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A. Grothendieck (1957): Every holo-
morphic bundle over CP? splits as a
sum of line bundles.
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morphic bundle over CP? splits as a
sum of line bundles.

Y.-G. Oh (1996): Every holomorphic
bundle pair over D C C splits as a
sum of line bundle pairs.
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Some History

N

A. Grothendieck (1957): Every holo-
morphic bundle over CP? splits as a
sum of line bundles.

Y.-G. Oh (1996): Every holomorphic
bundle pair over D C C splits as a
sum of line bundle pairs.

-= C. Woodward (2020): Is there a sim-
v ilar result for strips R x [0, 1]?
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Let's formalize this:

> = a compact Riemann surface

Y =Y\ {p1,...,ps} a surface with punctures

M
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Example: ¥ =R x [0, 1]
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Let's formalize this:
¥ = a compact Riemann surface

Y =Y\ {p1,...,ps} a surface with punctures

> r

Example: ¥ =R x [0,1] 2 D\ {-1,1}
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@ Let E — ¥ be a (smooth) complex vector bundle of C-rank r.
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@ Let E — ¥ be a (smooth) complex vector bundle of C-rank r.

@ Let £ be a holomorphic structure on E.
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Let's formalize this:

@ Let E — ¥ be a (smooth) complex vector bundle of C-rank r.

@ Let £ be a holomorphic structure on E. Equivalently, fix a
Cauchy—Riemann operator

0 : QUL E) — Q%(Z, E).
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Let's formalize this:

@ Let E — ¥ be a (smooth) complex vector bundle of C-rank r.

@ Let £ be a holomorphic structure on E. Equivalently, fix a
Cauchy—Riemann operator

0¢ : QX E) — Q¥Y(Z, E).

o Let R C E|sx be a totally real subbundle
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Let's formalize this:

@ Let E — ¥ be a (smooth) complex vector bundle of C-rank r.

@ Let £ be a holomorphic structure on E. Equivalently, fix a
Cauchy—Riemann operator

0¢ : QX E) — Q¥Y(Z, E).

o Let R C E|sx be a totally real subbundle:

R-rank(R) = r iRNR={0}.
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Let's formalize this:

@ Let E — ¥ be a (smooth) complex vector bundle of C-rank r.

@ Let £ be a holomorphic structure on E. Equivalently, fix a
Cauchy—Riemann operator

0¢ : QX E) — Q¥Y(Z, E).

o Let R C E|sx be a totally real subbundle:

R-rank(R) = r iRNR={0}.

This is a bundle version of R" C C’.
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Let's formalize this:

Let E — X be a (smooth) complex vector bundle of C-rank r.

Let £ be a holomorphic structure on E. Equivalently, fix a
Cauchy—Riemann operator

0¢ : QX E) — Q¥Y(Z, E).

Let R C E|gx be a totally real subbundle:
R-rank(R) = r iRNR={0}.

This is a bundle version of R" C C".
Then (€, R) is called a (holomorphic) bundle pair over ¥.
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Let's formalize this:

Example:

Let £4,..., L, be holomorphic C-line bundles over . Set

8:=£1@---@£r-
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Let's formalize this:

Example:

Let £4,..., L, be holomorphic C-line bundles over . Set
E=L1B...0L,.

For each i, let \; C L;|sx be a R-line subbundle. Set

R=XMD...D A\
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Let's formalize this:

Example:

Let £4,..., L, be holomorphic C-line bundles over . Set
E=L1D...0L,.
For each i, let \; C L;|sx be a R-line subbundle. Set

R=XMD...D A\

Call bundle pairs (&, R) of this type totally split.
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Let's formalize this:

There is a suitable notion of “isomorphism” for bundle pairs.
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Let's formalize this:

There is a suitable notion of “isomorphism” for bundle pairs. (Homework:
Guess what it is.)
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Let's formalize this:

There is a suitable notion of “isomorphism” for bundle pairs. (Homework:
Guess what it is.)

Chris' question: Assume ¥ =R x [0, 1]. Is every holomorphic bundle pair
on X isomorphic to one that is totally split?
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Let's formalize this:

There is a suitable notion of “isomorphism” for bundle pairs. (Homework:
Guess what it is.)

Chris' question: Assume ¥ =R x [0, 1]. Is every holomorphic bundle pair
on X isomorphic to one that is totally split?

