Bundle splittings on boundary-punctured disks

David L. Duncan

James Madison University

Brandeis - October 13, 2020

E 6 4 E 6

э

1/21

3

<ロト <問ト < 目ト < 目ト

A. Grothendieck (1957): Every holomorphic bundle over $\mathbb{C}P^1$ splits as a sum of line bundles.

э

A. Grothendieck (1957): Every holomorphic bundle over $\mathbb{C}P^1$ splits as a sum of line bundles.

Y.-G. Oh (1996): Every holomorphic bundle pair over $\mathbb{D} \subseteq \mathbb{C}$ splits as a sum of line bundle pairs.

A B b A B b

A. Grothendieck (1957): Every holomorphic bundle over $\mathbb{C}P^1$ splits as a sum of line bundles.

Y.-G. Oh (1996): Every holomorphic bundle pair over $\mathbb{D} \subseteq \mathbb{C}$ splits as a sum of line bundle pairs.

C. Woodward (2020): Is there a similar result for strips $\mathbb{R} \times [0, 1]$?

 David L. Duncan (JMU)
 Bundle splittings on ∂ -punctured disks
 Brandeis - October 13, 2020
 2/21

э

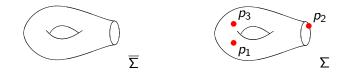
(日) (四) (日) (日) (日)

 $\overline{\Sigma}=a$ compact Riemann surface

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

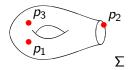
3

- $\overline{\Sigma}=a$ compact Riemann surface
- $\Sigma = \overline{\Sigma} \setminus \{p_1, \dots, p_J\}$ a surface with punctures



 $\overline{\Sigma}$ = a compact Riemann surface

 $\Sigma = \overline{\Sigma} \setminus \{p_1, \dots, p_J\}$ a surface with punctures

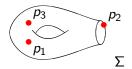


Example: $\Sigma = \mathbb{R} \times [0, 1]$

4 1 1 1 4 1 1 1

 $\overline{\Sigma}$ = a compact Riemann surface

 $\Sigma = \overline{\Sigma} \setminus \{p_1, \dots, p_J\}$ a surface with punctures

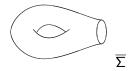


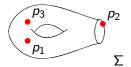
Example: $\Sigma = \mathbb{R} \times [0,1] \cong \mathbb{D} \setminus \{-1,1\}$

4 1 1 1 4 1 1 1

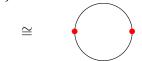
 $\overline{\Sigma}$ = a compact Riemann surface

 $\Sigma = \overline{\Sigma} \setminus \{p_1, \dots, p_J\}$ a surface with punctures





Example: $\Sigma = \mathbb{R} \times [0,1] \cong \mathbb{D} \setminus \{-1,1\}$



4 1 1 4 1 4 1 4

 David L. Duncan (JMU)
 Bundle splittings on ∂ -punctured disks
 Brandeis - October 13, 2020
 3/21

э

(日) (四) (日) (日) (日)

• Let $E \to \Sigma$ be a (smooth) complex vector bundle of \mathbb{C} -rank r.

E 6 4 E 6

э

- Let $E \to \Sigma$ be a (smooth) complex vector bundle of \mathbb{C} -rank r.
- Let \mathcal{E} be a holomorphic structure on E.

E 6 4 E 6

- Let $E \to \Sigma$ be a (smooth) complex vector bundle of \mathbb{C} -rank r.
- Let ${\mathcal E}$ be a holomorphic structure on E. Equivalently, fix a Cauchy–Riemann operator

$$\overline{\partial}_{\mathcal{E}}: \Omega^0(\Sigma, E) \to \Omega^{0,1}(\Sigma, E).$$

A B A A B A

- Let $E \to \Sigma$ be a (smooth) complex vector bundle of \mathbb{C} -rank r.
- Let \mathcal{E} be a holomorphic structure on E. Equivalently, fix a Cauchy–Riemann operator

$$\overline{\partial}_{\mathcal{E}}: \Omega^0(\Sigma, E) \to \Omega^{0,1}(\Sigma, E).$$

• Let $R \subseteq E|_{\partial \Sigma}$ be a totally real subbundle

4 1 1 1 4 1 1 1

- Let $E \to \Sigma$ be a (smooth) complex vector bundle of \mathbb{C} -rank r.
- Let \mathcal{E} be a holomorphic structure on E. Equivalently, fix a Cauchy–Riemann operator

$$\overline{\partial}_{\mathcal{E}}: \Omega^0(\Sigma, E) \to \Omega^{0,1}(\Sigma, E).$$

- Let $R \subseteq E|_{\partial \Sigma}$ be a totally real subbundle:
 - $\mathbb{R}\operatorname{-rank}(R) = r \qquad iR \cap R = \{0\}.$

.

- Let $E \to \Sigma$ be a (smooth) complex vector bundle of \mathbb{C} -rank r.
- Let \mathcal{E} be a holomorphic structure on E. Equivalently, fix a Cauchy–Riemann operator

$$\overline{\partial}_{\mathcal{E}}: \Omega^0(\Sigma, E) \to \Omega^{0,1}(\Sigma, E).$$

- Let $R \subseteq E|_{\partial \Sigma}$ be a totally real subbundle:
 - $\mathbb{R}\text{-rank}(R) = r \qquad iR \cap R = \{0\}.$

This is a bundle version of $\mathbb{R}^r \subseteq \mathbb{C}^r$.

周 とう ヨン うちょう しょう

- Let $E \to \Sigma$ be a (smooth) complex vector bundle of \mathbb{C} -rank r.
- Let \mathcal{E} be a holomorphic structure on E. Equivalently, fix a Cauchy–Riemann operator

$$\overline{\partial}_{\mathcal{E}}: \Omega^0(\Sigma, E) \to \Omega^{0,1}(\Sigma, E).$$

• Let $R \subseteq E|_{\partial \Sigma}$ be a totally real subbundle:

$$\mathbb{R}\text{-rank}(R) = r \qquad iR \cap R = \{0\}.$$

This is a bundle version of $\mathbb{R}^r \subseteq \mathbb{C}^r$.

