
On the components of the gauge group

for PU(r)-bundles

David L. Duncan

Abstract

We discuss a general procedure for using characteristic classes to study
the components of the gauge group for a principal G-bundle. To illustrate
this, we work out the case where G is the projective unitary group.
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1 Introduction

Fix a Lie group G and a space X. The objective of these notes is to describe
a simple strategy for using the characteristic classes of G-bundles over X to
glean information about the components of the gauge group of any fixed G-
bundle. Rather than stating any general theorems to this effect, we illustrate the
techniques by working out the specific case where G = PU(r) is the projective
unitary group, and X is smooth manifold with low dimension. We note that
these are by no means necessary restrictions, and the techniques we describe here
can often be used in much more general settings (e.g., when X is a CW complex
of higher dimension, or G is a some other Lie group). For concreteness, we
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work in the smooth category, so all spaces and maps are assumed to be smooth.
Those interested in working in other categories (e.g., topolgical, CW) can, for
the most part, simply reinterpret the words ‘space’, ‘map’, etc.

As an application, we arrive at several results regarding the degree and parity
of gauge transformations on PU(r)-bundles. These are all standard for the case
r = 2, but our proofs differ in flavor from many of those appearing elsewhere in
the literature, e.g., [4] [2]. For example, we provide an alternate proof of a result
of Dostoglou and Salamon [2] that a non-trivial bundle on a closed 3-manifold
has a degree 1 gauge transformation (see Lemma 4.6 for a precise statement).

2 Associated bundles and the gauge group

Let G be a Lie group, X a manifold and P → X a principal G-bundle (our
convention is that the action of G on P is a right action). We will say that two
principal G-bundles P → X and P ′ → X are isomorphic (as G-bundles) if
there is a G-equivariant bundle map φ : P → P ′ covering the identity. We will
refer to such a φ as a G-bundle isomorphism.

Suppose we are given a right action ρ : G→ Diff(F ) of G on a manifold F .
Then we can form the associated bundle

P ×G F := (P × F )/G

where G acts diagonally on P ×F . The space P ×GF is naturally a fiber bundle
over X with fiber F . If F has additional structure, and the action ρ respects
this structure, then the fibers of P ×G F → X inherit this additional structure.

Example 2.1. Suppose G acts on a vector space V by linear transformations.
Then

P (V ) := P ×G V

is naturally a vector bundle over X.

Example 2.2. Suppose H is a second Lie group and G acts on H. Assume
in addition that the action of G on H commutes with the action of H on itself
given by right multiplication. Then the space P ×GH is naturally equipped with
the structure of a principal H-bundle over X. For example, take G = SU(r)
and H = PU(r) (see the next section for a review of PU(r)). Then SU(r) acts
on PU(r) by left multiplication of the inverse via the homomorphism SU(r) →
PU(r). This action commutes with right multiplication, so

P ×SU(r) PU(r) −→ X

is a principal PU(r)-bundle.

Example 2.3. Consider action of G on itself by conjugation. This allows us
to form the bundle
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P ×G G −→ X.

Note, however, that though the fibers of P ×G G are diffeomorphic to the group
G, this is not a principal G-bundle in a canonical way. This is because the mul-
tiplication action of G on itself does not, in general, commute with conjugation.

A gauge transformation on P is a G-bundle isomorphism from P to itself.
The set of gauge transformations on P forms a group, called the gauge group,
and is denoted G(P ). One may equivalently view the gauge group as the set
Map(P,G)G of G-equivariant maps P → G. Here G acts on itself by the (right
action of) conjugation. That is, the right action of g ∈ G on G is the map
G→ G given by h 7−→ g−1hg. Then the identification

G(P ) = Map(P,G)G

follows by sending u : P → P to the map gu : P → G defined by the formula

u(p) = p · gu(p).

In general, we will typically not distinguish between u and gu.
There is a third equivalent formulation of the gauge group. In this formula-

tion one views gauge transformations as sections of the bundle P×GG→ X from
Example 2.3. It is an easy exercise to show there is a canonical identification
Map(P,G)G = Γ(P ×G G).

Viewing the the gauge group as a space of maps, it is equipped with a natural
topology.1 In these notes we are interested in the set of connected components
π0 G(P ). This notation makes sense because the gauge group is locally path-
connected, and so the connected components are exactly the path-connected
components. We will use

G0(P ) ⊆ G(P )

to denote the component containing the identity.

3 The general strategy

Here we sketch the general strategy for using characteristic classes to study
the components of the gauge group. The crux of the matter is the following
observation by Donaldson [1]. We include a proof here for convenience.

Proposition 3.1. [1, Section 2.5.2] Suppose G is a compact Lie group, X is a
smooth manifold and P → X is a principal G-bundle. Then there is a bijection
between π0(G(P )) and the set of isomorphism classes of principal G-bundles

1Actually, there are many natural topologies one could put on G(P ) (e.g., the topology
of uniform convergence or the topology of uniform convergence in all (or some) derivatives).
However, the set of connected components will be the same, and so we can unambiguously
write π0 G(P ).
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over S1×X that restrict to P on a fiber. This bijection is induced from the map
that sends a gauge transformation u to the bundle

Pu := [0, 1]× P/(0, u(p)) ∼ (1, p), (1)

given by the mapping torus of u.

Proof. Well-defined: The isomorphism class of the bundle Pu depends only on
the path component of u in G(P ). The gauge group is locally path-connected
(it is locally modeled on the vector space consisting of sections of the bundle
P (g) defined by the adjoint representation), so the connected components are
the path components, and the map (1) descends to a give a well-defined map
from π0(G(P )) to the isomorphism classes of principal G-bundles over S1 ×X
that restrict to P on a fiber.

