Heat flows for cylindrical-end manifolds

David L. Duncan

McMaster University

2016 CMS Winter Meeting

<ロ> (日) (日) (日) (日) (日)

• Yang-Mills functional for cylindrical-end 4-manifolds

< 17 ▶

A B A A B A

• Yang-Mills functional for cylindrical-end 4-manifolds

• Energy functional for cylindrical-end surfaces into a symplectic manifold

• Yang-Mills functional for cylindrical-end 4-manifolds

• Energy functional for cylindrical-end surfaces into a symplectic manifold

Applications: Floer theory

- Yang-Mills functional for cylindrical-end 4-manifolds The absolute minimizers are ASD connections.
- Energy functional for cylindrical-end surfaces into a symplectic manifold

Applications: Floer theory

- Yang-Mills functional for cylindrical-end 4-manifolds The absolute minimizers are ASD connections.
- Energy functional for cylindrical-end surfaces into a symplectic manifold The absolute minimizers are holomorphic curves.

Applications: Floer theory

- Yang-Mills functional for cylindrical-end 4-manifolds The absolute minimizers are ASD connections.
- Energy functional for cylindrical-end surfaces into a symplectic manifold The absolute minimizers are holomorphic curves.

Applications: Floer theory

More specifically, the gradient flows provide a weaker alternative to the implicit function theorem. (More later.)

・ロン ・四 ・ ・ ヨン ・ ヨン

Z = a connected, oriented cylindrical-end 4-manifold (with metric)

- Z = a connected, oriented cylindrical-end 4-manifold (with metric)
- Y = the 3-manifold at infinity

- Z = a connected, oriented cylindrical-end 4-manifold (with metric)
- Y = the 3-manifold at infinity
- $P \rightarrow Z$ an SO(3)-bundle

- Z = a connected, oriented cylindrical-end 4-manifold (with metric)
- Y = the 3-manifold at infinity
- $P \rightarrow Z$ an SO(3)-bundle

Assume all flat connections on Y are irreducible and non-degenerate.

- Z = a connected, oriented cylindrical-end 4-manifold (with metric)
- Y = the 3-manifold at infinity
- $P \rightarrow Z$ an SO(3)-bundle

Assume all flat connections on Y are irreducible and non-degenerate.

Assume all ASD connections are regular.

a = fixed flat connection on Y

イロト イポト イヨト イヨト

a = fixed flat connection on Y

 $\mathcal{A}(Z; a) =$ space of connections on Z asymptotic to a

< 🗇 🕨

A B F A B F

a = fixed flat connection on Y

 $\mathcal{A}(Z; a) =$ space of connections on Z asymptotic to a

The Yang-Mills functional is

$$\mathcal{YM}: \mathcal{A}(Z; a) \to \mathbb{R}, \qquad A \mapsto \frac{1}{2} \|\mathcal{F}_A\|_{L^2}^2.$$

-

a = fixed flat connection on Y

 $\mathcal{A}(Z; a) =$ space of connections on Z asymptotic to a

The Yang-Mills functional is

$$\mathcal{YM}: \mathcal{A}(Z; a) \to \mathbb{R}, \qquad A \mapsto \frac{1}{2} \|F_A\|_{L^2}^2.$$

1

The negative gradient flow of $\mathcal{Y}\mathcal{M}$ is

$$\partial_{\tau}A(\tau) = -d^*_{A(\tau)}F_{A(\tau)}, \qquad A(0) = A_0$$

a = fixed flat connection on Y

 $\mathcal{A}(Z; a) =$ space of connections on Z asymptotic to a

The Yang-Mills functional is

$$\mathcal{YM}: \mathcal{A}(Z; a) \to \mathbb{R}, \qquad A \mapsto \frac{1}{2} \|F_A\|_{L^2}^2.$$

-1

The negative gradient flow of $\mathcal{Y}\mathcal{M}$ is

$$\partial_{\tau} A(\tau) = -d^*_{A(\tau)} F_{A(\tau)}, \qquad A(0) = A_0$$

This is the Yang-Mills heat flow starting at A_0 .

David L. Duncan (McMaster University) Heat flows for cylindrical-end manifolds 2016 CMS Winter Meeting 4 / 9

э

(日) (同) (三) (三)

Theorem (D. '14, D. '16)

Assume $Ind(a) \leq 7$. Then there is some $\eta > 0$ so that the following holds:

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (D. '14, D. '16)

Assume $Ind(a) \le 7$. Then there is some $\eta > 0$ so that the following holds: If $A_0 \in \mathcal{A}(Z; a)$ satisfies

$$\|F_{A_0}^+\|_{L^2} < \eta,$$

then there exists a unique solution $A : [0, \infty) \to \mathcal{A}(Z; a)$ to the Yang-Mills heat flow starting at A_0 ,

Theorem (D. '14, D. '16)

Assume $Ind(a) \le 7$. Then there is some $\eta > 0$ so that the following holds: If $A_0 \in \mathcal{A}(Z; a)$ satisfies

$$\|F_{A_0}^+\|_{L^2} < \eta,$$

then there exists a unique solution $A : [0, \infty) \to \mathcal{A}(Z; a)$ to the Yang-Mills heat flow starting at A_0 , and there is an ASD connection A_∞ so that

$$\lim_{\tau\to\infty}A(\tau)=A_{\infty}$$

where the convergence is exponential and in $C^{\infty}(Z)$.