• Then (\mathcal{E}, R) is called a **(holomorphic) bundle pair** over Σ .

Example:

Let $\mathcal{L}_1, \ldots, \mathcal{L}_r$ be holomorphic \mathbb{C} -line bundles over Σ . Set

$$\mathcal{E} := \mathcal{L}_1 \oplus \ldots \oplus \mathcal{L}_r.$$

3

4/21

A B A A B A

Example:

Let $\mathcal{L}_1, \ldots, \mathcal{L}_r$ be holomorphic \mathbb{C} -line bundles over Σ . Set

$$\mathcal{E} := \mathcal{L}_1 \oplus \ldots \oplus \mathcal{L}_r.$$

For each *i*, let $\lambda_i \subseteq \mathcal{L}_i|_{\partial \Sigma}$ be a \mathbb{R} -line subbundle. Set

$$R := \lambda_1 \oplus \ldots \oplus \lambda_r.$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

3

Example:

Let $\mathcal{L}_1, \ldots, \mathcal{L}_r$ be holomorphic \mathbb{C} -line bundles over Σ . Set

$$\mathcal{E} := \mathcal{L}_1 \oplus \ldots \oplus \mathcal{L}_r.$$

For each *i*, let $\lambda_i \subseteq \mathcal{L}_i|_{\partial \Sigma}$ be a \mathbb{R} -line subbundle. Set

 $R := \lambda_1 \oplus \ldots \oplus \lambda_r.$

Call bundle pairs (\mathcal{E}, R) of this type **totally split**.

4 3 5 4 3 5 5

There is a suitable notion of "isomorphism" for bundle pairs.

A B A A B A

3

There is a suitable notion of "isomorphism" for bundle pairs. (Homework: Guess what it is.)

3

There is a suitable notion of "isomorphism" for bundle pairs. (Homework: Guess what it is.)

Chris' question: Assume $\Sigma = \mathbb{R} \times [0, 1]$. Is every holomorphic bundle pair on Σ isomorphic to one that is totally split?

There is a suitable notion of "isomorphism" for bundle pairs. (Homework: Guess what it is.)

Chris' question: Assume $\Sigma = \mathbb{R} \times [0,1]$. Is every holomorphic bundle pair on Σ isomorphic to one that is totally split?

What I think: Yes

• • = • • = •

There is a suitable notion of "isomorphism" for bundle pairs. (Homework: Guess what it is.)

Chris' question: Assume $\Sigma = \mathbb{R} \times [0, 1]$. Is every holomorphic bundle pair on Σ isomorphic to one that is totally split?

What I think: Yes (at least if R is transverse at the boundary punctures)

A B F A B F

David L. Duncan (JMU)

There is a suitable notion of "isomorphism" for bundle pairs. (Homework: Guess what it is.)

Chris' question: Assume $\Sigma = \mathbb{R} \times [0, 1]$. Is every holomorphic bundle pair on Σ isomorphic to one that is totally split?

What I think: Yes (at least if R is transverse at the boundary punctures)

In fact, I think this holds for any simply-connected Σ :

3

イロト イヨト イヨト イヨト

$\begin{array}{l} \mbox{Proof Strategy:} \\ \mbox{Fix a } \mathcal{C}^\infty\mbox{-bundle } E \to \Sigma \end{array}$

David L. Duncan (JMU)

イロト イポト イヨト イヨト

э

David L. Duncan (JMU)

Fix a \mathcal{C}^{∞} -bundle $E \to \Sigma$ and set

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

Fix a \mathcal{C}^{∞} -bundle $E \to \Sigma$ and set

$$\mathcal{C}(E) := \{ \mathcal{E} \mid \mathcal{E} \text{ is a holo. structures on } E \} \\ \operatorname{Aut}(E) := \{ \text{bundle automorphisms of } E \}.$$

Equivalence of holomorphic bundles is determined by the action of the group $\operatorname{Aut}(E)$ on $\mathcal{C}(E)$.

3

Fix a $\mathcal{C}^\infty\text{-bundle }E\to\Sigma$ and set

$$\begin{aligned} \mathcal{C}(E) &:= & \{\mathcal{E} \mid \mathcal{E} \text{ is a holo. structures on } E\} \\ \mathrm{Aut}(E) &:= & \{\mathrm{bundle automorphisms of } E\}. \end{aligned}$$

Equivalence of holomorphic bundles is determined by the action of the group Aut(E) on C(E). Fix a metric and set

 $\mathcal{A}(E) := \{A \mid A \text{ is a } U(r)\text{-connection on } E\}.$

周 とう きょう とう とう うう

Fix a $\mathcal{C}^\infty\text{-bundle }E\to\Sigma$ and set

$$\begin{aligned} \mathcal{C}(E) &:= & \{\mathcal{E} \mid \mathcal{E} \text{ is a holo. structures on } E\} \\ \mathrm{Aut}(E) &:= & \{\mathrm{bundle automorphisms of } E\}. \end{aligned}$$

Equivalence of holomorphic bundles is determined by the action of the group Aut(E) on C(E). Fix a metric and set

$$\mathcal{A}(E) := \{A \mid A \text{ is a } \mathrm{U}(r)\text{-connection on } E\}.$$

A connection A is determined by its covariant derivative

$$d_A: \Omega^0(\Sigma, E) \to \Omega^1(\Sigma, E).$$

4 1 1 1 4 1 1 1

Fix a $\mathcal{C}^\infty\text{-bundle }E\to\Sigma$ and set

Equivalence of holomorphic bundles is determined by the action of the group Aut(E) on C(E). Fix a metric and set

$$\mathcal{A}(E) := \{A \mid A \text{ is a } U(r)\text{-connection on } E\}.$$

A connection A is determined by its covariant derivative

$$d_A: \Omega^0(\Sigma, E) \to \Omega^1(\Sigma, E).$$

There is a correspondence

$$\mathcal{A}(E) \longleftrightarrow \mathcal{C}(E)$$

given by $A \mapsto \overline{\partial}_A := (d_A)^{0,1}$.

