identity matrix and all-ones
matrix of the appropriate size. Note that when Γ is k-regular, we have
L = kI − A.

A graph Γ is strongly regular with parameters (v, k, λ, µ) if:

• Γ has v vertices,
• Γ is k-regular,
• any two adjacent vertices have exactly λ common neighbors,

and
• any two non-adjacent vertices have exactly µ common neigh-

bors.

We sometimes say that Γ is an srg(v, k, λ, µ).
Here we recall several formulas and standard facts about the Lapla-

cian L of an srg(v, k, λ, µ). It is not hard to see that 0 is an eigenvalue
of L with multiplicity one (the all-ones vector spans the eigenspace).
In addition to this, L has two other distinct eigenvalues that we de-
note by r and s. These can be computed directly from the parameters
(v, k, λ, µ), and can be shown to satisfy the quadratic matrix equation

(2.1) (L− rI)(L− sI) = µJ.

Example 3.7 in the next section shows how (2.1) can be a powerful
tool for probing a particular graph. We will write f and g for the
multiplicities of r and s, respectively.

Of great interest is the existence question for strongly regular graphs.
The Handbook of Combinatorial Designs [6, Chapter 11] has a large
list of feasible parameter sets, along with adjacency spectra and known
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graph constructions. An up to date version of this list, and with
more information, is available at Andries Brouwer’s website [3]. On
Brouwer’s list, the graph parameters are color coded green for those
for which examples exist, red for those for which it is known that no
graph exists, and yellow if the question is not yet decided. Excluded
from these lists are the “boring” strongly regular graphs, which are the
disjoint unions of complete graphs or the complements of these. The
disjoint unions of complete graphs are excluded for us as well, by our
connectedness assumption.

2.2. Critical Groups. The Laplacian L can be viewed as defining a
homomorphism of free abelian groups L : ZV → ZV. Since L has a
kernel of rank one, it follows that the cokernel has (free) rank one as
well. In particular, we have a decomposition of the form

ZV/ Im(L) ∼= K(Γ)⊕ Z,

with K(Γ) a finite abelian group called the critical group of Γ. (If
Γ were not connected there would be more copies of Z.) The order
of K(Γ) is the number of spanning trees of the graph. Isomorphic
graphs have isomorphic critical groups, so the critical group is a graph
invariant.

From the matrix-tree theorem [4, Prop. 1.3.4], we have that the
order of the critical group is the product of the nonzero Laplacian
eigenvalues, divided by the number of vertices. In the case that Γ is an
srg(v, k, λ, µ), this becomes the identity

|K(Γ)| = rf · sg

v
.

Moreover, one can use Equation 2.1 to show that the product rs kills
K(Γ). (It is a remarkable fact, proved by Lorenzini [14, Prop. 2.6],
that the product of the distinct nonzero Laplacian eigenvalues kills the
critical group of any graph.)

Let p be a prime and write Kp(Γ) for the Sylow p-subgroup of K(Γ).
By the structure theorem for finitely generated abelian groups, to de-
termine K(Γ), it suffices to determine Kp(Γ) for each p dividing the
order of K(Γ). A popular approach for identifying Kp(Γ) is to make
use of the Smith normal form of L, which we review now: There is a
unique integer diagonal matrix S = diag(s1, . . . , sv) with (i) nonnega-
tive diagonal entries si satisfying si|si+1 for 1 ≤ i < v, and (ii) so that
there exist unimodular matrices U, V satisfying

(2.2) ULV = S.
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Then S is the Smith normal form of L and the si are the invariant
factors. The name is appropriate since the cokernel of L has invariant
factor decomposition

(2.3) coker(L) ∼= Z/s1Z⊕ · · · ⊕ Z/svZ.

It follows from our connectedness assumption that sv = 0, while si 6= 0
for all 1 ≤ i < v; in particular, the critical group can be read off from
(2.3) by taking the first v − 1 terms.

Example 2.1. Let Γ denote the Petersen graph. There is an ordering
of the vertices so that the Laplacian matrix for Γ is

L =



3 −1 −1 −1
−1 3 −1 −1

−1 3 −1 −1
−1 3 −1 −1

−1 −1 3 −1
−1 3 −1 −1

−1 3 −1 −1
−1 −1 3 −1

−1 −1 −1 3
−1 −1 −1 3


.

