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Some History

A. Grothendieck (1957): Every holo-
morphic bundle over CP1 splits as a
sum of line bundles.

Y.-G. Oh (1996): Every holomorphic
bundle pair over D ⊆ C splits as a
sum of line bundle pairs.

C. Woodward (2020): Is there a sim-
ilar result for strips R× [0, 1]?

David L. Duncan (JMU) Bundle splittings on ∂-punctured disks Brandeis - October 13, 2020 1 / 21



Some History

A. Grothendieck (1957): Every holo-
morphic bundle over CP1 splits as a
sum of line bundles.

Y.-G. Oh (1996): Every holomorphic
bundle pair over D ⊆ C splits as a
sum of line bundle pairs.

C. Woodward (2020): Is there a sim-
ilar result for strips R× [0, 1]?

David L. Duncan (JMU) Bundle splittings on ∂-punctured disks Brandeis - October 13, 2020 1 / 21



Some History

A. Grothendieck (1957): Every holo-
morphic bundle over CP1 splits as a
sum of line bundles.

Y.-G. Oh (1996): Every holomorphic
bundle pair over D ⊆ C splits as a
sum of line bundle pairs.

C. Woodward (2020): Is there a sim-
ilar result for strips R× [0, 1]?

David L. Duncan (JMU) Bundle splittings on ∂-punctured disks Brandeis - October 13, 2020 1 / 21



Some History

A. Grothendieck (1957): Every holo-
morphic bundle over CP1 splits as a
sum of line bundles.

Y.-G. Oh (1996): Every holomorphic
bundle pair over D ⊆ C splits as a
sum of line bundle pairs.

C. Woodward (2020): Is there a sim-
ilar result for strips R× [0, 1]?

David L. Duncan (JMU) Bundle splittings on ∂-punctured disks Brandeis - October 13, 2020 1 / 21



Let’s formalize this:

Σ = a compact Riemann surface

Σ = Σ\ {p1, . . . , pJ} a surface with punctures

Σ Σ

•p1

•
p2•

p3

Example: Σ = R× [0, 1] ∼= D\ {−1, 1}

∼= ••
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Let’s formalize this:

Let E → Σ be a (smooth) complex vector bundle of C-rank r .

Let E be a holomorphic structure on E . Equivalently, fix a
Cauchy–Riemann operator

∂E : Ω0(Σ,E )→ Ω0,1(Σ,E ).

Let R ⊆ E |∂Σ be a totally real subbundle:

R-rank(R) = r iR ∩ R = {0} .

This is a bundle version of Rr ⊆ Cr .

Then (E ,R) is called a (holomorphic) bundle pair over Σ.
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Let’s formalize this:

Example:

Let L1, . . . ,Lr be holomorphic C-line bundles over Σ. Set

E := L1 ⊕ . . .⊕ Lr .

For each i , let λi ⊆ Li |∂Σ be a R-line subbundle. Set

R := λ1 ⊕ . . .⊕ λr .

Call bundle pairs (E ,R) of this type totally split.
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Let’s formalize this:

There is a suitable notion of “isomorphism” for bundle pairs.

(Homework:
Guess what it is.)

Chris’ question: Assume Σ = R× [0, 1]. Is every holomorphic bundle pair
on Σ isomorphic to one that is totally split?

What I think: Yes (at least if R is transverse at the boundary punctures)

In fact, I think this holds for any simply-connected Σ:

•

•
•

•

•
•

•
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Proof Strategy:

Fix a C∞-bundle E → Σ and set

C(E ) := {E | E is a holo. structures on E}
Aut(E ) := {bundle automorphisms of E} .

Equivalence of holomorphic bundles is determined by the action of the
group Aut(E ) on C(E ). Fix a metric and set

A(E ) := {A | A is a U(r)-connection on E} .

A connection A is determined by its covariant derivative

dA : Ω0(Σ,E )→ Ω1(Σ,E ).

There is a correspondence

A(E )←→ C(E )

given by A 7→ ∂A := (dA)0,1.
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Proof Strategy:

It follows that the group Aut(E ) acts on A(E ).