Surjectivity: Suppose we are given any bundle Q→ S1×X with Q|{1}×X =
P , and consider the obvious projection π : Q → S1. Since G is compact, Q
admits a G-invariant metric. (This can be obtained by first choosing any metric
(·, ·) and then declaring

(v, w)inv :=
1

vol(G)

∫
G

(DRgv,DRgw) dvolG,

where DRg is the pushforward of multiplication by g ∈ G and we are using an
invariant Haar measure to define the integral on G.) Let Φt : Q→ Q denote the
time-t gradient flow of π, normalized so Φ1 maps each fiber to itself (this is just
saying the circle has length 1). The G-invariance implies that Φ is G-equivariant.
Then u := Φ1|π−1(1) : P → P is the desired gauge transformation.

Injectivity: Suppose there is some u ∈ G(P ) with Ψ : Pu
∼=→ S1 × P . Let

Φ• : I×Pu → Pu be the gradient flow as constructed in the previous paragraph,
and π : S1 × P → P the projection. Then consider the composition

π ◦Ψ ◦ Φ• ◦Ψ−1| : I × P −→ P.

where, in the domain, we have set P = {1} × P ⊂ Q. Since everything is
equivariant, this is a path in G(P ) from u to the identity map.

Proposition 3.1 serves as the vehicle for passing from topological information
about principal bundles to topological information about gauge transformations.
Topological information about principal G-bundles is captured by characterisic
classes. For our purposes, we will say that a characteristic class for G is
a mapping k that assigns to each principal G-bundle P a cohomology class
k(P ) ∈ H∗(X,R) for some ring R. We assume that k is functorial in the sense
that for each map f : Y → X, one has

k(f∗P ) = f∗k(P ).

It follows that k(P ) only depends on the G-bundle isomorphism class of P . The
primary examples are the Chern classes for U(r)- and SU(r)-bundles, and the
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Pontryagin and Stiefel-Whitney classes for G = SO(r). In Section 4.2 we will
discuss certain characteristic classes for G = PU(r).

Fix a gauge transformation u ∈ G(P ), and let Pu be the bundle from Propo-
sition 3.1. Suppose one has a preferred characteristic class k for G. Then
k(Pu) is unchanged under small perturbations of u, and so depends only on the
connected component of u in G(P ).

Now suppose one has enough characteristic classes to classify all G-bundles
over S1 ×X. Then it follows immediately from Proposition 3.1 that two gauge
transformations u, u′ ∈ G(P ) are in the same connected component if and only
if these characteristic classes all agree on the bundles Pu and Pu′ . In the next
section we carry this out explicitly for the case G = PU(r) and show how one
can use this information to extract various existence results.

Finally, we make a few remarks about the higher homotopy groups of the
gauge group. We begin with π1 (G(P )). Given a loop u : S1 → G(P ), one can
form a bundle Ru → S1 × S1 ×X by declaring R to be the quotient

[0, 1]× S1 × P/(0, s, u(s)p) ∼ (1, s, p).

Then there is an analogue of Proposition 3.1 that says two loops u, u′ are homo-
topic if and only if the bundles Ru and Ru′ are isomorphic. Then one can repeat
the process above, and therefore use characteristic classes on (dim(X) + 2)-
dimensional manifolds to distinguish elements of π1(G(P )). Taking this gener-
alization one step further, one can use characteristic classes to study πn(G(P ))
for n ∈ N. This can be a powerful strategy for small n, but the trade-off is that,
for a given group G, it is not always the case that characteristic classes always
detect non-isomorphic bundles over large-dimensional manifolds. For example,
it is well-known that there are manifolds Z and non-isomorphic U(r)-bundles
over Z that have identical characteristic classes. On the other hand, we will see
in the next section that if the dimension of Z is no greater than 4, then the
characteristic classes for PU(r) distinguish PU(r)-bundles over Z.

4 The case G = PU(r)

4.1 Properties of PU(r)

Let r ≥ 2 and consider the unitary group U(r). This group has center consisting
of matrices of the form γId where γ ∈ S1 = U(1). We identify this center with
U(1), and the projective unitary group is the quotient

PU(r) := U(r)/U(1).

This group admits an equivalent description that is also quite useful. Con-
sider the special unitary group SU(r) ⊆ U(r). This has center Zr consisting of
matrices of the form e2πid/rId for d ∈ {0, . . . , r − 1}. Quotienting recovers the
projective unitary group
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PU(r) = SU(r)/Zr.

For this reason, PU(r) is often called the projective special unitary group
and is sometimes denoted PSU(r).

Set G := PU(r) and let g := pu(r) denote its Lie algebra. It follows from the
previous paragraph that G has trivial center, and is connected and compact.
Furthermore,

π1(G) ∼= Zr,

since SU(r) is simply-connected. Moreover, being the quotient of SU(r) by a
discrete set, we have a Lie algebra isomorphism

g ∼= su(r) = {µ ∈ End(Cr) | µ∗ = −µ, tr(µ) = 0} .

Hence g is simple and so it admits an Ad-invariant inner product; moreover,
this is unique up to multiplication by a positive scalar. Indeed, all such inner
products are all of the form

〈µ, ν〉 = κrtr(µ · ν∗) = −κrtr(µ · ν),

for some κr > 0, where the trace is the one induced from the identification
g ∼= su(r) ⊂ End(Cr), and µ · ν denotes matrix multiplication in End(Cr). Here
we describe several common normalizations for this inner product.

• Taking κr = 1 one obtains the Frobenius inner product. This is the
restriction to g of the standard inner product on the euclidean vector
space End(Cr) = R2r2 .

• When κr = 2r this is (the negative of) the Killing form

B : g⊗ g −→ R

In general, the Killing form can be abstractly defined by declaring that
B(µ, ν) is the trace of the operator

ad(µ) ◦ ad(ν) = [µ, [ν, ·]] .