This matrix has Smith normal form

diag(1, 1, 1, 1, 1, 2, 10, 10, 10, 0)

which shows that K(Γ) ∼= Z/2Z⊕ (Z/10Z)3. Equivalently, the critical
group can be written relative to its elementary divisor decomposition
as K(Γ) ∼= (Z/2Z)4 ⊕ (Z/5Z)3, which is easily read off by looking
at the invariant factors. The two summands appearing in this latter
description are the Sylow 2- and 5-subgroups of K(Γ), respectively.

We will repeatedly use the following notation: For a fixed graph Γ
and prime p, we define ei to be the number of invariant factors of L
that are divisible by pi but not divisible by pi+1. Notice that e0 is
the p-rank of L (the rank when viewed as a matrix over the field of p
elements). For i > 0, the integer ei is the multiplicity of Z/piZ in the
elementary divisor decomposition of the critical group. We will refer to
the ei as the (p-elementary divisor) multiplicities, and note that they
uniquely determine Kp(Γ).

To compute these multiplicities we can use the following construc-
tion. For fixed p and i ≥ 0, define

Mi =
{
x ∈ ZV |Lx is divisible by pi

}



6 DUCEY ET AL.

and
Ni =

{
p−iLx |x ∈Mi

}
.

We use bar notation to denote entry-wise reduction modulo p of vec-
tors and matrices. By considering the Z-bases of ZV defined by the
unimodular matrices U, V in Equation 2.2 one sees that

dimpMi = 1 +
∑
j≥i

ej(2.4)

dimpNi =
∑
0≤j≤i

ej.(2.5)

For a reference, see [4, Prop. 13.8.2, 13.8.3].
Our main tool is the following lemma, which relates the spectrum of

L to the critical group K(Γ). Recall that pi ‖ n means that pi | n but
pi+1 - n.

Lemma 2.1. Let Γ be a connected graph, fix a prime p, and let ei be
the multiplicity of pi as an elementary divisor of the Laplacian L. Let
η be an eigenvalue of L with multiplicity m, and assume that η is an
integer.

• If pi | η, then m ≤ 1 +
∑

j≥i ej.

• If pi ‖ η, then m ≤
∑

0≤j≤i ej.

Proof. Let Vη denote the η-eigenspace of L, when viewed as a matrix
over the rational numbers Q. The intersection Vη ∩ ZV is a pure Z-

submodule of ZV of rank m, and so dimp Vη ∩ ZV = m. Since pi divides

η, we have Vη ∩ ZV ⊆Mi and hence Vη ∩ ZV ⊆Mi. It follows that

m = dimp Vη ∩ ZV ≤ dimpMi = 1 +
∑
j≥i

ej.

For the second claim, write η = xpi for some integer x. Then Vη∩ZV ⊆
Mi implies x(Vη ∩ ZV) ⊆ Ni, and so x(Vη ∩ ZV) ⊆ Ni. The assumption
that pi ‖ η implies that x is invertible mod p. Thus

m = dimp Vη ∩ ZV = dimp x(Vη ∩ ZV) ≤ dimpNi =
∑
0≤j≤i

ej.

�

3. Sylow p-subgroup structure

Throughout this section, Γ denotes a connected srg(v, k, λ, µ) with
Laplacian matrix L. As we have discussed, L has two non-zero eigen-
values r and s, and we denote by f and g their respective multiplicities.
We assume that r and s are integers, which is the case for any srg unless
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it is a conference graph [4, Theorem 9.1.3]. We fix a prime p dividing
|K(Γ)| and we write Kp(Γ) for the Sylow p-subgroup of K(Γ). Recall
that ei denotes the multiplicity of pi as an elementary divisor of L; in
particular, e0 is the p-rank of L.

Theorem 3.1. Suppose p - r, and let a, γ be the (unique) nonnegative
integers so that pa ‖ s and pγ ‖ v. Then

Kp(Γ) ∼= Z/pa−γZ⊕ (Z/paZ)g−1 .