What | think: Yes
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Let's formalize this:

There is a suitable notion of “isomorphism” for bundle pairs. (Homework:
Guess what it is.)

Chris' question: Assume ¥ =R x [0, 1]. Is every holomorphic bundle pair
on X isomorphic to one that is totally split?

What | think: Yes (at least if R is transverse at the boundary punctures)
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Let's formalize this:

There is a suitable notion of “isomorphism” for bundle pairs. (Homework:
Guess what it is.)

Chris' question: Assume ¥ =R x [0, 1]. Is every holomorphic bundle pair
on X isomorphic to one that is totally split?

What | think: Yes (at least if R is transverse at the boundary punctures)

In fact, | think this holds for any simply-connected :
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Proof Strategy:
Fix a C*°-bundle E — X and set

C(E) = {&| € is a holo. structures on E}
Aut(E) := {bundle automorphisms of E}.
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Proof Strategy:
Fix a C*°-bundle E — X and set

C(E) := {&]¢& is a holo. structures on E}
Aut(E) := {bundle automorphisms of E}.

Equivalence of holomorphic bundles is determined by the action of the
group Aut(E) on C(E).
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Proof Strategy:
Fix a C*°-bundle E — X and set

C(E) := {&]¢& is a holo. structures on E}
Aut(E) := {bundle automorphisms of E}.

Equivalence of holomorphic bundles is determined by the action of the
group Aut(E) on C(E). Fix a metric and set

A(E) :=={A] Ais a U(r)-connection on E}.
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Proof Strategy:
Fix a C*°-bundle E — X and set

C(E) := {&]¢& is a holo. structures on E}
Aut(E) := {bundle automorphisms of E}.

Equivalence of holomorphic bundles is determined by the action of the
group Aut(E) on C(E). Fix a metric and set

A(E) :={A] Ais a U(r)-connection on E}.
A connection A is determined by its covariant derivative

da: Q%X E) — QYZ, E).
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Proof Strategy:
Fix a C*°-bundle E — X and set

C(E) := {&]¢& is a holo. structures on E}
Aut(E) := {bundle automorphisms of E}.

Equivalence of holomorphic bundles is determined by the action of the
group Aut(E) on C(E). Fix a metric and set

A(E) :=={A] Ais a U(r)-connection on E}.
A connection A is determined by its covariant derivative
da: Q%X E) — QYZ, E).
There is a correspondence

A(E) «— C(E)

given by A 04 := (da)t.
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Proof Strategy:

It follows that the group Aut(E) acts on A(E).
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Proof Strategy:

It follows that the group Aut(E) acts on A(E).

Upshot of working with connections: There is a nice function floating
around.
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Proof Strategy:

It follows that the group Aut(E) acts on A(E).

Upshot of working with connections: There is a nice function floating
around. This is the Yang—Mills functional

1
YM: A(E) — R, Ab—>§”FAH%Q.
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Proof Strategy:

It follows that the group Aut(E) acts on A(E).
Upshot of working with connections: There is a nice function floating
around. This is the Yang—Mills functional

1
YM: A(E) — R, Aﬁﬂh@.

The critical points of Y M are called Yang—Mills connections. These
satisfy

diFa = 0.
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Proof Strategy:

It follows that the group Aut(E) acts on A(E).
Upshot of working with connections: There is a nice function floating
around. This is the Yang—Mills functional

1
IYM: A(E) — R, m%ﬂaﬁ}

The critical points of Y M are called Yang—Mills connections. These
satisfy

diFa = 0.
Fun fact: The gradient of Y M is tangent to the orbits of Aut(E)
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Proof Strategy:

It follows that the group Aut(E) acts on A(E).
Upshot of working with connections: There is a nice function floating
around. This is the Yang—Mills functional

1
YM: A(E) — R, Aﬁﬂh@.

The critical points of Y M are called Yang—Mills connections. These
satisfy

diFa = 0.

Fun fact: The gradient of Y M is tangent to the orbits of Aut(E) so any
two connections on a flow line of Y M correspond to equivalent
holomorphic bundles.
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Proof ldea:

Here is what we expect:
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Proof ldea:

Here is what we expect:

@ The Yang—Mills heat flow should converge at infinite time to a
Yang—Mills connection Ax.
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Proof ldea:

Here is what we expect:

@ The Yang—Mills heat flow should converge at infinite time to a
Yang—Mills connection A.