Theorem (D. '14, D. '16)

Assume $Ind(a) \le 7$. Then there is some $\eta > 0$ so that the following holds: If $A_0 \in \mathcal{A}(Z; a)$ satisfies

$$\|F_{A_0}^+\|_{L^2} < \eta,$$

then there exists a unique solution $A : [0, \infty) \to \mathcal{A}(Z; a)$ to the Yang-Mills heat flow starting at A_0 , and there is an ASD connection A_∞ so that

$$\lim_{\tau\to\infty}A(\tau)=A_{\infty}$$

where the convergence is exponential and in $C^{\infty}(Z)$.

This extends work of Struwe '94 and Schlatter '97, working in the compact setting.

< 回 ト < 三 ト < 三 ト

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Implicit function theorem

Heat flow

< 17 ▶

- 4 ⊒ →

Implicit function theorem

• Assume ASD connections are regular

Heat flow

- N

< 行

Implicit function theorem

• Assume ASD connections are regular

Heat flow

• Assume ASD connections are regular

Implicit function theorem

- Assume ASD connections are regular
- Assume $\|\mathcal{F}_{\mathcal{A}_0}^+\|_{L^p} < \eta$, p > 4

Heat flow

• Assume ASD connections are regular

Implicit function theorem

• Assume ASD connections are regular

• Assume
$$\|F_{A_0}^+\|_{L^p} < \eta$$
, $p > 4$

Heat flow

- Assume ASD connections are regular
- Assume $\|F_{A_0}^+\|_{L^2} < \eta$

Implicit function theorem

- Assume ASD connections are regular
- Assume $\|F_{A_0}^+\|_{L^p} < \eta$, p > 4
- Get an ASD A_∞ satisfying

 $||A_0 - A_\infty||_{W^{1,p}} \le C ||F_{A_0}^+||_{L^p}$

Heat flow

- Assume ASD connections are regular
- Assume $\|F_{A_0}^+\|_{L^2} < \eta$

Implicit function theorem

- Assume ASD connections are regular
- Assume $\|F_{A_0}^+\|_{L^p} < \eta$, p > 4
- Get an ASD A_∞ satisfying

$$||A_0 - A_\infty||_{W^{1,p}} \le C ||F_{A_0}^+||_{L^p}$$

Heat flow

- Assume ASD connections are regular
- Assume $\|F_{A_0}^+\|_{L^2} < \eta$
- Get an ASD A_∞ satisfying

$$\|A_0 - A_\infty\|_{W^{1,2}} \le C \|F_{A_0}^+\|_{L^2}$$

Implicit function theorem

- Assume ASD connections are regular
- Assume $\|F_{A_0}^+\|_{L^p} < \eta$, p > 4
- Get an ASD A_∞ satisfying

$$\|A_0 - A_\infty\|_{W^{1,p}} \le C \|F_{A_0}^+\|_{L^p}$$

• C depends only on c satisfying

 $\|W\|_{W^{1,p}} \leq c \|d_A W\|_{L^p}$

for $W\in \Omega^+$ and A ASD

Heat flow

- Assume ASD connections are regular
- Assume $\|F_{A_0}^+\|_{L^2} < \eta$
- \bullet Get an ASD A_∞ satisfying

$$\|A_0 - A_\infty\|_{W^{1,2}} \le C \|F_{A_0}^+\|_{L^2}$$

5/9

Implicit function theorem

- Assume ASD connections are regular
- Assume $\|F_{A_0}^+\|_{L^p} < \eta$, p > 4
- Get an ASD A_∞ satisfying

$$\|A_0 - A_\infty\|_{W^{1,p}} \le C \|F_{A_0}^+\|_{L^p}$$

• C depends only on c satisfying

 $\|W\|_{W^{1,p}} \leq c \|d_A W\|_{L^p}$

for $W\in \Omega^+$ and A ASD

Heat flow

- Assume ASD connections are regular
- Assume $\|F_{A_0}^+\|_{L^2} < \eta$
- Get an ASD A_∞ satisfying

 $\|A_0 - A_\infty\|_{W^{1,2}} \le C \|F_{A_0}^+\|_{L^2}$

• C depends only on c satisfying

 $\|W\|_{W^{1,2}} \leq c \|d_A W\|_{L^2}$

イロト 不得下 イヨト イヨト

for $W\in \Omega^+$ and A ASD

Upshots

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Upshots

• Hilbert space techniques are available with L^2 (e.g., integration by parts)

- Hilbert space techniques are available with L^2 (e.g., integration by parts)
- L^2 is conformally invariant (on two forms)