The same statement holds if the roles of r and s are interchanged, and
the roles of f and g are interchanged.

Proof. We have assumed that p divides |K(Γ)| = rfsg/v, so the hy-
potheses imply that a ≥ 1. Similarly, since rs kills the critical group
and pa ‖ rs we have

Kp(Γ) ∼= (Z/pZ)e1 ⊕
(
Z/p2Z

)e2 ⊕ · · · ⊕ (Z/paZ)ea .

From the Smith normal form of L, we see that e0 +e1 + · · ·+ea+1 = v
is the number of diagonal entries in the Smith normal form. Similarly,
by diagonalizing L, we see f + g + 1 = v. This gives

(3.1) e0 + e1 + · · ·+ ea = f + g.

The order of Kp(Γ) we get from the matrix-tree theorem:

|Kp(Γ)| = (pa)g

pγ
.

This order can be alternatively expressed in terms of the elementary
divisor multiplicities, from which we obtain

(3.2) e1 + 2e2 + · · ·+ aea = ag − γ.

Applying Lemma 2.1 to the s-eigenspace of L we have

g ≤ ea + 1.

In fact, we always have

(3.3) g − 1 ≤ ea ≤ g.

For suppose that ea > g. Then aea > ag ≥ ag − γ ≥ aea, where the
last inequality follows from Equation 3.2. This is impossible therefore
the bound 3.3 holds.

Next we will see that the p-rank e0 must equal f or f + 1. In the
case that ea = g, Equation 3.1 gives

e0 + · · ·+ ea−1 = f



8 DUCEY ET AL.

and so e0 ≤ f (if a = 1, then this case is impossible). By Lemma 2.1
applied to the r-eigenspace, we have f ≤ dimN0 = e0. Thus e0 = f
and we see ei = 0 for i 6= 0, a by Equation 3.1. So in this case

Kp(Γ) ∼= (Z/paZ)g ,

which agrees with the statement of the theorem since Equation 3.2
forces γ to be zero.

Now consider the case ea = g − 1. From Equation 3.1 we get

e0 + · · ·+ ea−1 = f + 1

and so e0 ≤ f + 1. As before we also have f ≤ e0. It turns out that
both e0 = f and e0 = f + 1 are possible (more about this in the next
corollary). In the case that e0 = f + 1, we are forced to have ei = 0 for
i 6= 0, a and we get

Kp(Γ) ∼= (Z/paZ)g−1

which agrees with the statement of the theorem, since now Equation
3.2 forces γ = a.

Finally, if ea = g − 1 and e0 = f , we see that Equation 3.1 becomes

e1 + · · ·+ ea−1 = 1.

This means that there is some i 6= 0, a with ei = 1 and ej = 0 for
j 6= 0, i, a. We can identify the distinguished subscript i by looking
carefully at Equation 3.2:

e1 + 2e2 + · · ·+ (a− 1)ea−1 = ag − γ − aea
= ag − γ − a(g − 1)

= a− γ.

Thus we see that i = a− γ. We have shown in this case that

Kp(Γ) ∼= Z/pa−γZ⊕ (Z/paZ)g−1 ,

as desired. �

The statement of Theorem 3.1 is simple, but as the proof shows,
the distinguished summand Z/pa−γZ can be absorbed into the others
(when γ = 0) or can disappear entirely (when γ = a). We also saw
that γ is forced by the values of ea and e0. In [2, Section 3], the authors
calculate the p-ranks of matrices in a class that includes our L (under
the hypotheses of Theorem 3.1) and they show that e0 is determined
by whether or not p divides µ. We record this information in case it is
of organizational value to the reader.
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Corollary 3.1. Suppose p - r and let a, γ be the (unique) nonnegative
integers so that pa ‖ s and pγ ‖ v. Then exactly one of the following
hold:

(1) γ = 0, p | µ, e0 = f and K(Γ) ∼= (Z/paZ)g,
(2) 0 < γ < a, p | µ, e0 = f and K(Γ) ∼= Z/pa−γZ⊕ (Z/paZ)g−1,
(3) γ = a, p - µ, e0 = f + 1 and K(Γ) ∼= (Z/paZ)g−1.

