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Two settings:

• Yang-Mills functional for cylindrical-end 4-manifolds

The absolute minimizers are ASD connections.

• Energy functional for cylindrical-end surfaces into a symplectic manifold

The absolute minimizers are holomorphic curves.

Applications: Floer theory

More specifically, the gradient flows provide a weaker alternative to the
implicit function theorem. (More later.)
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Set-up in Yang-Mills case

Z = a connected, oriented cylindrical-end 4-manifold (with metric)

Y = the 3-manifold at infinity

P → Z an SO(3)-bundle

Assume all flat connections on Y are irreducible and non-degenerate.

Assume all ASD connections are regular.
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Set-up (cont’d)

a = fixed flat connection on Y

A(Z ; a) = space of connections on Z asymptotic to a

The Yang-Mills functional is

YM : A(Z ; a)→ R, A 7→ 1

2
‖FA‖2

L2 .

The negative gradient flow of YM is

∂τA(τ) = −d∗A(τ)FA(τ), A(0) = A0

This is the Yang-Mills heat flow starting at A0.
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The main theorem

Theorem (D. ’14, D. ’16)

Assume Ind(a) ≤ 7. Then there is some η > 0 so that the following holds:

If A0 ∈ A(Z ; a) satisfies
‖F+

A0
‖L2 < η,

then there exists a unique solution A : [0,∞)→ A(Z ; a) to the Yang-Mills
heat flow starting at A0, and there is an ASD connection A∞ so that

lim
τ→∞

A(τ) = A∞

where the convergence is exponential and in C∞(Z ).

This extends work of Struwe ’94 and Schlatter ’97, working in the compact
setting.
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Comparison with the IFT

Implicit function theorem

• Assume ASD connections
are regular

• Assume ‖F+
A0
‖Lp < η, p > 4

• Get an ASD A∞ satisfying

‖A0 − A∞‖W 1,p ≤ C‖F+
A0
‖Lp

• C depends only on c
satisfying

‖W ‖W 1,p ≤ c‖dAW ‖Lp

for W ∈ Ω+ and A ASD

Heat flow

• Assume ASD connections
are regular

• Assume ‖F+
A0
‖L2 < η

• Get an ASD A∞ satisfying

‖A0 − A∞‖W 1,2 ≤ C‖F+
A0
‖L2

• C depends only on c
satisfying

‖W ‖W 1,2 ≤ c‖dAW ‖L2

for W ∈ Ω+ and A ASD
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Upshots

• Hilbert space techniques are available with L2 (e.g., integration by parts)

• L2 is conformally invariant (on two forms)

⇒ For the heat flow, it is easier to compute the constants c ,C , η in terms
of geometric data

• Waldron ’14: A new proof of Taubes’ grafting theorem

• Applications to Atiyah-Floer conjectures: Produce ASD connections from
holomorphic curves (D. ’14),

and vice-versa (D. ’14 + work in progress).
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Comparison with the IFT (a deeper look)

Implicit function theorem

• Must assume the asymptotic
flat connection is irreducible
and non-degenerate

⇒ Fredholm property for
linearized operator

• Must assume regularity:

‖W ‖W 1,p ≤ c‖dAW ‖Lp

for W ∈ Ω+, and A ASD

⇒ bounded right inverse for
linearized operator

Heat flow

• Short-time existence for flow
holds without irreducible or
non-degenerate hypotheses!

• To get long-time existence
only need to assume ∃c such
that

‖W ‖W 1,2 ≤ c‖dAW ‖L2

for W ∈ im(d+
A ), and A ASD

Work of Waldron ’16 suggests
this is not even necessary!

David L. Duncan (McMaster University) Heat flows for cylindrical-end manifolds 2016 CMS Winter Meeting 7 / 9



Comparison with the IFT (a deeper look)

Implicit function theorem

• Must assume the asymptotic
flat connection is irreducible
and non-degenerate

⇒ Fredholm property for
linearized operator

• Must assume regularity:

‖W ‖W 1,p ≤ c‖dAW ‖Lp

for W ∈ Ω+, and A ASD

⇒ bounded right inverse for
linearized operator

Heat flow

• Short-time existence for flow
holds without irreducible or
non-degenerate hypotheses!

• To get long-time existence
only need to assume ∃c such
that

‖W ‖W 1,2 ≤ c‖dAW ‖L2

for W ∈ im(d+
A ), and A ASD

Work of Waldron ’16 suggests
this is not even necessary!

David L. Duncan (McMaster University) Heat flows for cylindrical-end manifolds 2016 CMS Winter Meeting 7 / 9



Comparison with the IFT (a deeper look)

Implicit function theorem

• Must assume the asymptotic
flat connection is irreducible
and non-degenerate

⇒ Fredholm property for
linearized operator

• Must assume regularity:

‖W ‖W 1,p ≤ c‖dAW ‖Lp

for W ∈ Ω+, and A ASD

⇒ bounded right inverse for
linearized operator

Heat flow

• Short-time existence for flow
holds without irreducible or
non-degenerate hypotheses!

• To get long-time existence
only need to assume ∃c such
that

‖W ‖W 1,2 ≤ c‖dAW ‖L2

for W ∈ im(d+
A ), and A ASD

Work of Waldron ’16 suggests
this is not even necessary!

David L. Duncan (McMaster University) Heat flows for cylindrical-end manifolds 2016 CMS Winter Meeting 7 / 9



Comparison with the IFT (a deeper look)

Implicit function theorem

• Must assume the asymptotic
flat connection is irreducible
and non-degenerate

⇒ Fredholm property for
linearized operator

• Must assume regularity:

‖W ‖W 1,p ≤ c‖dAW ‖Lp

for W ∈ Ω+, and A ASD

⇒ bounded right inverse for
linearized operator

Heat flow

• Short-time existence for flow
holds without irreducible or
non-degenerate hypotheses!

• To get long-time existence
only need to assume ∃c such
that

‖W ‖W 1,2 ≤ c‖dAW ‖L2

for W ∈ im(d+
A ), and A ASD

Work of Waldron ’16 suggests
this is not even necessary!

David L. Duncan (McMaster University) Heat flows for cylindrical-end manifolds 2016 CMS Winter Meeting 7 / 9



Comparison with the IFT (a deeper look)

Implicit function theorem

• Must assume the asymptotic
flat connection is irreducible
and non-degenerate

⇒ Fredholm property for
linearized operator

• Must assume regularity:

‖W ‖W 1,p ≤ c‖dAW ‖Lp

for W ∈ Ω+, and A ASD

⇒ bounded right inverse for
linearized operator

Heat flow

• Short-time existence for flow
holds without irreducible or
non-degenerate hypotheses!

• To get long-time existence
only need to assume ∃c such
that

‖W ‖W 1,2 ≤ c‖dAW ‖L2

for W ∈ im(d+
A ), and A ASD

Work of Waldron ’16 suggests
this is not even necessary!
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Future directions

• Understand what happens at infinite time in minimal regularity settings.

• Can this help to understand Floer moduli spaces in the absence of
perturbations?
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Thank you for your attention!
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