C(E) —— A(E) Er— Ao(&)
lyM flow l
C(E) +—— A(E) E(Ax) +— A
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@ The Yang—Mills heat flow should converge at infinite time to a
Yang—Mills connection A.

C(E) —— A(E) Er— Ao(&)
lyM flow l
C(E) +—— A(E) E(Ax) +— A

e We should have £ = £(Ax).
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Proof ldea:

Here is what we expect:

@ The Yang—Mills heat flow should converge at infinite time to a
Yang—Mills connection A.

C(E) —— A(E) Er— Ao(&)
lyM flow l
C(E) +—— A(E) E(Ax) +— A

e We should have £ = £(Ax).
o If X is simply-connected, then the holonomy group of A is abelian
(contained in a maximal torus in U(r)).
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Proof ldea:

Here is what we expect:

@ The Yang—Mills heat flow should converge at infinite time to a
Yang—Mills connection A.

C(E) —— A(E) Er— Ao(&)
lyM flow l
C(E) +—— A(E) E(Ax) +— A

e We should have £ = £(Ax).

o If X is simply-connected, then the holonomy group of A is abelian
(contained in a maximal torus in U(r)).
@ This should imply £(Ax) Z A1 D ... DA,
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Proof ldea:

Here is what we expect:

@ The Yang—Mills heat flow should converge at infinite time to a
Yang—Mills connection A.

C(E) —— A(E) Er— Ao(&)
lyM flow l
C(E) +—— A(E) E(Ax) +— A

e We should have £ = £(Ax).

o If X is simply-connected, then the holonomy group of A is abelian
(contained in a maximal torus in U(r)).
@ This should imply £(Ax) Z A1 D ... DA,

Goal for the rest of the talk: Justify this “expectation”.
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Proof ldea:

Here is what we expect:

@ The Yang—Mills heat flow should converge at infinite time to a
Yang—Mills connection A.

C(E) —— A(E) Er— Ao(&)
ly/vt flow l
C(E) +—— A(E) E(Ax) +— A

e We should have £ = £(Ax).
o If X is simply-connected, then the holonomy group of A is abelian

(contained in a maximal torus in U(r)).
@ This should imply £(Ax) Z A1 D ... DA,
Goal for the rest of the talk: Justify this “expectation”.

@ Give a proof of Grothendieck's theorem along these lines.
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Proof ldea:

Here is what we expect:

@ The Yang—Mills heat flow should converge at infinite time to a
Yang—Mills connection A.

C(E) —— A(E) Er— Ao(&)
ly/vt flow l
C(E) +—— A(E) E(Ax) +— A

e We should have £ = £(Ax).

o If X is simply-connected, then the holonomy group of A is abelian
(contained in a maximal torus in U(r)).
@ This should imply £(Ax) Z A1 D ... DA,

Goal for the rest of the talk: Justify this “expectation”.

@ Give a proof of Grothendieck's theorem along these lines.
@ Give a proof of Oh's theorem along these lines.

David L. Duncan (JMU) Bundle splittings on 9-punctured disks Brandeis - October 13, 2020 8/21



Proof ldea:

Here is what we expect:

@ The Yang—Mills heat flow should converge at infinite time to a
Yang—Mills connection A.

C(E) —— A(E) Er— Ao(&)
ly/vt flow l
C(E) +—— A(E) E(Ax) +— A

e We should have £ = £(Ax).

o If X is simply-connected, then the holonomy group of A is abelian
(contained in a maximal torus in U(r)).
@ This should imply £(Ax) Z A1 D ... DA,

Goal for the rest of the talk: Justify this “expectation”.

@ Give a proof of Grothendieck's theorem along these lines.
@ Give a proof of Oh's theorem along these lines.
© Discuss progress made in the case where ¥ has punctures.
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Proof of Grothendieck's theorem: ¥ = CP!
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Proof of Grothendieck's theorem: ¥ = CP!

@ For now, assume X is closed (no boundary and no punctures). Let
& — X be a holomorphic bundle, and Ag = Ag(€) the associated
U(r)-connection.
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Proof of Grothendieck's theorem: ¥ = CP!