David L. Duncan (JMU)

It follows that the group Aut(E) acts on $\mathcal{A}(E)$.

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

It follows that the group Aut(E) acts on $\mathcal{A}(E)$.

Upshot of working with connections: There is a nice function floating around.

It follows that the group Aut(E) acts on $\mathcal{A}(E)$.

Upshot of working with connections: There is a nice function floating around. This is the **Yang–Mills functional**

$$\mathcal{YM}: \mathcal{A}(E) \to \mathbb{R}, \qquad A \mapsto \frac{1}{2} \|F_A\|_{L^2}^2.$$

4 1 1 1 4 1 1 1

It follows that the group Aut(E) acts on $\mathcal{A}(E)$.

Upshot of working with connections: There is a nice function floating around. This is the **Yang–Mills functional**

$$\mathcal{YM}: \mathcal{A}(E) \to \mathbb{R}, \qquad A \mapsto \frac{1}{2} \|F_A\|_{L^2}^2.$$

The critical points of $\mathcal{Y}\mathcal{M}$ are called **Yang–Mills connections**. These satisfy

$$d_A^*F_A=0.$$

A B + A B +

It follows that the group Aut(E) acts on $\mathcal{A}(E)$.

Upshot of working with connections: There is a nice function floating around. This is the **Yang–Mills functional**

$$\mathcal{YM}: \mathcal{A}(E) \to \mathbb{R}, \qquad A \mapsto \frac{1}{2} \|F_A\|_{L^2}^2.$$

The critical points of $\mathcal{Y}\mathcal{M}$ are called **Yang–Mills connections**. These satisfy

$$d_A^*F_A=0.$$

Fun fact: The gradient of \mathcal{YM} is tangent to the orbits of Aut(E)

b 4 E b 4 E b

It follows that the group Aut(E) acts on $\mathcal{A}(E)$.

Upshot of working with connections: There is a nice function floating around. This is the **Yang–Mills functional**

$$\mathcal{YM}: \mathcal{A}(E) \to \mathbb{R}, \qquad A \mapsto \frac{1}{2} \|F_A\|_{L^2}^2.$$

The critical points of $\mathcal{Y}\mathcal{M}$ are called **Yang–Mills connections**. These satisfy

$$d_A^*F_A=0.$$

Fun fact: The gradient of \mathcal{YM} is tangent to the orbits of Aut(E) so any two connections on a flow line of \mathcal{YM} correspond to equivalent holomorphic bundles.

医静脉 医黄疸 医黄疸 医黄疸

Here is what we expect:

David L. Duncan (JMU)

イロト イポト イヨト イヨト

æ

Here is what we expect:

David L. Duncan (JMU)

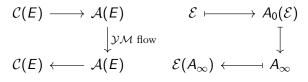
• The Yang–Mills heat flow should converge at infinite time to a Yang–Mills connection A_{∞} .

• • = • • = •

э

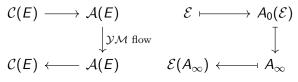
Here is what we expect:

 The Yang-Mills heat flow should converge at infinite time to a Yang-Mills connection A_∞.



Here is what we expect:

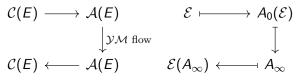
 The Yang–Mills heat flow should converge at infinite time to a Yang–Mills connection A_∞.



• We should have $\mathcal{E} \cong \mathcal{E}(A_{\infty})$.

Here is what we expect:

 The Yang-Mills heat flow should converge at infinite time to a Yang-Mills connection A_∞.

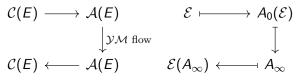


• We should have $\mathcal{E} \cong \mathcal{E}(A_{\infty})$.

 If Σ is simply-connected, then the holonomy group of A_∞ is abelian (contained in a maximal torus in U(r)).

Here is what we expect:

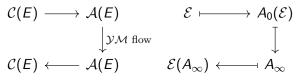
 The Yang-Mills heat flow should converge at infinite time to a Yang-Mills connection A_∞.



- We should have $\mathcal{E} \cong \mathcal{E}(A_{\infty})$.
- If Σ is simply-connected, then the holonomy group of A_∞ is abelian (contained in a maximal torus in U(r)).
- This should imply $\mathcal{E}(A_{\infty}) \cong \Lambda_1 \oplus \ldots \oplus \Lambda_r$.

Here is what we expect:

 The Yang-Mills heat flow should converge at infinite time to a Yang-Mills connection A_∞.



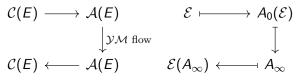
- We should have $\mathcal{E} \cong \mathcal{E}(A_{\infty})$.
- If Σ is simply-connected, then the holonomy group of A_∞ is abelian (contained in a maximal torus in U(r)).
- This should imply $\mathcal{E}(A_{\infty}) \cong \Lambda_1 \oplus \ldots \oplus \Lambda_r$.

Goal for the rest of the talk: Justify this "expectation".

通 とう きょう く ひょう しょう

Here is what we expect:

• The Yang–Mills heat flow should converge at infinite time to a Yang–Mills connection A_{∞} .



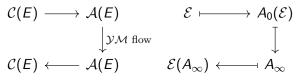
- We should have $\mathcal{E} \cong \mathcal{E}(A_{\infty})$.
- If Σ is simply-connected, then the holonomy group of A_∞ is abelian (contained in a maximal torus in U(r)).
- This should imply $\mathcal{E}(A_{\infty}) \cong \Lambda_1 \oplus \ldots \oplus \Lambda_r$.

Goal for the rest of the talk: Justify this "expectation".

1 Give a proof of Grothendieck's theorem along these lines.

Here is what we expect:

 The Yang-Mills heat flow should converge at infinite time to a Yang-Mills connection A_∞.



- We should have $\mathcal{E} \cong \mathcal{E}(A_{\infty})$.
- If Σ is simply-connected, then the holonomy group of A_∞ is abelian (contained in a maximal torus in U(r)).
- This should imply $\mathcal{E}(A_{\infty}) \cong \Lambda_1 \oplus \ldots \oplus \Lambda_r$.