The same statement holds if the roles of r and s are interchanged, and
the roles of f and g are interchanged.

Let’s apply these theorems with a few examples.

Example 3.1. It is unknown whether there exists a strongly regular
graph Γ with parameters (190, 84, 33, 40). If such a graph exists then
its nonzero Laplacian eigenvalues and multiplicities would have to be
rf = 80133 and sg = 9556 (we are writing the multiplicities as exponents,
as is custom in much of the literature). Since r = 16·5 and s = 5·19, we
can use the theorem above to compute the Sylow 2- and 19-subgroups
of K(Γ) (though it is easy to see that K19(Γ) is elementary abelian).
Let’s compute K2(Γ):

K2(Γ) ∼= Z/24−1Z⊕
(
Z/24Z

)133−1
= Z/8Z⊕ (Z/16Z)132 .

Example 3.2. Conway’s 99-graph problem asks whether there exists a
strongly regular graph Γ with parameters (99, 14, 1, 2). The nonzero
Laplacian eigenvalues and multiplicities of such a graph would have to
be rf = 1154 and sg = 1844. Since r and s are relatively prime, we can
apply our theorems to obtain the complete critical group. We find

K(Γ) ∼= (Z/11Z)53 ⊕ (Z/2Z)44 ⊕ (Z/9Z)43 .

When p divides both r and s, it can occur that the critical group
depends on the structure of the graph. Our next theorem shows that,
in the simplest such case, this dependence is encoded entirely in the
value of e0.

Theorem 3.2. Suppose p ‖ r and p ‖ s, and let γ be the (unique)
nonnegative integer so that pγ ‖ v. Then

Kp(Γ) ∼= (Z/pZ)f+g+γ−2e0 ⊕
(
Z/p2Z

)e0−γ .
Proof. The matrix-tree theorem gives us |Kp(Γ)| = pf+g−γ, and since
p2 ‖ rs we have

Kp(Γ) ∼= (Z/pZ)e1 ⊕
(
Z/p2Z

)e2 .
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In terms of the elementary divisor multiplicities, this can be expressed
as

e0 + e1 + e2 = f + g

e1 + 2e2 = f + g − γ.

Thus knowing any one of e0, e1, e2 determines the others. Taking e0 to
be free we compute

e1 = f + g + γ − 2e0

e2 = e0 − γ

and the theorem is proved. �

Example 3.3. Consider the parameter set (25, 12, 5, 6). We have that
rf = 1012 and sg = 1512, so the prime p = 5 is of particular interest.
This is, in fact, the first parameter set for which the hypotheses of
Theorem 3.2 are satisfied and for which there is more than one graph
with these parameters. There are exactly 15 strongly regular graphs
with these parameters and adjacency matrices for them can be found at
Ted Spence’s website [18]. We let Γ1 denote the graph having adjacency
matrix A given by the first matrix on Spence’s list, which we reproduce
here for convenience:

A =



0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0
1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0

1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1
1 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 1

1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1

1 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0
1 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 1

1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 0 1 0
1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 1 0 0

0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 0 1 1 0 0 1

0 1 0 1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 0 1 0
0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0

0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 0 1 1 1 0

0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1
0 1 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 0 0 1 0 1

0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0 1 1 0 1 1 1 0 0

0 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 0 1
0 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 1

0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0

0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1
0 0 1 0 0 1 1 1 1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 1 0



.
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For another srg(25, 12, 5, 6), we let Γ2 be the Paley graph on 25
vertices. Using SAGE, we compute:

K5(Γ1) ∼= (Z/5Z)2 ⊕ (Z/25Z)10 (so e0 = 12)

and

K5(Γ2) ∼= (Z/5Z)8 ⊕ (Z/25Z)7 (so e0 = 9).

Our Theorem 3.2 predicts

K5(Γ) ∼= (Z/5Z)26−2e0 ⊕ (Z/25Z)e0−2 ,

which agrees with these computations.