Upshot of working with connections: There is a nice function floating
around. This is the Yang–Mills functional

YM : A(E )→ R, A 7→ 1

2
‖FA‖2

L2 .

The critical points of YM are called Yang–Mills connections. These
satisfy

d∗AFA = 0.

Fun fact: The gradient of YM is tangent to the orbits of Aut(E ) so any
two connections on a flow line of YM correspond to equivalent
holomorphic bundles.
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Proof Idea:
Here is what we expect:

The Yang–Mills heat flow should converge at infinite time to a
Yang–Mills connection A∞.

C(E ) A(E ) E A0(E)

C(E ) A(E ) E(A∞) A∞

YM flow

We should have E ∼= E(A∞).

If Σ is simply-connected, then the holonomy group of A∞ is abelian
(contained in a maximal torus in U(r)).

This should imply E(A∞) ∼= Λ1 ⊕ . . .⊕ Λr .

Goal for the rest of the talk: Justify this “expectation”.

1 Give a proof of Grothendieck’s theorem along these lines.
2 Give a proof of Oh’s theorem along these lines.
3 Discuss progress made in the case where Σ has punctures.
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Proof of Grothendieck’s theorem: Σ = CP1

For now, assume Σ is closed (no boundary and no punctures). Let
E → Σ be a holomorphic bundle, and A0 = A0(E) the associated
U(r)-connection.

The Yang–Mills heat flow starting at A0 is a path A = A(τ) of
connections satisfying

∂τA = −d∗AFA, A(0) = A0.

Theorem (Råde (1992))

The Yang–Mills heat flow A(τ) starting at A0 exists and is unique for all
time.

At infinite time it converges in all derivatives to a Yang–Mills
connection A∞ on E .
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Proof of Grothendieck’s theorem: Σ = CP1

Theorem (Råde (1992))

The Yang–Mills heat flow A(τ) starting at A0 exists and is unique for all
time. At infinite time it converges in all derivatives to a Yang–Mills
connection A∞ on E .

Theorem (Atiyah–Bott (1980), Kempf–Ness (1982), Kirwan (1983),
Donaldson (1983))

There is a path g : [0,∞]→ Aut(E ) so that A(τ) = g(τ)∗A0.

Corollary

E(A∞) = g(∞)∗E
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Proof of Grothendieck’s theorem: Σ = CP1

Corollary

E(A∞) = g(∞)∗E

Theorem (Atiyah–Bott (1980))

If Σ is simply-connected (so Σ = CP1), then the holonomy group of any
Yang–Mills connection A∞ is contained in a maximal torus.

Corollary

If Σ is simply-connected, then E(A∞) ∼= Λ1 ⊕ . . .⊕ Λr for some
holomorphic line bundles Λ1, . . . ,Λr .

Grothendieck’s result follows from these two corollaries.
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Proof of Oh’s theorem: Σ = D

For now, assume Σ is compact with ∂Σ 6= ∅. Let (E ,R) be a holomorphic
bundle pair, and A0 = A0(E) the U(r)-connection associated to E .

Idea: Use a reflection principle.

Let D(Σ) = Σ ∪Id Σop be the double of Σ.
Σ D(Σ)

The double has a natural Z2-action: ==
}} Z2
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Proof of Oh’s theorem: Σ = D

To do a similar thing for E :

The totally real subbundle R determines an
anti-holomorphic involution τ on E |∂Σ.

Define D(E ) := E ∪τ E op. This is a complex vector bundle over
D(Σ).

There is a “doubling map”

A∂(E )→ A(D(E )), A 7→ D(A),

where A∂(E ) are the elements of A(E ) with suitable boundary
conditions.

The image of the doubling map is the set of connections in A(D(E ))
that are fixed under the Z2-action.

By performing a bundle isomorphism, it can be arranged so that
A0(E) ∈ A∂(E ).
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Proof of Oh’s theorem: Σ = D

Now use the same proof from before:

Use the heat flow to find a bundle automorphism g with g∗D(A0)
Yang–Mills.

If Σ is simply-connected (so Σ = D), then D(Σ) is simply-connected.

This implies g∗D(A0) has holonomy group contained in a maximal
torus.

Then g∗D(E) is totally split.