Here the trace is taken in the vector space

End(g) ⊂ End (End(Cr)) = End
(
Cr

2
)
.

We will denote this by Tr to distinguish it from the trace tr on End(Cr)
above. Then a computation shows

Tr (ad(µ) ◦ ad(ν)) = 2rtr (µ · ν) . (2)
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• By taking κr = 1/4π2 one obtains the inner product defined by declaring
that the highest coroot of the g to have norm

√
2. That is, we consider

the inner product such that if ξ ∈ g = su(r) is any Lie algebra element
mapping to −Id ∈ SU(r) under the Lie-theoretic exponential map, then ξ
has norm

√
2. In terms of the standard basis coming from the embedding

g ⊂ End(Cr), the element

ξ =


0 2πi 0 . . . 0

2πi 0 0 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0


maps to −Id ∈ SU(r), since it can be diagonalized to

2πi 0 0 . . . 0
0 −2πi 0 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0


Then ξ has norm

√
2 when one uses the inner product 〈·, ·〉 obtained by

taking κr = 1/4π2.

For our purposes, we leave the constant κr > 0 arbitrary, but fixed. In this way
we hope that the reader will have an easier time matching up our formulas with
those appearing elsewhere in the literature.

Having fixed an inner product on g, we note that the adjoint map can be
viewed as a representation of the form Ad : G → SO(g). Moreover, this repre-
sentation is faithful.

Lastly, consider the action of U(r) on itself by conjugation. The center U(1)
fixes every point in U(r), and so this action descends to an action of G on U(r).
We note that this G action fixes the subgroup SU(r) ⊂ U(r).

4.2 Classification of PU(r)-bundles

In [7], L.M. Woodward exploited the adjoint representation to classify the prin-
cipal PU(r)-bundles over spaces of dimension up to 4. This classification scheme
assigns cohomology classes

t2(P ) ∈ H2(X,Zr), q4(P ) ∈ H4(X,Z)

to each principal PU(r)-bundle P → X. For example, q4 is defined to be the
second Chern class of the complexified adjoint bundle P (g)C := P (g)⊗ C,

q4(P ) := c2 (P (g)C) , (3)
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where g = pu(r) and c2 is the second Chern class. The class t2 is defined as the
mod r reduction of a suitable first Chern class.2 We will be mostly interested
in the case where X is a smooth manifold, but these classes are defined for CW
complexes as well.

Example 4.1. When r = 2 we have PSU(2) = SO(3), and the classes t2 and
q4 are exactly the second Stiefel-Whitney class and the (negative of the) first
Pontryagin class, respectively. For example, the latter assertion follows because
c2 (P (g)C) = −p1 (P (g)), and a rank 3 vector bundle with metric is isomorphic
to its adjoint bundle (bundle of skew-symmetric endomorphisms) via the adjoint
representation.

Set G = PU(r). We summarize the properties of these classes that we will need.

• If dim(X) ≤ 4 and X is a manifold, then two bundles P and P ′ over X
are isomorphic if and only if t2(P ) = t2(P ′) and q4(P ) = q4(P ′);

• The class t2(P ) is zero if and only if the structure group of P can be lifted
to SU(r); that is, P = P×SU(r)G for some principal SU(r)-bundle P → X
[7, p. 517]. Here the action of SU(r) on G is by left multiplication via the
projection SU(r)→ G.

• The class t2(P ) is the mod r reduction of an integral class if and only if
the structure group of P can be lifted to U(r); that is, P = P ×U(r) G for

some principal U(r)-bundle P → X [7, p. 517]. Here the action of U(r)
on G is by left multiplication via the projection U(r)→ G.

• In the case of manifolds of dimension 2 or 3, the class q4 is always zero, and
t2 determines a bijection between isomorphism classes of G-bundles and
the space H2(X,Zr). In particular, if X is a closed, connected, oriented
surface or a connected, oriented elementary cobordism between two such
surfaces, then t2 is a bijection

t2 :

{
isomorphism classes of
G-bundles over X

}
∼=−→ Zr

• The mod 2r reduction of q4 is a non-zero multiple of Ct2, where C :
H2(X,Zr)→ H4(X,Z2r) is the Pontryagin square:

q4(P ) =

{
(r + 1)Ct2(P ) r even
r + 1

2
Ct2(P ) r odd

mod 2r (4)

In fact, when X has dimension ≤ 4, L.M. Woodward shows that the equiv-
alence classes of PU(r)-bundles correspond exactly to the pairs (q, t) ∈

2The class t2 is not given by the first Chern class of P (g)C (this is zero, see Example A.3).
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H4(X,Z)×H2(X,Zr) satisfying (4). We also note that if t ∈ H2(X,Zr)
is the mod r reduction of an integral class t̃ ∈ H2(X) then

Ct =

{
t̃ ` t̃ r even

2t̃ ` t̃ r odd
mod 2r. (5)

• The classes t2 and q4 are functorial.

4.3 Components of the gauge group

Next, we use the characteristic classes t2 and q4 to study the components of
the gauge group G(P ) for a principal PU(r)-bundle P → X. Assume X is a
manifold of dimension at most 3 (many of the definitions we give below have
obvious extensions to manifolds of higher dimension). Set G = PU(r) and
g = pu(r).

Given u ∈ G(P ), define Pu → S1 × X as in Section 3, and consider the
classes

t2(Pu) ∈ H2(S1 ×X,Zr), q4(Pu) ∈ H4(S1 ×X,Z).