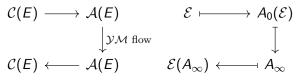
Goal for the rest of the talk: Justify this "expectation".

- Give a proof of Grothendieck's theorem along these lines.
- Q Give a proof of Oh's theorem along these lines.

イロト イポト イヨト イヨト 二日

Here is what we expect:

• The Yang–Mills heat flow should converge at infinite time to a Yang–Mills connection A_{∞} .



- We should have $\mathcal{E} \cong \mathcal{E}(A_{\infty})$.
- If Σ is simply-connected, then the holonomy group of A_∞ is abelian (contained in a maximal torus in U(r)).
- This should imply $\mathcal{E}(A_{\infty}) \cong \Lambda_1 \oplus \ldots \oplus \Lambda_r$.

Goal for the rest of the talk: Justify this "expectation".

- Give a proof of Grothendieck's theorem along these lines.
- Q Give a proof of Oh's theorem along these lines.
- **(**) Discuss progress made in the case where Σ has punctures.

A D N A B N A B N A B N

• For now, assume Σ is closed (no boundary and no punctures). Let $\mathcal{E} \to \Sigma$ be a holomorphic bundle, and $A_0 = A_0(\mathcal{E})$ the associated U(r)-connection.

9/21

- For now, assume Σ is closed (no boundary and no punctures). Let $\mathcal{E} \to \Sigma$ be a holomorphic bundle, and $A_0 = A_0(\mathcal{E})$ the associated U(r)-connection.
- The Yang-Mills heat flow starting at A₀ is a path A = A(τ) of connections satisfying

$$\partial_{\tau}A = -d_A^*F_A, \qquad A(0) = A_0.$$

A B M A B M

- For now, assume Σ is closed (no boundary and no punctures). Let $\mathcal{E} \to \Sigma$ be a holomorphic bundle, and $A_0 = A_0(\mathcal{E})$ the associated U(r)-connection.
- The Yang-Mills heat flow starting at A₀ is a path A = A(τ) of connections satisfying

$$\partial_{\tau}A = -d_A^*F_A, \qquad A(0) = A_0.$$

Theorem (Råde (1992))

The Yang–Mills heat flow $A(\tau)$ starting at A_0 exists and is unique for all time.

• • = • • = •

- For now, assume Σ is closed (no boundary and no punctures). Let $\mathcal{E} \to \Sigma$ be a holomorphic bundle, and $A_0 = A_0(\mathcal{E})$ the associated U(r)-connection.
- The Yang-Mills heat flow starting at A₀ is a path A = A(τ) of connections satisfying

$$\partial_{\tau}A = -d_A^*F_A, \qquad A(0) = A_0.$$

Theorem (Råde (1992))

The Yang–Mills heat flow $A(\tau)$ starting at A_0 exists and is unique for all time. At infinite time it converges in all derivatives to a Yang–Mills connection A_{∞} on E.

通 ト イヨ ト イヨト

Theorem (Råde (1992))

The Yang–Mills heat flow $A(\tau)$ starting at A_0 exists and is unique for all time. At infinite time it converges in all derivatives to a Yang–Mills connection A_{∞} on E.

10/21

直 ト イヨ ト イヨ ト

Theorem (Råde (1992))

The Yang–Mills heat flow $A(\tau)$ starting at A_0 exists and is unique for all time. At infinite time it converges in all derivatives to a Yang–Mills connection A_{∞} on E.

Theorem (Atiyah–Bott (1980), Kempf–Ness (1982), Kirwan (1983), Donaldson (1983))

There is a path $g : [0,\infty] \to \operatorname{Aut}(E)$ so that $A(\tau) = g(\tau)^* A_0$.

(人間) トイヨト イヨト ニヨ

Theorem (Råde (1992))

The Yang–Mills heat flow $A(\tau)$ starting at A_0 exists and is unique for all time. At infinite time it converges in all derivatives to a Yang–Mills connection A_{∞} on E.

Theorem (Atiyah–Bott (1980), Kempf–Ness (1982), Kirwan (1983), Donaldson (1983))

There is a path $g : [0,\infty] \to \operatorname{Aut}(E)$ so that $A(\tau) = g(\tau)^* A_0$.

Corollary

$$\mathcal{E}(A_{\infty}) = g(\infty)^* \mathcal{E}$$

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Corollary $\mathcal{E}(A_{\infty}) = g(\infty)^* \mathcal{E}$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Corollary

 $\mathcal{E}(A_\infty) = g(\infty)^* \mathcal{E}$

Theorem (Atiyah–Bott (1980))

If Σ is simply-connected (so $\Sigma = \mathbb{C}P^1$), then the holonomy group of any Yang–Mills connection A_{∞} is contained in a maximal torus.

超 とう きょう く ひょう しょう

Corollary

 $\mathcal{E}(A_\infty) = g(\infty)^* \mathcal{E}$

Theorem (Atiyah–Bott (1980))

If Σ is simply-connected (so $\Sigma = \mathbb{C}P^1$), then the holonomy group of any Yang–Mills connection A_{∞} is contained in a maximal torus.

Corollary

If Σ is simply-connected, then $\mathcal{E}(A_{\infty}) \cong \Lambda_1 \oplus \ldots \oplus \Lambda_r$ for some holomorphic line bundles $\Lambda_1, \ldots, \Lambda_r$.

- 本語 医 本 医 医 一 医

Corollary

 $\mathcal{E}(A_\infty) = g(\infty)^* \mathcal{E}$

Theorem (Atiyah–Bott (1980))

If Σ is simply-connected (so $\Sigma = \mathbb{C}P^1$), then the holonomy group of any Yang–Mills connection A_{∞} is contained in a maximal torus.

Corollary

If Σ is simply-connected, then $\mathcal{E}(A_{\infty}) \cong \Lambda_1 \oplus \ldots \oplus \Lambda_r$ for some holomorphic line bundles $\Lambda_1, \ldots, \Lambda_r$.