- Hilbert space techniques are available with L^2 (e.g., integration by parts)
- L^2 is conformally invariant (on two forms)
- \Rightarrow For the heat flow, it is easier to compute the constants c, C, η in terms of geometric data

- Hilbert space techniques are available with L^2 (e.g., integration by parts)
- L^2 is conformally invariant (on two forms)
- \Rightarrow For the heat flow, it is easier to compute the constants $c,\,C,\eta$ in terms of geometric data
- Waldron '14: A new proof of Taubes' grafting theorem

- Hilbert space techniques are available with L^2 (e.g., integration by parts)
- L^2 is conformally invariant (on two forms)

 \Rightarrow For the heat flow, it is easier to compute the constants $c,\,C,\eta$ in terms of geometric data

- Waldron '14: A new proof of Taubes' grafting theorem
- Applications to Atiyah-Floer conjectures: Produce ASD connections from holomorphic curves (D. '14),

- Hilbert space techniques are available with L^2 (e.g., integration by parts)
- L^2 is conformally invariant (on two forms)

 \Rightarrow For the heat flow, it is easier to compute the constants $c,\,C,\eta$ in terms of geometric data

• Waldron '14: A new proof of Taubes' grafting theorem

• Applications to Atiyah-Floer conjectures: Produce ASD connections from holomorphic curves (D. '14), and vice-versa (D. '14 + work in progress).

(日) (周) (三) (三)

3

Implicit function theorem

Heat flow

< 🗇 🕨

- - E - N

Implicit function theorem

Heat flow

• Must assume the asymptotic flat connection is irreducible and non-degenerate

Implicit function theorem

Heat flow

• Must assume the asymptotic flat connection is irreducible and non-degenerate

 \Rightarrow Fredholm property for linearized operator

Implicit function theorem

• Must assume the asymptotic flat connection is irreducible and non-degenerate

 \Rightarrow Fredholm property for linearized operator

Heat flow

• Short-time existence for flow holds without irreducible or non-degenerate hypotheses!

Implicit function theorem

- Must assume the asymptotic flat connection is irreducible and non-degenerate
- \Rightarrow Fredholm property for linearized operator
- Must assume regularity:

 $\|W\|_{W^{1,p}} \leq c \|d_A W\|_{L^p}$

for $W \in \Omega^+$, and A ASD

Heat flow

• Short-time existence for flow holds without irreducible or non-degenerate hypotheses!

Implicit function theorem

- Must assume the asymptotic flat connection is irreducible and non-degenerate
- \Rightarrow Fredholm property for linearized operator
- Must assume regularity:

 $\|W\|_{W^{1,p}} \leq c \|d_A W\|_{L^p}$

- for $W \in \Omega^+$, and A ASD
- \Rightarrow bounded right inverse for linearized operator

Heat flow

• Short-time existence for flow holds without irreducible or non-degenerate hypotheses!

7/9

Implicit function theorem

- Must assume the asymptotic flat connection is irreducible and non-degenerate
- \Rightarrow Fredholm property for linearized operator
- Must assume regularity:

 $\|W\|_{W^{1,p}} \leq c \|d_A W\|_{L^p}$

for $W \in \Omega^+$, and A ASD

 \Rightarrow bounded right inverse for linearized operator

Heat flow

- Short-time existence for flow holds without irreducible or non-degenerate hypotheses!
- To get long-time existence only need to assume $\exists c$ such that

$$\|W\|_{W^{1,2}} \le c \|d_A W\|_{L^2}$$

for $W \in \operatorname{im}(d_A^+)$, and $A \operatorname{ASD}$

A B F A B F

Implicit function theorem

- Must assume the asymptotic flat connection is irreducible and non-degenerate
- \Rightarrow Fredholm property for linearized operator
- Must assume regularity:

 $\|W\|_{W^{1,p}} \leq c \|d_A W\|_{L^p}$

for $W \in \Omega^+$, and A ASD

 \Rightarrow bounded right inverse for linearized operator

Heat flow

- Short-time existence for flow holds without irreducible or non-degenerate hypotheses!
- To get long-time existence only need to assume $\exists c$ such that

$$\|W\|_{W^{1,2}} \leq c \|d_A W\|_{L^2}$$

for $W \in \operatorname{im}(d_A^+)$, and $A \operatorname{\mathsf{ASD}}$

Work of Waldron '16 suggests this is not even necessary!

A B F A B F

7/9

Future directions

David L. Duncan (McMaster University) Heat flows for cylindrical-end manifolds 2016 CMS Winter Meeting 8 / 9

・ 何 ト ・ ヨ ト ・ ヨ ト

3

Future directions

• Understand what happens at infinite time in minimal regularity settings.

Future directions

- Understand what happens at infinite time in minimal regularity settings.
- Can this help to understand Floer moduli spaces in the absence of perturbations?

Thank you for your attention!

< 同 ト く ヨ ト く ヨ ト