@ For now, assume X is closed (no boundary and no punctures). Let
& — X be a holomorphic bundle, and Ag = Ag(€) the associated
U(r)-connection.

e The Yang—Mills heat flow starting at Ag is a path A = A(7) of
connections satisfying

0,A = —d;Fa, A(0) = Aq.
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Proof of Grothendieck's theorem: ¥ = CP!

@ For now, assume X is closed (no boundary and no punctures). Let
€ — X be a holomorphic bundle, and Ag = A¢(€) the associated
U(r)-connection.

e The Yang—Mills heat flow starting at Ag is a path A = A(7) of
connections satisfying

0,A = —d;Fa, A(0) = Aq.

Theorem (Rade (1992))

The Yang—Mills heat flow A(T) starting at Ag exists and is unique for all
time.
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Proof of Grothendieck's theorem: ¥ = CP!

@ For now, assume X is closed (no boundary and no punctures). Let
€ — X be a holomorphic bundle, and Ag = A¢(€) the associated
U(r)-connection.

e The Yang—Mills heat flow starting at Ag is a path A = A(7) of
connections satisfying

0,A = —d;Fa, A(0) = Aq.

Theorem (Rade (1992))

The Yang—Mills heat flow A(T) starting at Ag exists and is unique for all
time. At infinite time it converges in all derivatives to a Yang—Mills
connection A on E.
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Proof of Grothendieck's theorem: ¥ = CP!

Theorem (Rade (1992))

The Yang—Mills heat flow A(T) starting at Ao exists and is unique for all

time. At infinite time it converges in all derivatives to a Yang—Mills
connection As, on E.
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Proof of Grothendieck's theorem: ¥ = CP!

Theorem (Rade (1992))

The Yang—Mills heat flow A(T) starting at Ao exists and is unique for all

time. At infinite time it converges in all derivatives to a Yang—Mills
connection As, on E.

Theorem (Atiyah—Bott (1980), Kempf-Ness (1982), Kirwan (1983),
Donaldson (1983))

There is a path g : [0, 00] — Aut(E) so that A(T) = g(7)*Ao.
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Proof of Grothendieck's theorem: ¥ = CP!

Theorem (Rade (1992))

The Yang—Mills heat flow A(T) starting at Ao exists and is unique for all
time. At infinite time it converges in all derivatives to a Yang—Mills
connection As, on E.

Theorem (Atiyah—Bott (1980), Kempf-Ness (1982), Kirwan (1983),
Donaldson (1983))

There is a path g : [0,00] — Aut(E) so that A(T) = g(7)*Ao.

Corollary
E(Ax) = g(00)*E
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Proof of Grothendieck's theorem: ¥ = CP!

Corollary
£(Axs) = g(o0)'E J
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Proof of Grothendieck's theorem: ¥ = CP!

Corollary
E(Ax) = g(0)*E

Theorem (Atiyah—Bott (1980))

If ¥ is simply-connected (so ¥ = CP'), then the holonomy group of any
Yang—Mills connection A is contained in a maximal torus.
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Proof of Grothendieck's theorem: ¥ = CP!

Corollary
E(Ax) = g(0)*E

Theorem (Atiyah—Bott (1980))

If ¥ is simply-connected (so ¥ = CP'), then the holonomy group of any
Yang—Mills connection A is contained in a maximal torus.

Corollary

If X is simply-connected, then E(Ax) 2 N @ ... D A, for some
holomorphic line bundles A1, ..., A,.
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Proof of Grothendieck's theorem: ¥ = CP!

Corollary
E(Ax) = g(0)*E

Theorem (Atiyah—Bott (1980))

If ¥ is simply-connected (so ¥ = CP'), then the holonomy group of any
Yang—Mills connection A is contained in a maximal torus.

Corollary

If X is simply-connected, then E(Ax) 2 N @ ... D A, for some
holomorphic line bundles A1, ..., A,.

Grothendieck’s result follows from these two corollaries. ]
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Proof of Oh’s theorem: ¥~ =D
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Proof of Oh’s theorem: ¥~ =D

For now, assume X is compact with 9% # (). Let (€, R) be a holomorphic
bundle pair, and Ay = Ao(€) the U(r)-connection associated to £.
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Proof of Oh’s theorem: ¥~ =D

For now, assume X is compact with 9% # (). Let (€, R) be a holomorphic
bundle pair, and Ay = Ao(€) the U(r)-connection associated to £.