Grothendieck's result follows from these two corollaries.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

イロト イヨト イヨト イヨト

3

David L. Duncan (JMU)

For now, assume Σ is compact with $\partial \Sigma \neq \emptyset$. Let (\mathcal{E}, R) be a holomorphic bundle pair, and $A_0 = A_0(\mathcal{E})$ the U(r)-connection associated to \mathcal{E} .

A B M A B M

For now, assume Σ is compact with $\partial \Sigma \neq \emptyset$. Let (\mathcal{E}, R) be a holomorphic bundle pair, and $A_0 = A_0(\mathcal{E})$ the U(r)-connection associated to \mathcal{E} .

Idea: Use a reflection principle.

For now, assume Σ is compact with $\partial \Sigma \neq \emptyset$. Let (\mathcal{E}, R) be a holomorphic bundle pair, and $A_0 = A_0(\mathcal{E})$ the U(r)-connection associated to \mathcal{E} .

Idea: Use a reflection principle.

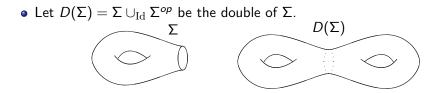
David L. Duncan (JMU)

• Let $D(\Sigma) = \Sigma \cup_{\mathrm{Id}} \Sigma^{op}$ be the double of Σ .

向下 イヨト イヨト ニヨ

For now, assume Σ is compact with $\partial \Sigma \neq \emptyset$. Let (\mathcal{E}, R) be a holomorphic bundle pair, and $A_0 = A_0(\mathcal{E})$ the U(r)-connection associated to \mathcal{E} .

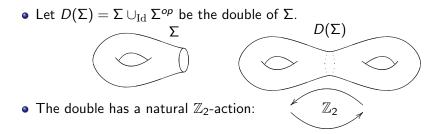
Idea: Use a reflection principle.



4 2 5 4 2 5

For now, assume Σ is compact with $\partial \Sigma \neq \emptyset$. Let (\mathcal{E}, R) be a holomorphic bundle pair, and $A_0 = A_0(\mathcal{E})$ the U(r)-connection associated to \mathcal{E} .

Idea: Use a reflection principle.



4 1 1 1 4 1 1 1

To do a similar thing for \mathcal{E} :

э

- 4 回 ト 4 ヨ ト 4 ヨ ト

To do a similar thing for \mathcal{E} : The totally real subbundle R determines an anti-holomorphic involution τ on $E|_{\partial \Sigma}$.

13/21

To do a similar thing for \mathcal{E} : The totally real subbundle R determines an anti-holomorphic involution τ on $E|_{\partial \Sigma}$.

• Define $D(E) := E \cup_{\tau} E^{op}$. This is a complex vector bundle over $D(\Sigma)$.

To do a similar thing for \mathcal{E} : The totally real subbundle R determines an anti-holomorphic involution τ on $E|_{\partial \Sigma}$.

- Define $D(E) := E \cup_{\tau} E^{op}$. This is a complex vector bundle over $D(\Sigma)$.
- There is a "doubling map"

$$\mathcal{A}_{\partial}(E) \to \mathcal{A}(D(E)), \qquad A \mapsto D(A),$$

where $\mathcal{A}_{\partial}(E)$ are the elements of $\mathcal{A}(E)$ with suitable boundary conditions.

To do a similar thing for \mathcal{E} : The totally real subbundle R determines an anti-holomorphic involution τ on $E|_{\partial \Sigma}$.

- Define $D(E) := E \cup_{\tau} E^{op}$. This is a complex vector bundle over $D(\Sigma)$.
- There is a "doubling map"

$$\mathcal{A}_{\partial}(E) \to \mathcal{A}(D(E)), \qquad A \mapsto D(A),$$

where $\mathcal{A}_{\partial}(E)$ are the elements of $\mathcal{A}(E)$ with suitable boundary conditions.

 The image of the doubling map is the set of connections in A(D(E)) that are fixed under the Z₂-action.

To do a similar thing for \mathcal{E} : The totally real subbundle R determines an anti-holomorphic involution τ on $E|_{\partial \Sigma}$.

- Define $D(E) := E \cup_{\tau} E^{op}$. This is a complex vector bundle over $D(\Sigma)$.
- There is a "doubling map"

$$\mathcal{A}_{\partial}(E) \to \mathcal{A}(D(E)), \qquad A \mapsto D(A),$$

where $\mathcal{A}_{\partial}(E)$ are the elements of $\mathcal{A}(E)$ with suitable boundary conditions.

- The image of the doubling map is the set of connections in A(D(E)) that are fixed under the Z₂-action.
- By performing a bundle isomorphism, it can be arranged so that $A_0(\mathcal{E}) \in \mathcal{A}_{\partial}(E)$.

Now use the same proof from before:

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Now use the same proof from before:

David L. Duncan (JMU)

• Use the heat flow to find a bundle automorphism g with $g^*D(A_0)$ Yang-Mills.

ヨト イヨト

3

14/21

Now use the same proof from before:

- Use the heat flow to find a bundle automorphism g with $g^*D(A_0)$ Yang-Mills.
- If Σ is simply-connected (so $\Sigma = \mathbb{D}$), then $D(\Sigma)$ is simply-connected.

Now use the same proof from before:

- Use the heat flow to find a bundle automorphism g with $g^*D(A_0)$ Yang-Mills.
- If Σ is simply-connected (so $\Sigma = \mathbb{D}$), then $D(\Sigma)$ is simply-connected.
- This implies $g^*D(A_0)$ has holonomy group contained in a maximal torus.

向下 イヨト イヨト ニヨ

Now use the same proof from before:

- Use the heat flow to find a bundle automorphism g with $g^*D(A_0)$ Yang-Mills.
- If Σ is simply-connected (so $\Sigma = \mathbb{D}$), then $D(\Sigma)$ is simply-connected.
- This implies $g^*D(A_0)$ has holonomy group contained in a maximal torus.
- Then $g^*D(\mathcal{E})$ is totally split.