Example 3.4. It is unknown whether there exists a strongly regular
graph Γ with parameters (88, 27, 6, 9). By the results above, the critical
group would be specified uniquely by 3-rank. Indeed, if such a graph
existed, we would have rf = 2455 and sg = 3332. Theorem 3.1 specifies
the Sylow 2- and 11-subgroups, so the only mystery in knowing K(Γ)
is knowing K3(Γ), which is given in terms of the 3-rank by Theorem
3.2:

K3(Γ) ∼= (Z/3Z)87−2e0 ⊕ (Z/9Z)e0 .

To summarize thus far: under the hypotheses of Theorem 3.1 the
structure of Kp(Γ) is forced, and under the hypothesis of Theorem 3.2
the p-rank of L determines Kp(Γ). Under the hypotheses of the next
theorem, the p-rank of L determines Kp(Γ) to within two possibilities.

Theorem 3.3. Suppose p ‖ r and p2 ‖ s, and let γ be the (unique)
nonnegative integer so that pγ ‖ v. Then either

Kp(Γ) ∼= (Z/pZ)f−e0 ⊕
(
Z/p2Z

)g+γ−e0 ⊕ (Z/p3Z)e0−γ
or

Kp(Γ) ∼= (Z/pZ)f+1−e0 ⊕
(
Z/p2Z

)g+γ−2−e0 ⊕
(
Z/p3Z

)e0−γ+1
.

The same statement holds if the roles of r and s are interchanged, and
the roles of f and g are interchanged.

Proof. Since p ‖ r and p2 ‖ s, we have p3 ‖ rs and so

Kp(Γ) ∼= (Z/pZ)e1 ⊕
(
Z/p2Z

)e2 ⊕ (Z/p3Z)e3 .
From this general form and the matrix-tree theorem we get the equa-
tions

e0 + e1 + e2 + e3 = f + g

e1 + 2e2 + 3e3 = f + 2g − γ.(3.4)
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Applying Lemma 2.1, we have the bounds

f ≤ dimN1 = e0 + e1

g ≤ dimM2 = e2 + e3 + 1.

The left sides of the above inequalities sum to f + g, while the right
sides sum to f + g + 1. Thus we have our two possibilities:

f = e0 + e1 and g + 1 = e2 + e3 + 1

or

f + 1 = e0 + e1 and g = e2 + e3 + 1.

In either case, with these two equations and Equation 3.4 we see that
knowing one of e0, e1, e2, e3 forces the values of the others. Our theorem
follows. �

Example 3.5. The famous missing Moore graph would have to be an
srg(3250, 57, 0, 1), if it exists. From these parameters, we have rf =
501729 and sg = 651520, and the interesting prime is p = 5. From
Theorem 3.3, we get

K5(Γ) ∼= (Z/5Z)1520−e0 ⊕ (Z/25Z)1732−e0 ⊕ (Z/125Z)e0−3

or

K5(Γ) ∼= (Z/5Z)1521−e0 ⊕ (Z/25Z)1730−e0 ⊕ (Z/125Z)e0−2 .

(Note γ = 3.) This example first appeared in [8].

Example 3.6. Let Γ1 denote the complement of any one of the three
Chang graphs. Let Γ2 denote the Kneser graph on the 2-subsets of an
8-element set (so adjacent when disjoint). Both of these graphs are
examples of an srg(28, 15, 6, 10). We have rf = 1420 and sg = 207, and
so Theorem 3.3 applies to the prime p = 2 (note γ = 2).

According to SAGE, the Laplacian of Γ1 has 2-rank equal to 8 and

K2(Γ1) ∼= (Z/2Z)12 ⊕ Z/4Z⊕ (Z/8Z)6 .

Similarly, for Γ2, the computer tells us that the Laplacian 2-rank is 7
and

K2(Γ2) ∼= (Z/2Z)14 ⊕ (Z/8Z)6 .

This illustrates that both of the cases described in Theorem 3.3 can
occur.

Remark. Checking many strongly regular graphs on up to 36 vertices
(we did not check all of the 32548 graphs with parameters (36, 15, 6, 6))
the authors have not found a pair of graphs with the same parameters,
the same p-rank, and demonstrating the separate cases of Theorem 3.3
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(note the 2-ranks are different in Example 3.6). So maybe, even under
the hypotheses of Theorem 3.3, the p-rank does determine Kp(Γ).