Idea: Use a reflection principle.
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Proof of Oh’s theorem: ¥~ =D

For now, assume X is compact with 9% # (). Let (€, R) be a holomorphic
bundle pair, and Ay = Ao(€) the U(r)-connection associated to £.

Idea: Use a reflection principle.

o Let D(X) = X Upq X be the double of X.
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Proof of Oh’s theorem: ¥~ =D

For now, assume X is compact with 9% # (). Let (€, R) be a holomorphic
bundle pair, and Ay = Ao(€) the U(r)-connection associated to £.

Idea: Use a reflection principle.

o Let D(X) = X Upq X be the double of X.
b D(%)

>
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Proof of Oh’s theorem: ¥~ =D

For now, assume X is compact with 9% # (). Let (€, R) be a holomorphic
bundle pair, and Ay = Ao(€) the U(r)-connection associated to £.

Idea: Use a reflection principle.

o Let D(X) = X Upq X be the double of X.
>

>

@ The double has a natural Z,-action: /\
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Proof of Oh’s theorem: ¥~ =D

To do a similar thing for &:
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Proof of Oh’s theorem: ¥~ =D

To do a similar thing for £: The totally real subbundle R determines an
anti-holomorphic involution 7 on E|s.
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Proof of Oh’s theorem: ¥~ =D

To do a similar thing for £: The totally real subbundle R determines an
anti-holomorphic involution 7 on E|ys.

@ Define D(E) := E U, E°P. This is a complex vector bundle over
D(Y).
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Proof of Oh’s theorem: ¥~ =D

To do a similar thing for £: The totally real subbundle R determines an
anti-holomorphic involution 7 on E|ys.

@ Define D(E) := E U, E°P. This is a complex vector bundle over
D(Y).
@ There is a “doubling map”

Aa(E) — A(D(E)), A — D(A),

where Ay(E) are the elements of A(E) with suitable boundary
conditions.
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Proof of Oh’s theorem: ¥~ =D

To do a similar thing for £: The totally real subbundle R determines an
anti-holomorphic involution 7 on E|ys.

@ Define D(E) := E U, E°P. This is a complex vector bundle over
D(Y).

@ There is a “doubling map”
As(E) — A(D(E)), A= D(A),

where Ay(E) are the elements of A(E) with suitable boundary
conditions.

@ The image of the doubling map is the set of connections in A(D(E))
that are fixed under the Zs-action.
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Proof of Oh’s theorem: ¥~ =D

To do a similar thing for £: The totally real subbundle R determines an
anti-holomorphic involution 7 on E|ys.

@ Define D(E) := E U, E°P. This is a complex vector bundle over
D(Y).

@ There is a “doubling map”
As(E) — A(D(E)), A= D(A),

where Ay(E) are the elements of A(E) with suitable boundary
conditions.

@ The image of the doubling map is the set of connections in A(D(E))
that are fixed under the Zs-action.

@ By performing a bundle isomorphism, it can be arranged so that
Ao(€) € As(E).
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Proof of Oh’s theorem: ¥~ =D

Now use the same proof from before:
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Proof of Oh’s theorem: ¥~ =D

Now use the same proof from before:

@ Use the heat flow to find a bundle automorphism g with g*D(Ayp)
Yang—Mills.
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Proof of Oh’s theorem: ¥~ =D

Now use the same proof from before:

@ Use the heat flow to find a bundle automorphism g with g*D(Ayp)
Yang—Mills.

o If ¥ is simply-connected (so ¥ = D), then D(X) is simply-connected.
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Proof of Oh’s theorem: ¥~ =D

Now use the same proof from before:
@ Use the heat flow to find a bundle automorphism g with g*D(Ayp)
Yang—Mills.

o If ¥ is simply-connected (so ¥ = D), then D(X) is simply-connected.

@ This implies g*D(Ag) has holonomy group contained in a maximal

torus.
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Proof of Oh’s theorem: ¥~ =D

Now use the same proof from before:
@ Use the heat flow to find a bundle automorphism g with g*D(Ayp)
Yang—Mills.
o If ¥ is simply-connected (so ¥ = D), then D(X) is simply-connected.
@ This implies g*D(Ag) has holonomy group contained in a maximal
torus.
@ Then g*D(€) is totally split.
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Proof of Oh’s theorem: ¥~ =D

Now use the same proof from before:

@ Use the heat flow to find a bundle automorphism g with g*D(Ao)
Yang—Miills.