By the Künneth formula, we have an isomorphism

Hk(S1 ×X,R) ∼= Hk(X,R)⊕Hk−1(X,R),

where R = Z or Zr. The image of t2(Pu) ∈ H2(X,Zr)⊕H1(X,Zr) in the first
factor is exactly t2(P ), so the dependence of t2(Pu) on the gauge transformation
u is contained entirely in the projection of t2(Pu) to the second factor H1(X,Zr).
We denote this projection by

η(u) ∈ H1(X,Zr),

and call this the parity of u. We therefore have t2(Pu) = (t2(P ), η(u)), with
respect to the Künneth splitting.

In a similar fashion, we will define the degree of a gauge transformation.
Before defining this explicitly, we first note that the Künneth formula gives
H4(S1 × X,Z) = H4(X,Z) ⊕H3(X,Z). Second, we have the following obser-
vation:

Claim 1: The image of q4(Pu) in H3(X,Z) is always even.

Assuming the claim for now, when dim(X) = 3, we define the degree of u
by

deg(u) :=
1

2
q4(Pu)

[
S1 ×X

]
∈ Z.

Note that changing the orientation of X changes the degree to its negative.
This definition can be extended to manifolds X with dim(X) 6= 3 by declaring
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deg(u) ∈ H3(X,Z) to be the image of 1
2q4(Pu) under the projection H4(S1 ×

X,Z)→ H3(X,Z).
The proof of Claim 1 is just a characteristic class computation: We have

q4(Pu) = c2(Pu(g) ⊗ C). The mod 2 reduction of the total Chern class of a
complex vector bundle is the total Stiefel-Whitney class of its underlying real
vector bundle (see [6, p. 171]). The underlying real vector bundle of Pu(g)⊗C
is Pu(g)⊕ Pu(g). So working mod 2, we have

q4(Pu) ≡2 w4(Pu(g)⊕ Pu(g)) ≡2 w2(Pu(g))2

By the Künneth formula again, we can write w2(Pu(g)) = a + b ` ds, where
a ∈ H2(X,Z2), b ∈ H1(X,Z2) and ds is the generator of H1(S1,Z2). So we
have

q4(Pu) ≡2 a
2 + 2a ` b ` ds ≡2 a

2.

However, the term a2 is a 4-form on X and this vanishes when we project to
H3(X,Z). This proves Claim 1.

Proposition 3.1, and the properties of t2 and q4 immediately imply that the
parity and degree detect the components of the gauge group in low dimensions:

• If dimX ≤ 2, or if dimX = 3 but X is not closed, then there is an
injection

η : π0(G(P )) ↪→ H1(X,Zr).

In particular, a gauge transformation u lies in the identity component
G0(P ) if and only if η(u) = 0.

• If dimX = 3 and X is closed, connected and oriented, then there is an
injection

(η,deg) : π0(G(P )) ↪→ H1(X,Zr)× Z.

In particular, a gauge transformation u lies in the identity component
G0(P ) if and only if η(u) = 0 and deg(u) = 0.

See [2], [4] for alternative realizations of the parity and degree.

4.3.1 The parity

The next proposition describes some of the data captured by the parity.

Proposition 4.2. Fix a gauge transformation u : P → PU(r). Then the
following are equivalent:

• η(u) = 0;
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• u : P → PU(r) lifts to a PU(r)-equivariant map ũ : P → SU(r);

• When restricted to the 1-skeleton of X, u is homotopic to the identity
map.

Moreover, if X is a compact, connected, oriented 3-manifold and η(u) = 0,
then deg(u) is divisible by r.

Proof. Set G = PU(r). First note that the final assertion of the proposition
follows from (4). To prove the equivalence of the three conditions, we identify
an equivalent characterization of the parity (this is the definition given in ([2])).
Any gauge transformation u : P → G determines a group homomorphism

u∗ : π1(P ) −→ π1(G) = Zr
in the usual way.

Claim 2: This descends to a homomorphism π1(X)→ Zr.

By the homotopy long exact sequence, it suffices to show that if [γ] lies in
the image of π1(G) → π1(P ) then u∗ [γ] = 0. The condition on γ implies that
this class is represented by a loop of the form t 7→ p · µ(t), where p ∈ P is fixed
and µ : R/Z → G is a loop. Then the gauge invariance of u implies that u∗ [γ]
is the homotopy class of the loop t 7→ µ(t)−1u(p)µ(t). The key point is that this
latter loop lifts to a loop in SU(r), and hence this loop is homotopically trivial
since SU(r) is simply-connected. This proves Claim 2.

By Claim 2, any gauge transformation induces an element η′(u) ∈ H1(X,Zr).
In a moment, we will show that this is exactly the parity η(u). Putting this on
hold for now, we prove the equivalence of the three conditions of the proposition.

Note that the proof of Claim 2 shows that η′(u) vanishes if and only if
u∗π1(P ) is zero in π1(G). By general theory for the covering space SU(r) →
PU(r), this happens if and only if u lifts to a map ũ : P → SU(r). This proves
the equivalence of the first two conditions.

Now we prove the equivalence of the first and third conditions. Suppose
η′(u) = 0. View gauge transformations as sections of P ×G G→ X. Note that
P ×G SU(r) is a cover of P ×G G (the former bundle is constructed using the
representation of PU(r) on SU(r) induced by the adjoint representation of SU(r)
on itself). Then the argument of the previous paragraph shows that u lifts to a
section ũ of P ×G SU(r)→ X. The fibers of this bundle are simply-connected,
so this bundle is trivial over the 1-skeleton, X1, of X (in fact it is trivial over
the 2-skeleton as well). This implies that u can be homotoped to the identity
over X1.

Conversely, suppose u|X1 : X1 −→ P ×G G|X1 can be homotoped to the
identity. We have π2(G) is trivial, so u can be homotoped to the identity over
the 2-skeleton X2 as well. Let ι : X2 ↪→ X denote the inclusion, which induces
an isomorphism on H1. The class η′ commutes with pullback, so we have

0 = η′(ι∗u) = ι∗η′(u)
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which implies η′(u) = 0.