通 とう きょう うちょう しょう

Now use the same proof from before:

- Use the heat flow to find a bundle automorphism g with $g^*D(A_0)$ Yang-Mills.
- If Σ is simply-connected (so $\Sigma = \mathbb{D}$), then $D(\Sigma)$ is simply-connected.
- This implies $g^*D(A_0)$ has holonomy group contained in a maximal torus.
- Then $g^*D(\mathcal{E})$ is totally split.
- Everything is equivariant, so $g = D(g_{\infty})$ for some bundle automorphism g_{∞} on Σ .

Now use the same proof from before:

- Use the heat flow to find a bundle automorphism g with $g^*D(A_0)$ Yang-Mills.
- If Σ is simply-connected (so $\Sigma = \mathbb{D}$), then $D(\Sigma)$ is simply-connected.
- This implies $g^*D(A_0)$ has holonomy group contained in a maximal torus.
- Then $g^*D(\mathcal{E})$ is totally split.
- Everything is equivariant, so $g = D(g_{\infty})$ for some bundle automorphism g_{∞} on Σ .
- Then g^{*}_∞ E is totally split because its double D(g^{*}_∞ E) = g^{*}D(E) is totally split.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

< 1[™] >

2

∃ ► < ∃ ►</p>

David L. Duncan (JMU)

How should we handle the non-compactness?

★ ∃ ► < ∃ ►</p>

How should we handle the non-compactness?

We want a space of connections that is large enough to include the appropriate Yang–Mills connections

★ ∃ ► < ∃ ►</p>

How should we handle the non-compactness?

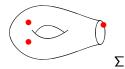
We want a space of connections that is large enough to include the appropriate Yang–Mills connections, but not so big that the elements are not well-behaved analytically.

★ ∃ ► < ∃ ►</p>

How should we handle the non-compactness?

We want a space of connections that is large enough to include the appropriate Yang–Mills connections, but not so big that the elements are not well-behaved analytically.

Idea: Use singular connections.

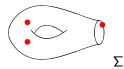


How should we handle the non-compactness?

We want a space of connections that is large enough to include the appropriate Yang–Mills connections, but not so big that the elements are not well-behaved analytically.

Idea: Use singular connections.

Fix a metric on Σ that is flat near the punctures.

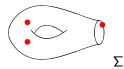


How should we handle the non-compactness?

We want a space of connections that is large enough to include the appropriate Yang–Mills connections, but not so big that the elements are not well-behaved analytically.

Idea: Use singular connections.

Fix a metric on Σ that is flat near the punctures. Such a metric extends over $\overline{\Sigma}$, so Σ has finite volume.

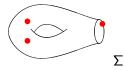


How should we handle the non-compactness?

We want a space of connections that is large enough to include the appropriate Yang–Mills connections, but not so big that the elements are not well-behaved analytically.

Idea: Use singular connections.

Fix a metric on Σ that is flat near the punctures. Such a metric extends over $\overline{\Sigma}$, so Σ has finite volume. This implies all solutions of $d_A^* F_A = 0$ have finite Yang–Mills value.



∃ ► < ∃ ►</p>

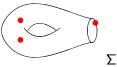
How should we handle the non-compactness?

We want a space of connections that is large enough to include the appropriate Yang–Mills connections, but not so big that the elements are not well-behaved analytically.

Idea: Use singular connections.

Fix a metric on Σ that is flat near the punctures. Such a metric extends over $\overline{\Sigma}$, so Σ has finite volume. This implies all solutions of $d_A^*F_A = 0$ have finite Yang–Mills value.

Consider connections that have fixed asymptotic holonomy around the punctures.



A B < A B </p>

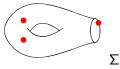
How should we handle the non-compactness?

We want a space of connections that is large enough to include the appropriate Yang–Mills connections, but not so big that the elements are not well-behaved analytically.

Idea: Use singular connections.

Fix a metric on Σ that is flat near the punctures. Such a metric extends over $\overline{\Sigma}$, so Σ has finite volume. This implies all solutions of $d_A^*F_A = 0$ have finite Yang–Mills value.

Consider connections that have fixed asymptotic holonomy around the punctures. These generally do not extend over the punctures.



A B M A B M

Singular connections turn out to be just right, from an analytic perspective and a geometric one.

▲ 東 ▶ | ▲ 更 ▶

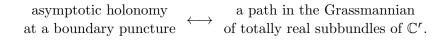
Singular connections turn out to be just right, from an analytic perspective and a geometric one.

• Geometrically:

asymptotic holonomy at a boundary puncture a path in the Grassmannian of totally real subbundles of \mathbb{C}^r .

Singular connections turn out to be just right, from an analytic perspective and a geometric one.

• Geometrically:

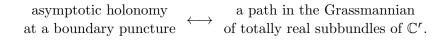


 Analytically: We would need a version of the Råde's theorem, but for singular connections. This requires studying the operator

 *∂*_τ + *d*_A*d*^{*}_A + *d*^{*}_A*d*_A.

Singular connections turn out to be just right, from an analytic perspective and a geometric one.

• Geometrically:

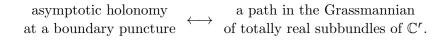


Analytically: We would need a version of the Råde's theorem, but for singular connections. This requires studying the operator

 ∂_τ + d_Ad^{*}_A + d^{*}_Ad_A. The operator d_Ad^{*}_A + d^{*}_Ad_A is self-adjoint when R is transverse.

Singular connections turn out to be just right, from an analytic perspective and a geometric one.

• Geometrically:



Analytically: We would need a version of the Råde's theorem, but for singular connections. This requires studying the operator

 ∂_τ + d_Ad^{*}_A + d^{*}_Ad_A. The operator d_Ad^{*}_A + d^{*}_Ad_A is self-adjoint when R is transverse.

Also, many other analytic details are known (e.g., the expected Sobolev embedding and compactness results hold). These are due to Sibner–Sibner (1988), Kronheimer–Mrowka (1992), Råde (1995), Daskalopolous–Wentworth (1998), and others.