Everything is equivariant, so g = D(g∞) for some bundle
automorphism g∞ on Σ.

Then g∗∞E is totally split because its double D(g∗∞E) = g∗D(E) is
totally split.
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How to handle punctures:

How should we handle the non-compactness?

We want a space of connections that is large enough to include the
appropriate Yang–Mills connections, but not so big that the elements are
not well-behaved analytically.

Idea: Use singular connections.

Fix a metric on Σ that is flat near the punctures. Such a metric extends
over Σ, so Σ has finite volume. This implies all solutions of d∗AFA = 0
have finite Yang–Mills value.

Consider connections that have fixed asymptotic holonomy around the
punctures. These generally do not extend over the punctures.

Σ

•
••
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How to handle punctures:
Singular connections turn out to be just right, from an analytic perspective
and a geometric one.

Geometrically:

asymptotic holonomy
at a boundary puncture

←→ a path in the Grassmannian
of totally real subbundles of Cr .

Analytically: We would need a version of the Råde’s theorem, but for
singular connections. This requires studying the operator
∂τ + dAd

∗
A + d∗AdA. The operator dAd

∗
A + d∗AdA is self-adjoint when R

is transverse.

Also, many other analytic details are known (e.g., the expected
Sobolev embedding and compactness results hold). These are due to
Sibner–Sibner (1988), Kronheimer–Mrowka (1992), Råde (1995),
Daskalopolous–Wentworth (1998), and others.
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How to handle punctures:

Define A∂(E ) to be the set of connections on E → Σ satisfying the
above-discussed boundary and asymptotic holonomy conditions.

Theorem (D. (2020))

Assume R is transverse and fix A0 ∈ A∂(E ).

There is a solution A : [0,∞)→ A∂(E ) to the Yang–Mills heat flow,
with A(0) = A0.

There is a path g of bundle automorphisms of E so that
A(τ) = g(τ)∗A0 for all τ ≥ 0.

This bundle automorphism satisfies the appropriate boundary and
asymptotic conditions to imply that (E(A(τ)),R) is isomorphic to
(E(A0),R) (cf. the homework from the beginning of the talk).
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What remains to be done?

Explore the behavior as τ →∞. Does A(τ) converge to a Yang–Mills
connection? Does the path g(τ) converge?

As before, in the simply-connected case the Yang–Mills bundles totally
split. However, the isomorphism realizing this splitting needs to be
satisfy the appropriate boundary and asymptotic conditions. Does it?

. . . [work in progress]
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Example: Σ = D\ {0}
Assume E = Σ× C.

We can write

dA = d + Ardr + Aθdθ

for Ar ,Aθ : S1 × (0, 1]→ iR.Then A is Yang–Mills if and only if

∂2
r Aθ − r−1∂rAθ − ∂r∂θAr + r−1∂θAr = 0

∂2
θAr − ∂r∂θAθ = 0.

Fourier series: Ar (r , θ) =
∑
k

Ar ,k(r)e ikθ, Aθ(r , θ) =
∑
k

Aθ,k(r)e ikθ.

Then A is Yang–Mills if and only if

Aθ,0(r) =
1

2
cθ,0r

2 + hθ,0, Aθ,k(r) = hθ,k + ik

∫ r

r0

Ar ,kdr , for k 6= 0

for some constants hθ,k , cθ,0 (the functions Ar ,k can be arbitrarily
specified).

•
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Example: Σ = D\ {0}
The connection A is Yang–Mills if and only if

Aθ,0(r) =
1

2
cθ,0r

2 + hθ,0, Aθ,k(r) = hθ,k + ik

∫ r

r0

Ar ,kdr , for k 6= 0

for some constants hθ,k , cθ,0.

These constants have geometric meaning:

cθ,0 = ∗FA
The asymptotic holonomy of A around the puncture is e−2πhθ,0 .
The holonomy around the boundary loop is equal to −πcθ,0 − 2πhθ,0.
On the bundle side, this holonomy recovers the equals the Maslov
index µ(R) (times i/2), and so

µ(R) = 2πi(cθ,0 + 2hθ,0).

The remaining data (hθ,k and Ar ,k) are constrained by the choice of
R.

•
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Thank you for your attention!
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