Finally, we need to show that the classes η(u) = η′(u) agree. Fix a loop
γ : S1 → X, and consider the map Γ : S1 × S1 −→ S1 ×X, given by Γ(s, t) =
(s, γ(t)). Then by the definition of η and the functoriality of t2, we have

η(u) [γ] = t2(Γ∗Pu) ∈ H2(S1 × S1,Zr) = Zr.

As with the first Chern class on (connected) surfaces, this value can be computed
by trivializing over a neighborhood of a point and its complement, and then
measuring the homotopy class of the transition function (which is a map S1 →
G). Since we are dealing with a torus, this can be done using a non-trivial circle,
rather than a point as follows: Let U be a tubular neighborhood of the circle
{pt} × S1 ⊂ S1 × S1, and V the complement of this circle (so U and V are
both cylinders). Then Γ∗Pu can be trivialized over U and V , and we can choose
these trivializations so that the transition function on the second component of
the intersection U ∩ V ' S1 t S1 is the identity. The class η(u) [γ] is then the
homotopy class of the transition function over the first component, which is
precisely the value η′(u) [γ] ∈ Zr.

4.3.2 The degree

We end this section with a gauge-theoretic proof that the degree is a group
homomorphism. Our proof is based on connections on the principal bundles;
we refer the reader to Appendix A for a review of connections.

Proposition 4.3. The degree is a group homomorphisms

deg : π0 G(P ) −→ H3(X,Z).

Moreover, when X is a closed, connected and oriented 3-manifold, the degree
satisfies

deg(u) =
r

4π2κr

∫
[0,1]

(∫
X

〈Fa(s) ∧ ∂sa(s)〉
)
, (6)

where a : [0, 1] → A(P ) is any path of connections from any fixed reference
connection a0 to u∗a0.

Proof. First consider a closed, connected, oriented 4-manifold Z equipped with
a principal PU(r)-bundle Q→ Z. It follows from the definition of q4, together
with the Chern-Weil formula in Example A.3 that q4(Q) can be computed using
the formula

q4(Q) [Z] = − r

4π2κr

∫
Z

〈FA ∧ FA〉 ∈ Z. (7)

Here, κr is as in Section 4.1, A is any connection on Q → Z, and FA is the
curvature of the connection.
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Now let P → X be a PU(r)-bundle over a closed, connected, oriented 3-
manifold X, and let u be a gauge transformation on P . We will apply the
formula (7) to Z = S1×X and Q = Pu, the mapping torus of u : P → P . To do
this, we need a connection on Pu, which we can construct as follows: Let A(P )
denote the (affine) space of connections on P . Fix any connection a0 ∈ A(P ),
and let a : [0, 1]→ A(P ) be any path from a0 to u∗a0. This defines a connection
A on [0, 1]×P → [0, 1]×X by declaring A|{s}×X = a(s) for s ∈ [0, 1]. Moreover,
A descends to a connection on Pu, so by (7) we have

deg(u) = − r

8π2κr

∫
[0,1]×X

〈FA ∧ FA〉.

The curvature decomposes into components as FA = Fa(s) + ds∧ ∂sa(s), and so
this can equivalently be written

deg(u) = − r

4π2κr

∫
[0,1]×X

ds ∧ 〈∂sa(s) ∧ Fa(s)〉

=
r

4π2κr

∫
X×[0,1]

ds ∧ 〈∂sa(s) ∧ Fa(s)〉

=
r

4π2κr

∫
[0,1]

(∫
X

〈∂sa(s) ∧ Fa(s)〉
)
,

which is (6). (Our integration/orientation convention is that, when integrat-
ing over X × [0, 1], we integrate over the X variables first, and then the [0, 1]
variable.)

That the degree is a group homomorphism follows from (6) and the additivity
of the integral. Indeed, let u, v ∈ G(Q). Fix a path a from a0 to u∗a0, and a
second path b from u∗a0 to v∗u∗a0. These can be concatenated to form a path
c from a0 to v∗u∗a0, and this gives

deg(uv) =
r

4π2κr

∫
[0,2]

(∫
X

〈Fc(s) ∧ ∂sc(s)〉
)

=
r

4π2κr

∫
[0,1]

(∫
X

〈Fa(s) ∧ ∂sa(s)〉
)

+
r

4π2κr

∫
[1,2]

(∫
X

〈Fb(s) ∧ ∂sb(s)〉
)

= deg(u) + deg(v).

Suppose Z is a compact 4-manifold with ∂Z = X. Let ι : X → Z be the
inclusion.
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Proposition 4.4. (a) There is a principal PU(r)-bundle R→ Z with R|∂Z ∼= P
if and only if there is some class t ∈ H2(Z,Zr) with ι∗t = t2(P ). When this is
the case, the bundles R extending P are in one-to-one correspondence with the
set of t ∈ H2(Z,Zr) satisfying ι∗t = t2(P ).

(b) Suppose that R→ Z is a bundle with ι∗R = P , and let u ∈ G(P ). Then
u extends to R if and only if deg(u) = 0.

Proof. For (a), suppose R is a bundle with R|∂Z ∼= P . Then take t = t2(R)
and use functoriality to get ι∗t2(R) = t2(ι∗R) = t2(P ). Conversely, suppose
there is some class t with ι∗t = t2(P ). Then since PU(r)-bundles on Z are
classified by H2(Z,Zr), there is some bundle R → Z with t = t2(R). Then we
have t2(R|∂Z) = t2(P ). By uniqueness of the classification by t2, we must have
that R|∂Z and P are isomorphic. The claim about the one-to-one correspon-
dence is another artifact of the classification of PU(r)-bundles on (non-closed)
4-manifolds.

