Flat connections and holonomy

David L. Duncan

Let $P \to X$ be a principal *G*-bundle over an oriented manifold *X*. By convention, *G* acts on *P* on the right. Denote by $\mathcal{A}(P)$ the set of connections on *P*, and $\mathcal{A}_{\text{flat}}(P)$ the set of flat connections. Let $\mathcal{G}(P)$ denote the gauge group. This is defined as the space of maps $u : P \to G$ that are equivariant:

$$u(p \cdot g) = g^{-1}u(p)g,$$

for all $p \in P$, $g \in G$. Then $\mathcal{G}(P)$ acts on $\mathcal{A}(P)$, and on $\mathcal{A}_{\text{flat}}(P)$. I will denote the action of $u \in \mathcal{G}(P)$ on $A \in \mathcal{A}(P)$ by u^*A .

In these notes I briefly sketch a proof of the well-known fact that

$$\sqcup_{[P]} \mathcal{A}_{\text{flat}}(P) / \mathcal{G}(P) \cong \hom(\pi_1(X), G) / G, \tag{1}$$

where the action of *G* on the right-hand side is coming from conjugation, and the disjoint union is over the set of *equivalence classes* of bundles $P \rightarrow X$. See Kobayashi-Nomizu [4] for more details of the various assertions that follow.

1 Holonomy Maps

Fix a principal *G*-bundle $\pi : P \to X$. Given a connection $A \in \mathcal{A}(P)$ and a loop γ in *X* based at $x \in X$, the holonomy around γ is a *G*-equivariant map

$$\operatorname{hol}_{A,x}(\gamma): P_x \longrightarrow P_x,$$

where $P_x := \pi^{-1}(x)$ is the fiber over *x*. This is defined by parallel transport along γ . Fixing $p \in P_x$, we can interpret the holonomy as a Lie group element

$$\operatorname{hol}_{A,x,p}(\gamma) \in G$$

by the identity

$$\operatorname{hol}_{A,x}(\gamma)p = p \cdot \operatorname{hol}_{A,x,p}(\gamma)$$

where \cdot denotes the action of *G* on *P*. If *A* is a flat connection, then $\text{hol}_{A,x,p}(\gamma)$ depends on γ through its based homotopy class (essentially by definition of the term 'flat'), and so we have a map

$$\pi_1(X, x) \longrightarrow G, \quad [\gamma] \longmapsto \operatorname{hol}_{A, x, p}(\gamma)$$
 (2)

2 A Group Homomorphism

Here we check that (2) defines a group homomorphism. It follows easily from the parallel transport definition of the holonomy that the map $P_x \rightarrow P_x$ is multiplicative:

$$\operatorname{hol}_{A,x}(\gamma_0 * \gamma_1) = \operatorname{hol}_{A,x}(\gamma_0) \circ \operatorname{hol}_{A,x}(\gamma_1),$$

where * is concatenation of paths, and \circ is composition of maps. Then the associated element of *G* satisfies

$$\operatorname{hol}_{A,x,p}(\gamma_0 * \gamma_1) = \operatorname{hol}_{A,x,p}(\gamma_0) \operatorname{hol}_{A,x,p}(\gamma_1),$$

where the concatenation on the right is the multiplication in *G*. When *A* is flat, the induced map (2) on $\pi_1(X, x)$ is obviously then a group homomorphism.

3 Dependence on Choices

The uniqueness of parallel transport implies that the map $hol_{A,x,p}$ is equivariant in the sense that

$$\operatorname{hol}_{u^*A,x,p}(\gamma) = u(p)^{-1}\operatorname{hol}_{A,x,p}(\gamma)u(p),$$

for all gauge group elements $u \in \mathcal{G}(P)$. The holonomy therefore determines a map

$$\operatorname{hol}_{x,p} : \mathcal{A}_{\operatorname{flat}}(P) / \mathcal{G}(P) \longrightarrow \operatorname{hom}(\pi_1(X, x), G) / G,$$

where *G* acts on the right by conjugation by the inverse. Recall that different choices of *x* change $\pi_1(X, x)$ essentially by conjugation, so the space hom $(\pi_1(X), G)/G :=$ hom $(\pi_1(X, x), G)/G$ is independent of the choice of *x*. Similarly, the induced map hol_{*x*,*p*} is independent of the choices of $x \in X$ and $p \in P_x$.

4 Bijectivity of the Induced Map

Repeating the above for each equivalence class of principal G-bundle P gives a map

hol:
$$\sqcup_{[P]} \mathcal{A}_{\text{flat}}(P) / \mathcal{G}(P) \longrightarrow \hom(\pi_1(X), G) / G.$$

(We need only union over the *equivalence classes*, and not all bundles, because we are working modulo $\mathcal{G}(P)$ and everything is equivariant.) A connection is determined by its holonomy, so it follows that this map hol is injective.

Now we show why every element of $hom(\pi_1(X), G)/G$ can be realized as an element of $\mathcal{A}_{flat}(P)/\mathcal{G}(P)$ for some principal *G*-bundle $P \to X$. Fix $\rho \in hom(\pi_1(X, x), G)$, and let \widetilde{X} be the universal cover of *X*. Then $\pi_1(X, x)$ acts on the bundle $\widetilde{X} \times G \to X$, where the action on the first factor is by deck transformations, and the action on the second factor is determined by ρ . Set

$$P := \left(\widetilde{X} \times G\right) / \pi_1(X, x).$$

This is naturally a principal *G*-bundle over *X*, and the trivial flat connection on $\tilde{X} \times G$ descends to a connection *A* on *P* with the property that $\text{hol}_{A,x,p} = \rho$.

5 Final Remarks

Here we only addressed bijectivity of the map (1). However, this map becomes an isomorphism in any reasonable category. For example, the space hom $(\pi_1(X), G)/G$ has a natural topology coming from the topology on *G*. Endow $\mathcal{A}_{\text{flat}}(P)$ with, for example, the \mathcal{C}^k topology, $\mathcal{G}(P)$ with the \mathcal{C}^{k+1} -topology, and $\mathcal{A}_{\text{flat}}(P)/\mathcal{G}(P)$ with the quotient topology. Then the holonomy is continuous with respect to these topologies, and one can check that the map (1) is a homeomorphism. Similar statements hold in the smooth category.

Finally, fix a principal bundle $P \rightarrow X$. One could ask how to determine, from a holonomy perspective, which elements of hom $(\pi_1(X), G)/G$ are associated to P under the above construction. This is addressed in various settings in [1], [2, Section 4], and [3, Section 3.1].

References

- Atiyah, Bott. The Yang-Mills equations over Riemann surfaces. *Phil. Trans. Roy.* Soc. London Ser. A, 308:523-615, 1982.
- [2] Dostoglou, Salamon. Instanton homology and symplectic fixed points. Symplectic geometry, 57-93, London Math. Soc. Lecture Note Ser., 192, Cambridge Univ. Press, Cambridge, 1993.
- [3] Duncan. The Chern-Simons invariants for doubles of compression bodies. Submitted.
- [4] Kobayashi, Nomizu. *Foundations of Differential Geometry*. Number 15, Volume 1. Interscience Publishers, New York-London. 1963.