@ If X is simply-connected (so ¥ = D), then D(X) is simply-connected.

@ This implies g*D(Ag) has holonomy group contained in a maximal
torus.

@ Then g*D(€) is totally split.

e Everything is equivariant, so g = D(g,) for some bundle
automorphism g, on X.
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Proof of Oh’s theorem: ¥~ =D

Now use the same proof from before:

Use the heat flow to find a bundle automorphism g with g*D(Ap)
Yang—Mills.

If X is simply-connected (so ¥ = D), then D(X) is simply-connected.
This implies g*D(Ap) has holonomy group contained in a maximal
torus.

Then g*D(€&) is totally split.

Everything is equivariant, so g = D(g,) for some bundle
automorphism g, on X.

Then g £ is totally split because its double D(g% &) = g*D(€) is
totally split. O
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How to handle punctures:
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How to handle punctures:

How should we handle the non-compactness?
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How to handle punctures:

How should we handle the non-compactness?

We want a space of connections that is large enough to include the
appropriate Yang—Mills connections
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How to handle punctures:

How should we handle the non-compactness?

We want a space of connections that is large enough to include the

appropriate Yang—Mills connections, but not so big that the elements are
not well-behaved analytically.
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How to handle punctures:

How should we handle the non-compactness?

We want a space of connections that is large enough to include the

appropriate Yang—Mills connections, but not so big that the elements are
not well-behaved analytically.

Idea: Use singular connections.

¥
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How to handle punctures:

How should we handle the non-compactness?

We want a space of connections that is large enough to include the

appropriate Yang—Mills connections, but not so big that the elements are
not well-behaved analytically.

Idea: Use singular connections.

Fix a metric on X that is flat near the punctures.

Y
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How to handle punctures:

How should we handle the non-compactness?

We want a space of connections that is large enough to include the

appropriate Yang—Mills connections, but not so big that the elements are
not well-behaved analytically.

Idea: Use singular connections.

Fix a metric on ¥ that is flat near the punctures. Such a metric extends
over 2, so 2 has finite volume.

Y
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How to handle punctures:

How should we handle the non-compactness?

We want a space of connections that is large enough to include the

appropriate Yang—Mills connections, but not so big that the elements are
not well-behaved analytically.

Idea: Use singular connections.

Fix a metric on ¥ that is flat near the punctures. Such a metric extends
over X, so ¥ has finite volume. This implies all solutions of d;Fs =0
have finite Yang—Mills value.
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How to handle punctures:

How should we handle the non-compactness?

We want a space of connections that is large enough to include the
appropriate Yang—Mills connections, but not so big that the elements are
not well-behaved analytically.

Idea: Use singular connections.

Fix a metric on ¥ that is flat near the punctures. Such a metric extends
over X, so ¥ has finite volume. This implies all solutions of d;Fs =0
have finite Yang—Mills value.

Consider connections that have fixed asymptotic holonomy around the
punctures.

David L. Duncan (JMU) Bundle splittings on 9-punctured disks Brandeis - October 13, 2020 15/21



How to handle punctures:

How should we handle the non-compactness?

We want a space of connections that is large enough to include the
appropriate Yang—Mills connections, but not so big that the elements are
not well-behaved analytically.

Idea: Use singular connections.

Fix a metric on ¥ that is flat near the punctures. Such a metric extends
over X, so ¥ has finite volume. This implies all solutions of d;Fs =0
have finite Yang—Mills value.

Consider connections that have fixed asymptotic holonomy around the
punctures. These generally do not extend over the punctures.
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How to handle punctures:

Singular connections turn out to be just right, from an analytic perspective
and a geometric one.
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How to handle punctures:

Singular connections turn out to be just right, from an analytic perspective
and a geometric one.

o Geometrically:

asymptotic holonomy a path in the Grassmannian
at a boundary puncture of totally real subbundles of C".
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How to handle punctures:

Singular connections turn out to be just right, from an analytic perspective
and a geometric one.

o Geometrically:
asymptotic holonomy a path in the Grassmannian

at a boundary puncture of totally real subbundles of C".