Before proving (b), we begin with a preliminary formula. Suppose ι∗R = P
and u ∈ G(P ). Let Z(2) = Z ∪Id Z be the double. By gluing R to itself using u,

we obtain a bundle R
(2)
u := R ∪u R over Z(2). We claim that

deg(u) = 2q4(R(2)
u ) = − r

8π2κr

∫
Z(2)

〈FA ∧ FA〉 (8)

for any connection A on R
(2)
u . To see this, we note that R

(2)
u can be obtained

through a cut and paste method from R
(2)
e (formed with the identity gauge

transformation) and Pu. To implement this, fix a connection A on R
(2)
u and

assume this is flat on a neighborhood of the cutting manifoldX. Then restriction

induces connections A1 and A2 on R
(2)
e and Pu so that

− r

8π2κr

∫
Z(2)

〈FA ∧ FA〉 = − r

8π2κr

∫
Z(2)

〈FA1 ∧ FA1〉 −
r

8π2κr

∫
S1×X

〈FA2 ∧ FA2〉

= 2q4(R
(2)
e ) + deg(u).

The claim follows because q4(R
(2)
e ) = 0; indeed, evaluate the Chern-Weil integral

on any connection on R
(2)
e that is obtained by doubling a connection on R (that

is suitably trivial on the boundary to make for a smooth double).
To prove (b), assume that there is some gauge transformation U on R with

U |∂Z = u. Then U extends (by the identity on the other copy of R) to a bundle

isomorphism U (2) : R
(2)
u → R

(2)
e . It follows that q4(R

(2)
u ) = 0 and so deg(u) = 0

by (8). Conversely, suppose deg(u) = 0. Then the bundles R
(2)
u and R

(2)
e have

the same characteristic classes, and so are isomorphic. That is, there is a bundle
isomorphism

U ′ : R(2)
u −→ R(2)

e .

There is an obvious bundle map j : R
(2)
u → R

(2)
u that interchanges the two factors

of R. Then the restriction of U ′ ◦ (j∗U ′)−1 to one factor gives an extension of
u to R.

14



4.4 Application 1: Free actions on flat connections

We suppose X is a connected and oriented manifold of dimension 2 or 3,
equipped with a principal PU(r)-bundle P → X. In case X is 2-dimensional,
we assume that t2(P ) [X] ∈ Zr is a generator. If X is 3-dimensional then we
assume there is an embedding Σ ↪→ X of a connected, oriented surface such
that t2(P ) [Σ] ∈ Zr is a generator. The next lemma shows that the subgroup
ker η ⊂ G(P ) acts freely on the space of flat connections.

Lemma 4.5. Suppose P → X is as above and suppose a is any flat connection
on P . Then the stabilizer of a in ker η ⊆ G(P ) is trivial:

{u ∈ G(P ) | η(u) = 0, u∗a = a } = {e} .

Proof. The proof of this lemma follows just as in the proof of [2, Lemma 2.5].
We supply a sketch for convenience under the assumption that X has dimension
3, and so there is some surface Σ ⊂ X with t2(P |Σ) ∈ Zr a generator. The case
when X is a surface is similar and a little easier.

The key point is that any u ∈ ker η lifts to an equivariant map ũ : P → SU(r).
Fix a basepoint p0 ∈ P |Σ and suppose u ∈ ker η fixes a flat connection a.
We want to show that u is the identity. Since u fixes a, it follows that ũ(p0)
commutes with the SU(r)-holonomy group Ha(p0) ⊆ SU(r). In particular, ũ(p0)
commutes with the subgroup of Ha(p0) coming from the holonomy around loops
lying entirely in the restriction P |Σ. Since a restricts to a flat connection on
P |Σ, and t2(P |Σ) ∈ Zr is a generator, this subgroup is non-abelian [2, p. 20].
This implies that ũ(p0) is central in SU(r), and so descends to the identity in
PU(r). This argument holds for any p0 ∈ P |Σ and so u : P → PU(r) restricts
to the identity map on P |Σ ⊂ P . This argument further holds if Σ is replaced
by any closed, oriented surface Σ′ ⊂ X that is homologous in X to Σ. Since
any point in P is contained in such a surface, it follows that u is the identity on
all of P , as desired.

4.5 Application 2: Existence of degree d gauge transfor-
mations

Fix a closed, connected, oriented 3-manifold X, and suppose we are handed a
preferred closed, connected, oriented surface Σ ⊂ X. Let P → X be a principal
PU(r)-bundle, and assume that t2(P ) is the reduction of an integral class. This
implies that P = P×U(r)PU(r) is induced from a principal U(r)-bundle P → X.
Then we set

d := c1(P ) [Σ] ∈ Z.

(So P satisfies the conditions of Application 1 when d and r are relatively prime.)

Proposition 4.6. Let d ∈ Z, P → X and Σ ⊂ X be as above.

15



(a) Then there exists a gauge transformation u ∈ G(P ) of degree d. More-
over, the parity η(u) : H1(X) → Zr is given by the intersection number of a
loop with Σ, reduced modulo r.

(b) Suppose d and r are relatively prime. Then there exists a gauge trans-
formation u ∈ G(P ) of degree 1. Moreover, writing md + nr = 1, the parity
η(u) : H1(X) → Zr is given by m times the intersection number of a loop with
Σ, reduced modulo r.

In the case r = 2, Dostoglou and Salamon [2, Lemma 2.3, Lemma A.2] prove
this statement by explicitly constructing the desired gauge transformation. We
present a proof based upon the characteristic classes t2, q4.