・ 同下 ・ ヨト ・ ヨト

Define $\mathcal{A}_{\partial}(E)$ to be the set of connections on $E \to \Sigma$ satisfying the above-discussed boundary and asymptotic holonomy conditions.

Theorem (D. (2020))

Assume R is transverse and fix $A_0 \in \mathcal{A}_{\partial}(E)$.

Brandeis - October 13, 2020

4 1 1 1 4 1 1 1

Define $\mathcal{A}_{\partial}(E)$ to be the set of connections on $E \to \Sigma$ satisfying the above-discussed boundary and asymptotic holonomy conditions.

Theorem (D. (2020))

Assume R is transverse and fix $A_0 \in \mathcal{A}_{\partial}(E)$.

• There is a solution $A : [0, \infty) \to A_{\partial}(E)$ to the Yang–Mills heat flow, with $A(0) = A_0$.

• • = • • = •

Define $\mathcal{A}_{\partial}(E)$ to be the set of connections on $E \to \Sigma$ satisfying the above-discussed boundary and asymptotic holonomy conditions.

Theorem (D. (2020))

Assume R is transverse and fix $A_0 \in \mathcal{A}_{\partial}(E)$.

- There is a solution $A : [0, \infty) \to A_{\partial}(E)$ to the Yang–Mills heat flow, with $A(0) = A_0$.
- There is a path g of bundle automorphisms of E so that $A(\tau) = g(\tau)^* A_0$ for all $\tau \ge 0$.

周 とう きょう とう とう うう

Define $\mathcal{A}_{\partial}(E)$ to be the set of connections on $E \to \Sigma$ satisfying the above-discussed boundary and asymptotic holonomy conditions.

Theorem (D. (2020))

Assume R is transverse and fix $A_0 \in \mathcal{A}_{\partial}(E)$.

- There is a solution $A : [0, \infty) \to A_{\partial}(E)$ to the Yang–Mills heat flow, with $A(0) = A_0$.
- There is a path g of bundle automorphisms of E so that $A(\tau) = g(\tau)^* A_0$ for all $\tau \ge 0$.

This bundle automorphism satisfies the appropriate boundary and asymptotic conditions to imply that $(\mathcal{E}(\mathcal{A}(\tau)), R)$ is isomorphic to $(\mathcal{E}(\mathcal{A}_0), R)$ (cf. the homework from the beginning of the talk).

・ 何 ト ・ ラ ト ・ ラ ト ・ ラ

< 47 ▶

★ ∃ ► < ∃ ►</p>

э

David L. Duncan (JMU)

Explore the behavior as τ → ∞. Does A(τ) converge to a Yang–Mills connection? Does the path g(τ) converge?

(B)

- Explore the behavior as τ → ∞. Does A(τ) converge to a Yang–Mills connection? Does the path g(τ) converge?
- As before, in the simply-connected case the Yang–Mills bundles totally split.

A B < A B </p>

- Explore the behavior as τ → ∞. Does A(τ) converge to a Yang–Mills connection? Does the path g(τ) converge?
- As before, in the simply-connected case the Yang-Mills bundles totally split. However, the isomorphism realizing this splitting needs to be satisfy the appropriate boundary and asymptotic conditions. Does it?

周 とう きょう とう とう うう

- Explore the behavior as τ → ∞. Does A(τ) converge to a Yang–Mills connection? Does the path g(τ) converge?
- As before, in the simply-connected case the Yang-Mills bundles totally split. However, the isomorphism realizing this splitting needs to be satisfy the appropriate boundary and asymptotic conditions. Does it?
- ... [work in progress]

超 とう きょう く ひょう しょう

Example: $\Sigma = \mathbb{D} \setminus \{0\}$ Assume $\mathcal{E} = \Sigma \times \mathbb{C}$.

David L. Duncan (JMU)

イロト イボト イヨト イヨト

э

Assume $\mathcal{E} = \Sigma \times \mathbb{C}$. We can write

$$d_A = d + A_r dr + A_\theta d\theta$$

for $A_r, A_\theta : S^1 \times (0, 1] \rightarrow i\mathbb{R}$.

David L. Duncan (JMU)

マビン マラン マラン

э

Assume $\mathcal{E} = \Sigma \times \mathbb{C}$. We can write

$$d_A = d + A_r dr + A_\theta d\theta$$

for $A_r, A_{\theta} : S^1 \times (0, 1] \to i\mathbb{R}$. Then A is Yang–Mills if and only if

$$\partial_r^2 A_\theta - r^{-1} \partial_r A_\theta - \partial_r \partial_\theta A_r + r^{-1} \partial_\theta A_r = 0$$
$$\partial_\theta^2 A_r - \partial_r \partial_\theta A_\theta = 0.$$

Assume $\mathcal{E} = \Sigma \times \mathbb{C}$. We can write

$$d_A = d + A_r dr + A_\theta d\theta$$

for $A_r, A_{\theta}: S^1 \times (0,1] \to i\mathbb{R}$. Then A is Yang–Mills if and only if

$$\partial_r^2 A_\theta - r^{-1} \partial_r A_\theta - \partial_r \partial_\theta A_r + r^{-1} \partial_\theta A_r = 0$$

$$\partial_\theta^2 A_r - \partial_r \partial_\theta A_\theta = 0.$$

Fourier series: $A_r(r,\theta) = \sum_k A_{r,k}(r)e^{ik\theta}, \quad A_{\theta}(r,\theta) = \sum_k A_{\theta,k}(r)e^{ik\theta}.$

Assume $\mathcal{E} = \Sigma \times \mathbb{C}$. We can write

$$d_A = d + A_r dr + A_\theta d\theta$$

for $A_r, A_{\theta} : S^1 \times (0, 1] \to i\mathbb{R}$. Then A is Yang–Mills if and only if

$$\partial_r^2 A_\theta - r^{-1} \partial_r A_\theta - \partial_r \partial_\theta A_r + r^{-1} \partial_\theta A_r = 0$$

$$\partial_\theta^2 A_r - \partial_r \partial_\theta A_\theta = 0.$$

Fourier series: $A_r(r,\theta) = \sum_k A_{r,k}(r)e^{ik\theta}$, $A_{\theta}(r,\theta) = \sum_k A_{\theta,k}(r)e^{ik\theta}$. Then A is Yang–Mills if and only if

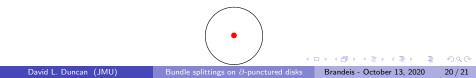
$$A_{\theta,0}(r) = \frac{1}{2}c_{\theta,0}r^2 + h_{\theta,0}, \quad A_{\theta,k}(r) = h_{\theta,k} + ik \int_{r_0}^r A_{r,k} dr, \text{ for } k \neq 0$$

for some constants $h_{\theta,k}$, $c_{\theta,0}$ (the functions $A_{r,k}$ can be arbitrarily specified).