Our final example applies the theory to give an elementary proof
that no srg(28, 9, 0, 4) exists.

Example 3.7. Suppose that a strongly regular graph with parameters
(28, 9, 0, 4) exists. Denote it by Γ, and let L be its Laplacian, which we
may view as a matrix by ordering the vertices. We must have rf = 821

and sg = 146. The matrix equation 2.1 reads

(3.5) (L− 14I)(L− 8I) = 4J,

where J is the matrix of all-ones.
To motivate our choices below, we note that this graph is red on

Brouwer’s list. We know it does not actually exist since it contradicts
the ‘absolute bound’ 28 ≤ 6(6 + 3)/2 (it also contradicts one of the
Krein inequalities). If we are looking for a Smith normal form or p-
rank argument, this suggests that we might look at the prime 7, which
divides the eigenvalue with multiplicity that is too small according to
this bound.

Returning to our argument, let F = Z/7Z be the field of 7 elements,
and write L for the matrix L with entries viewed as coming from F .
From Corollary 3.1, the rank of L is 22, and so the dimension of kerL
is 6. We can thus arrive at a contradiction if we exhibit more than 6
independent vectors in kerL.

Fix two adjacent vertices, call them x and y. Let X denote the 8
vertices other than y that are adjacent to x, and let Y denote the 8
vertices other than x adjacent to y. Since λ = 0, the sets X and Y
have empty intersection. Let Z consist of the ten other vertices not in
{x}∪{y}∪X∪Y . Let z be a vertex in Z. Since µ = 4, four edges from
z must enter X and four edges must enter Y . This leaves one edge to
connect z to another vertex in Z. It follows that the induced subgraph
on Z is five disjoint copies of P2, the path graph on two vertices (i.e.,
an edge between two vertices). Adding in vertices x and y, the induced
subgraph is then six copies of P2.

Each of these copies of P2 can be used to build a vector in kerL. The
matrix equation 3.5 shows us how: Working modulo 7, the equation
reads: L(L−I) = 4J. Thus L maps any column of L−I to 41, where 1
is the vector of all-ones. Thus, the difference of any two columns of the
L−I will be in kerL. To be concrete, supposed we built our Laplacian
matrix by ordering the vertices as follows: x, y, then the vertices in
Z, then the vertices in X, then the vertices in Y . Take the column of
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L − I that is indexed by x and the column that is indexed by y and
subtract them. The result, still working modulo 7, is



2
−2
0
0
0
0
0
0
0
0
0
0
−1
−1
−1
−1
−1
−1
−1
−1
1
1
1
1
1
1
1
1



Suppose further that we ordered the vertices so that the next two
vertices (which are in Z) are adjacent, and the two vertices after that
(still in Z) are adjacent, etc. Then as we just considered the difference
between the first and second columns of L − I, also consider the dif-
ference between the third and fourth, fifth and sixth, . . ., eleventh and
twelfth. If we throw all of these six columns into a matrix we will see
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

2 0 0 0 0 0
−2 0 0 0 0 0
0 2 0 0 0 0
0 −2 0 0 0 0
0 0 2 0 0 0
0 0 −2 0 0 0
0 0 0 2 0 0
0 0 0 −2 0 0
0 0 0 0 2 0
0 0 0 0 −2 0
0 0 0 0 0 2
0 0 0 0 0 −2
−1 ?
−1 ?
−1 ?
−1 ?
−1 ?
−1 ?
−1 ?
−1 ?
1 ?
1 ?
1 ?
1 ?
1 ?
1 ?
1 ?
1 ?


Clearly these six columns are independent and so form a basis for

kerL. But don’t forget that 1 is also in kerL, and (as is not hard
to check) is not an F -linear combination of these six vectors. Thus
we have seven vectors in the kernel, which is a contradiction to our
dimension count above.

In the example above, all that was really used was the 7-rank of L
(which can be obtained from [2]); we did not need the full information
given by the critical group. Perhaps a more sophisticated use of these
strategies can employ the other information in the Smith normal form
to eliminate further parameter sets.
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