Proof of Proposition 4.6. Consider the cohomology class t ∈ H2(S1 × X,Zr)
given by the mod r reduction of

c1(P ) + ds ` PDX [Σ] ∈ H2(S1 ×X)

where ds is the generator of H1(S1) and PDX : H2(X) → H1(X) denotes the
Poincaré duality operator on X. Let C be the Pontryagin square appearing in
(4). Then since t is the reduction of an integral class, we can compute as follows

Ct ≡2r

{
2c1(P ) ` ds ` PDX [Σ] if r is even
4c1(P ) ` ds ` PDX [Σ] if r is odd

≡2r

{
2d · e if r is even
4d · e if r is odd

where e ∈ H4(S1 ×X) is the positive generator. This gives

r even (r + 1)Ct

r odd
r + 1

2
Ct

}
≡2r 2d(r + 1) · e ≡2r 2d · e.

This is exactly the relation (4) with t replacing t2 and 2d · e replacing q4. Since
we are on a 4-manifold, it follows from L.M. Woodward’s classification that
there is a principal PU(r)-bundle Q→ S1 ×X with

t2(Q) = t, q4(Q) = 2d · e.

This bundle Q restricts to the bundle P on each fiber of {pt}×X. In particular,
by Proposition 3.1, this bundle is of the form Q = Pu for some gauge transfor-
mation u ∈ G(P ). It follows from our definition of the degree that u is a gauge
transformation of degree d with η(u) given by the mod r reduction of PDX [Σ].
This proves the first statement.

Now suppose d and r are relatively prime. Then there is some integer m
with

2md ≡2r 2.
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The same type of argument given above shows that there is a gauge transfor-
mation u ∈ G(P ) with

t2(Pu) = m · t, q4(Pu) = 2.

This shows deg(u) = 1 and η(u) is the mod r reduction of m · PDX [Σ].

4.6 Application 3: Circle fibrations and the group GΣ

Suppose X is closed, connected, oriented 3-manifold equipped with a smooth
function f : X → S1. Assume f is not homotopically trivial, and that each
fiber is connected.

Example 4.7. Take X = S1 × Σ for a closed, connected, oriented surface Σ,
and let f be the projection to the first factor.

Fix a map γ : S1 → X that is a section of f

IdS1 = f ◦ γ.

Then for each r ≥ 2 and d ∈ Zr, there is a unique principal PU(r)-bundle P → X
such that t2(P ) ∈ H2(X,Zr) is Poincaré dual to the class d [γ] ∈ H1(X,Zr).
Since [γ] is the reduction of an integral class, it follows that t2(P ) is as well.
Moreover, if we set

Σ := f−1(pt),

where pt ∈ S1 is a regular value, then we have

t2(P ) [Σ] = d.

This follows because the intersection number of [Σ] with [γ] is 1.
Consider the subgroup

GΣ := {u ∈ G(P ) | ηΣ (u|Σ) = 0} ,

where ηΣ is the parity operator for P |Σ → Σ. Then there is a sequence of
inclusions

G0(P ) ⊂ ker η ⊂ GΣ ⊂ G(P ).

The first and last inclusions are always strict. It follows from Proposition 4.6
(a) that the middle inclusion is strict when d ∈ Zr is not zero.

Proposition 4.8. Suppose d ∈ Zr is a generator. Then there is a canoni-
cal isomorphism GΣ/G0(P ) ∼= Z. Moreover, the generator of GΣ/G0(P ) is the
homotopy class of the degree 1 gauge transformation from Proposition 4.6 (b).
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Proof. Let u1 ∈ G(P ) be a degree 1 gauge transformation as in Proposition 4.6
(b). Then the parity η(u1) measures the intersection number of a loop with
Σ. This implies u1 ∈ GΣ, since any loop in Σ can be displaced (in X) from
Σ. Since the degree and parity of u1 are specified, it follows that the homotopy
class [u1] ∈ G(P )/G0(P ) of u1 is uniquely determined. To prove the proposition,
it suffices to show that every gauge transformation u ∈ GΣ is a power of u1, up
to homotopy. That is, we need to show

η(u) = k · η(u0), deg(u) = k · deg(u0)

for some k ∈ Z.
Since u0 has degree 1, we obviously have

deg(u) = k · deg(u0) (9)

for some k ∈ Z. As for the parity, note that Proposition 4.6 (b) implies

η(u0) [γ] = dm mod r,

where m ∈ Z is chosen so that md+nr = 1 for some n ∈ Z. (Here and below we
freely identify elements of Zr with any lift in Z; our statements are independent
of the choice of lift.) Note that the product md is relatively prime to r and so
descends to a generator of Zr. In particular, there is some l ∈ Z such that

η(u) [γ] = lmd · η(u0) [γ] .

The first homology H1(X) is generated by H1(Σ) and [γ], subject to certain
relations. By definition, the parity of each element of GΣ vanishes on H1(Σ)
and so we have

η(u) = lmd · η(u0) ∈ H1(X,Zr). (10)

We will be done if we can show that lmd is the mod-r reduction of k from (9).
This follows from (4): Since t2(P ) is the reduction of an integral class, we can
use (5) to compute (4). This combines with the definition of the degree and
parity in terms of t2 and q4 to give

ds ` deg(v) = t2(P ) ` ds ` η(v) mod r (11)

for any gauge transformation v ∈ G(P ). This is an equation in H4(S1×X,Zr).
Apply (11) with v = u, and then use (9) and (10) to get

k · ds ` deg(u0) = lmd · t2(P ) ` ds ` η(u0) mod r.

Since u0 has degree 1, this gives k = lmd mod r, as desired.
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A A review of connections

This appendix gives a fast review of connections. Since connections are only
used in the proof of Proposition 4.3, we only supply the details that we will
need for the proof. For a more comprehensive treatment, we refer the reader to
the classic text [5], or to [3] for notation similar to the notation used here.