The connection A is Yang-Mills if and only if

$$A_{\theta,0}(r) = \frac{1}{2}c_{\theta,0}r^2 + h_{\theta,0}, \quad A_{\theta,k}(r) = h_{\theta,k} + ik \int_{r_0}^r A_{r,k}dr, \text{ for } k \neq 0$$

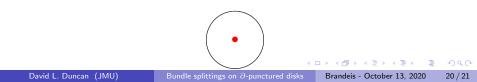
for some constants $h_{\theta,k}$, $c_{\theta,0}$.



The connection A is Yang-Mills if and only if

$$A_{\theta,0}(r) = \frac{1}{2}c_{\theta,0}r^2 + h_{\theta,0}, \quad A_{\theta,k}(r) = h_{\theta,k} + ik \int_{r_0}^r A_{r,k}dr, \text{ for } k \neq 0$$

for some constants $h_{\theta,k}$, $c_{\theta,0}$. These constants have geometric meaning:

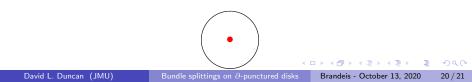


The connection A is Yang-Mills if and only if

$$A_{\theta,0}(r) = \frac{1}{2}c_{\theta,0}r^2 + h_{\theta,0}, \quad A_{\theta,k}(r) = h_{\theta,k} + ik \int_{r_0}^r A_{r,k}dr, \text{ for } k \neq 0$$

for some constants $h_{ heta,k}$, $c_{ heta,0}$. These constants have geometric meaning:

•
$$c_{\theta,0} = *F_A$$



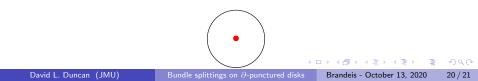
The connection A is Yang-Mills if and only if

$$A_{\theta,0}(r) = \frac{1}{2}c_{\theta,0}r^2 + h_{\theta,0}, \quad A_{\theta,k}(r) = h_{\theta,k} + ik \int_{r_0}^r A_{r,k}dr, \text{ for } k \neq 0$$

for some constants $h_{\theta,k}$, $c_{\theta,0}$. These constants have geometric meaning:

•
$$c_{\theta,0} = *F_A$$

• The asymptotic holonomy of A around the puncture is $e^{-2\pi h_{\theta,0}}$.



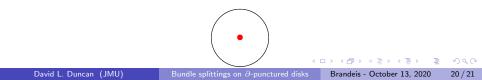
The connection A is Yang-Mills if and only if

$$A_{\theta,0}(r) = \frac{1}{2}c_{\theta,0}r^2 + h_{\theta,0}, \quad A_{\theta,k}(r) = h_{\theta,k} + ik \int_{r_0}^r A_{r,k} dr, \text{ for } k \neq 0$$

for some constants $h_{\theta,k}$, $c_{\theta,0}$. These constants have geometric meaning:

•
$$c_{\theta,0} = *F_A$$

- The asymptotic holonomy of A around the puncture is $e^{-2\pi h_{\theta,0}}$.
- The holonomy around the boundary loop is equal to $-\pi c_{\theta,0} 2\pi h_{\theta,0}$.



The connection A is Yang-Mills if and only if

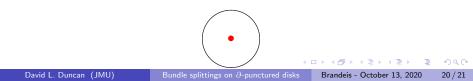
$$A_{\theta,0}(r) = \frac{1}{2}c_{\theta,0}r^2 + h_{\theta,0}, \quad A_{\theta,k}(r) = h_{\theta,k} + ik \int_{r_0}^r A_{r,k} dr, \text{ for } k \neq 0$$

for some constants $h_{\theta,k}$, $c_{\theta,0}$. These constants have geometric meaning:

•
$$c_{\theta,0} = *F_A$$

- The asymptotic holonomy of A around the puncture is $e^{-2\pi h_{\theta,0}}$.
- The holonomy around the boundary loop is equal to $-\pi c_{\theta,0} 2\pi h_{\theta,0}$.
- On the bundle side, this holonomy recovers the equals the Maslov index $\mu(R)$ (times i/2), and so

$$\mu(R)=2\pi i(c_{\theta,0}+2h_{\theta,0}).$$



The connection A is Yang-Mills if and only if

$$A_{\theta,0}(r) = \frac{1}{2}c_{\theta,0}r^2 + h_{\theta,0}, \quad A_{\theta,k}(r) = h_{\theta,k} + ik \int_{r_0}^r A_{r,k} dr, \text{ for } k \neq 0$$

for some constants $h_{\theta,k}$, $c_{\theta,0}$. These constants have geometric meaning:

•
$$c_{\theta,0} = *F_A$$

- The asymptotic holonomy of A around the puncture is $e^{-2\pi h_{\theta,0}}$.
- The holonomy around the boundary loop is equal to $-\pi c_{\theta,0} 2\pi h_{\theta,0}$.
- On the bundle side, this holonomy recovers the equals the Maslov index μ(R) (times i/2), and so

$$\mu(R)=2\pi i(c_{\theta,0}+2h_{\theta,0}).$$

• The remaining data $(h_{\theta,k} \text{ and } A_{r,k})$ are constrained by the choice of R.

Thank you for your attention!

• • = • • = •

э