@ Analytically: We would need a version of the Réde's theorem, but for
singular connections. This requires studying the operator
Or + dadjy + dpda.
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How to handle punctures:

Singular connections turn out to be just right, from an analytic perspective
and a geometric one.

o Geometrically:

asymptotic holonomy a path in the Grassmannian
at a boundary puncture of totally real subbundles of C".

@ Analytically: We would need a version of the Réde's theorem, but for
singular connections. This requires studying the operator
Or + dadjy + djda. The operator dad + djda is self-adjoint when R
is transverse.
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How to handle punctures:

Singular connections turn out to be just right, from an analytic perspective
and a geometric one.

o Geometrically:

asymptotic holonomy a path in the Grassmannian
at a boundary puncture of totally real subbundles of C".

@ Analytically: We would need a version of the Réde's theorem, but for
singular connections. This requires studying the operator
Or + dadjy + djda. The operator dad + djda is self-adjoint when R
is transverse.

Also, many other analytic details are known (e.g., the expected
Sobolev embedding and compactness results hold). These are due to
Sibner-Sibner (1988), Kronheimer—Mrowka (1992), Rade (1995),
Daskalopolous—Wentworth (1998), and others.
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How to handle punctures:

Define Ap(E) to be the set of connections on E — ¥ satisfying the
above-discussed boundary and asymptotic holonomy conditions.

Theorem (D. (2020))

Assume R is transverse and fix Ag € As(E).
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How to handle punctures:

Define Ap(E) to be the set of connections on E — ¥ satisfying the
above-discussed boundary and asymptotic holonomy conditions.

Theorem (D. (2020))
Assume R is transverse and fix Ag € As(E).

@ There is a solution A : [0,00) — Ag(E) to the Yang—Mills heat flow,
with A(0) = Aq.
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How to handle punctures:

Define Ay(E) to be the set of connections on E — ¥ satisfying the
above-discussed boundary and asymptotic holonomy conditions.

Theorem (D. (2020))

Assume R is transverse and fix Ag € As(E).

@ There is a solution A : [0,00) — Ag(E) to the Yang—Mills heat flow,
with A(0) = Ao.

@ There is a path g of bundle automorphisms of E so that
A(t) = g(1)*Ag for all T > 0.
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How to handle punctures:

Define Ay(E) to be the set of connections on E — ¥ satisfying the
above-discussed boundary and asymptotic holonomy conditions.
Theorem (D. (2020))
Assume R is transverse and fix Ay € Ay(E).
@ There is a solution A : [0,00) — Ag(E) to the Yang—Mills heat flow,
with A(0) = Ao.
@ There is a path g of bundle automorphisms of E so that
A(t) = g(1)*Ag for all T > 0.

This bundle automorphism satisfies the appropriate boundary and
asymptotic conditions to imply that (£(A(7)), R) is isomorphic to
(£(Ao), R) (cf. the homework from the beginning of the talk).
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What remains to be done?
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What remains to be done?

@ Explore the behavior as 7 — co. Does A(7) converge to a Yang—Mills
connection? Does the path g(7) converge?
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What remains to be done?

@ Explore the behavior as 7 — co. Does A(7) converge to a Yang—Mills
connection? Does the path g(7) converge?

@ As before, in the simply-connected case the Yang—Mills bundles totally
split.
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What remains to be done?

@ Explore the behavior as 7 — co. Does A(7) converge to a Yang—Mills
connection? Does the path g(7) converge?

@ As before, in the simply-connected case the Yang—Mills bundles totally
split. However, the isomorphism realizing this splitting needs to be
satisfy the appropriate boundary and asymptotic conditions. Does it?
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What remains to be done?

@ Explore the behavior as 7 — co. Does A(7) converge to a Yang—Mills
connection? Does the path g(7) converge?

@ As before, in the simply-connected case the Yang—Mills bundles totally
split. However, the isomorphism realizing this splitting needs to be
satisfy the appropriate boundary and asymptotic conditions. Does it?