Let V → X be a vector bundle. We assume for concreteness that V is a real
vector bundle, but the definitions we give below carry over to complex vector
bundles with only minor modifications. Given k ∈ N, the vector bundle V can
be tensored with ΛkT ∗X to form a new vector bundle(

ΛkT ∗X
)
⊗ V −→ X.

We denote sections of this bundle by Ωk(X,V ), and these section should be
viewed as ‘k-forms on X with values in V ’.

A connection on V is a linear map dA : Ω0(X,V ) −→ Ω1(X,V ) that
satisfies the following Leibniz rule

dA(fµ) = df ⊗ µ+ fdAµ

for f ∈ C∞(X) and µ ∈ Ω0(X,P (g)). For each k ∈ N, any connection dA has a
canonical extension to a linear map

dA : Ωk(X,V ) −→ Ωk+1(X,V )

satisfying the obvious Leibniz rule. The composition dA ◦ dA is linear over
C∞(M) and so acts via a degree 2 algebraic operator FA,V called the curva-
ture. That is, FA,V ∈ Ω2(X,End(V )) and

dA ◦ dAµ = FA,V (µ)

for µ ∈ Ω0(X,V ). Here End(V ) = V ∗ ⊗ V −→ X is the bundle of endomor-
phisms of V . It follows immediately that any connection A satisfies the Bianchi
identity

[dA,FA,V ] := dA ◦ FA,V −FA,V ◦ dA = 0.

We denote the space of connections on V by A(V ). It follows that A(V ) is
an affine space modeled on the vector space Ω1(X,V ). As a consequence, the
set A(V ) is contractible and the tangent space at A ∈ A(V ) can be canonically
identified with Ω1(X,V ).

Now let G be a Lie group and g its Lie algebra. Assume that g is semi-
simple. Fix a principal G-bundle P → X. Consider the adjoint representation
Ad : G → GL(g) and use this to form the associated vector bundle P (g) → X
as in Example 2.1. We will say that a connection on P is a connection on the
vector bundle P (g) → X. We denote the space of connection on P by A(P );
that is, A(P ) = A(P (g)).

19



Remark A.1. The definition of a connection on a principal bundle that we give
here is not the typical definition given in the literature (i.e., as g-valued 1-form
on P satisfying certain properties). However, since we have assumed the Lie
algebra is semi-simple, the adjoint representation is faithful and so there is no
information loss in dealing with the bundle P (g). That is, a connection on P as
we have defined it here induces a unique connection in the standard sense, and
vice-versa.

It turns out that the curvature FA,P (g) satisfies

FA,P (g) (µ) = ad(FA)µ = [FA, µ] ∀µ ∈ Ω0(X,P (g)), (12)

for some FA ∈ Ω2(X,P (g)). The form FA will be called the curvature form
of A. Since g is semi-simple, FA is the unique 2-form for which (12) holds. In
terms of the curvature form, the Bianchi identity takes the form dAFA = 0,
where the concatenation is the given action of dA on the 2-form FA.

The gauge group G(P ) acts naturally on A(P ). We denote the action of
u ∈ G(P ) on A ∈ A(P ) by u∗A, where u∗A is the connection defined by the
formula

du∗Aµ := u−1dA (uµ) ,

for µ ∈ Ω0(X,P (g)) (on the right we are viewing gauge transformations as
sections of P ×G G → X, and we have chosen a faithful matrix representation
of G so that it makes sense to multiply elements of G with elements of g). A
computation shows that the curvature form is equivariant Fu∗A = Ad(u−1)FA.

Now suppose g is equipped with an Ad-invariant inner product 〈·, ·〉. Then
this inner product determines a metric on the bundle P (g), which we denote by
the same symbol. This metric combines with the wedge to form a bilinear map

Ωj(X,P (g))⊗ Ωk(X,P (g)) −→ Ωj+k(X), µ⊗ ν 7−→ 〈µ ∧ ν〉

with values in the (usual) space of R-valued forms on X.

Example A.2. Suppose we are given a path of connections

R −→ A(P ), s 7−→ A(s).

Then for each s ∈ R, the derivative ∂sA(s) ∈ Ω1(X,P (g)) is a P (g)-valued
1-form, and so

s 7−→ 〈FA(s) ∧ ∂sA(s)〉 ∈ Ω3(X)

is a path of 3-forms on X.

Example A.3. Suppose X is a closed, connected, oriented 4-manifold and fix
a principal PU(r)-bundle P → X. Then we can form the complex vector bundle
V := P (pu(r)) ⊗ C → X. Let A be a connection on P (pu(r)). This has a
canonical extension to the complexification V .
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Let ch(V ) denote the Chern character, and [ch(V )] its cohomology class.
Since X has dimension 4, we have

[ch(V )] = rank(V ) + c1(V ) +

(
1

2
c1(V )2 − c2(V )

)
.

where c1(V ) and c2(V ) are the first and second Chern classes of V . These can
be computed using the Chern character formula

ch(V ) = Tr

(
exp

(
iFA
2π

))
.

The right-hand side is a formal power series in the algebra of differential forms
on X, and the trace is the usual one on pu(r) = su(r). This power series
truncates after degree four, and so is a well-defined element of Ω•(X).

Since V is the complexification of a real vector bundle, it follows that c1(V ) =
0. To see this, note that, in general, we have c1(V ) = −c1(V ), where V is
the conjugate bundle to V . That V is a complexification gives V ∼= V and
so c1(V ) = 0. In particular, all of the interesting information of the Chern
character [ch(V )] is contained entirely in the degree 4 term. Using the Chern
character formula, we arrive at the following Chern-Weil formula:

c2(V ) [X] =
1

8π2

∫
X

Tr (FA ∧ FA) =
r

4π2

∫
X

tr (FA ∧ FA) , (13)

where we have used (2). Note that this is always an integer. Using the Bianchi
identity, one can check directly that this is independent of the choice of connec-
tion A.
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