... [work in progress]
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Example: ¥ =D\ {0}
Assume £ =¥ x C.
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Example: ¥ =D\ {0}

Assume £ = ¥~ x C. We can write
da=d+ A.dr + Aypdd
for A, Ag : ST x (0,1] — iR.
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Example: ¥ = D\ {0}

Assume £ = ¥ x C. We can write
da=d+ A,dr+ Apdb
for A, Ag : S* x (0,1] — iR.Then A is Yang—Mills if and only if
D2Ag — r 10, Ag — 0,0pA, + r 1A, =0
OfAr — 0,09Ag = 0.
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Example: ¥ =D\ {0}
Assume £ = ¥ x C. We can write
da=d+ A,dr + Aydb
for A, Ag : S* x (0,1] — iR.Then A is Yang—Mills if and only if
O2Ag — r10,Ag — 0,0pA, + r topA, =0
D2A, — 0,09A9 =0.

Fourier series: A( E Ark( r)e’k‘9 Ap(r,0) = E Ag k( ’k(’.
[ )
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Example: ¥ =D\ {0}
Assume £ = ¥ x C. We can write
da=d+ A,dr+ Apdf
for A, Ag : S* x (0,1] — iR.Then A is Yang—Mills if and only if
D2Ag — r 10, Ag — 0,0pA, + r 1A, =0
D2A, — 0,09A9 =0.
Fourier series: A,( ZA,k ’ke, Ag(r,0) = ZAgk ’kg.

Then A is Yang—Mills if and only if

1 r
Ago(r) = §C9,0f2 +hgo,  Agk(r) = hox + ik/ A kdr, for k #0

o
for some constants hy x, ¢y (the functions A, x can be arbitrarily
specified).
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Example: ¥ =D\ {0}
The connection A is Yang—Mills if and only if

r

1
Ag,o(r) = §C970r2 + hg’o, Ag,k(r) = h@}k + ik/ A,’kdr, for k 75 0
o

for some constants hy k., ¢ o-
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Example: ¥ =D\ {0}
The connection A is Yang—Mills if and only if

1 r
Ag,o(r) = §C970r2 + hg’o, Ag,k(r) = h@yk + ik/ A,’kdr, for k 75 0
o

for some constants hy i, ¢y 0. These constants have geometric meaning:
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Example: ¥ =D\ {0}
The connection A is Yang—Mills if and only if

1 "

Apo(r) = §C0’0r2 + hoo,  Agk(r) = hox+ /k/ Ay kdr, for k #0
o

for some constants hy i, ¢y 0. These constants have geometric meaning:

o C970 = *FA
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Example: ¥ =D\ {0}
The connection A is Yang—Mills if and only if

r

1
Ag,o(r) = §C970r2 + h970, Ag,k(r) = h@yk + ik/ A,,kdr, for k 75 0
o

for some constants hy i, ¢y 0. These constants have geometric meaning:
o C970 = *FA

@ The asymptotic holonomy of A around the puncture is e=2™h0.0,
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Example: ¥ =D\ {0}
The connection A is Yang—Mills if and only if

r

1
Ago(r) = §C9,of2 +hoo,  Agk(r) = hox + ik/ Ay dr, for k #0
ro

for some constants hy i, ¢y 0. These constants have geometric meaning:
o C970 = *FA
@ The asymptotic holonomy of A around the puncture is e
@ The holonomy around the boundary loop is equal to —mcyg — 2mhg .

—27rh970
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Example: ¥ =D\ {0}
The connection A is Yang—Mills if and only if

r

1
Ag’o(r) = §C970r2 + h970, Ag’k(r) = h@}k + ik/ Ar,kdr, for k 75 0
ro

for some constants hy i, ¢y 0. These constants have geometric meaning:
€0 = *FA

The asymptotic holonomy of A around the puncture is e
The holonomy around the boundary loop is equal to —mcyg — 2mhgo.

On the bundle side, this holonomy recovers the equals the Maslov
index pu(R) (times i/2), and so

u(R) = 271'1'(C970 + 2/7970).

—27rh970
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Example: ¥ =D\ {0}
The connection A is Yang—Mills if and only if

r

1
Ag’o(r) = §C970r2 + h970, Ag’k(r) = h@}k + ik/ Ar,kdr, for k 75 0
ro

for some constants hy i, ¢y 0. These constants have geometric meaning:
€0 = *FA

The asymptotic holonomy of A around the puncture is e
The holonomy around the boundary loop is equal to —mcyg — 2mhgo.

On the bundle side, this holonomy recovers the equals the Maslov
index pu(R) (times i/2), and so

u(R) = 271'1'(C970 + 2/7970).

—27rh970

The remaining data (hp « and A, k) are constrained by the choice of
R.
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Thank you for your attention!
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