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ABSTRACT OF THE DISSERTATION

Compactness results for the quilted Atiyah-Floer

conjecture

by David Lee Duncan

Dissertation Director: Chris Woodward

Given a closed connected oriented Riemannian 3-manifold Y equipped with a non-

homotopically trivial function Y → S1, one can define an instanton Floer cohomology

group as well as a quilted Lagrangian Floer cohomology group. We develop compactness

results relating the boundary operators.
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Chapter 1

Introduction

In a sequence of papers [14] [15] [18], Floer introduced an invariant for closed connected

oriented 3-manifolds, called instanton Floer cohomology. To describe this, we fix such

a manifold Y and a principal G-bundle Q → Y . The space A(Q) of connections on Q

admits a function CS : A(Q)→ R, called the Chern-Simons functional. Instanton Floer

cohomology can be viewed as the Morse cohomology of the Chern-Simons functional;

that is, the cohomology of a chain complex (CFinst(Q), ∂inst) where CFinst(Q) is the

abelian group freely generated by the critical points of CS, and the boundary operator

∂inst counts isolated gradient flow lines between critical points.1 These critical points

are precisely the flat connections on Q, and the gradient trajectories can be viewed as

connections on the 4-manifold R× Y which satisfy the instanton equation.

There are a variety of issues encountered when trying to define this invariant. The

first issue is that, as with finite-dimensional Morse theory, the analysis requires that

all critical points are non-degenerate. This, however, is never the case for the Chern-

Simons functional due to the presence of an infinite dimensional group, called the

gauge group, which acts naturally on the space of connections and (up to a constant)

preserves the Chern-Simons functional. So we should really be working modulo gauge

equivalence. Even modulo the action of the gauge group, we still may have degenerate

critical points. However, at this point, the degeneracy issue is only a finite-dimensional

problem, and non-degeneracy can be achieved by a suitable perturbation of the Chern-

Simons functional, just as in finite-dimensional Morse theory.

As mentioned, to avoid certain analytic difficulties, we consider gauge equivalence

1Though it will not be discussed much in this thesis, there is an underlying grading on the chain
complex (CFinst(Q), ∂inst). Given our choices, the boundary operator we discuss here increases the
degree, hence Floer cohomology.
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classes of flat connections. This brings us to the second issue: the gauge group of-

ten does not act freely on the space of flat connections, which leads to the obvious

differential geometric issues when we quotient by the action. For example, if Q is a

trivial bundle, then the trivial connection is never a free point for the action and so

its gauge equivalence class is always a singular point of the quotient space. A connec-

tion is called irreducible if the gauge group acts locally freely at that connection, and

reducible otherwise. Following Casson (see [1]), Floer’s original approach [14] resolved

the issue of reducibles by assuming that the 3-manifold Y is a homology 3-sphere (i.e.,

H1(Y,Z) = 0), and by taking Q := Y × SU(2) to be the trivial principal SU(2)-bundle.

The crucial observation is that, in this case, the trivial connection is the only reducible

one, and can easily be excluded. Floer was then able to show that, for a suitable metric

and up to a perturbation of the Chern-Simons functional, there are only finitely many

gauge equivalence classes of flat connections, and the boundary operator squares to

zero, ∂2
inst = 0. In particular, the cohomology of the chain complex (CFinst(Q), ∂inst)

is well-defined in this case. This cohomology is precisely instanton Floer cohomology,

and we denote it by HFinst(Y ). Furthermore, HFinst(Y ) only depends on Y , and not

the underlying metric.

At about the same time, Floer was working on a similar program in the sym-

plectic category [16] [17]. To describe this, consider a smooth symplectic manifold

(M,ω) equipped with an almost complex structure J , and two Lagrangian submani-

folds L0, L1 ⊂ M . In this set-up, the objective is to define the Morse cohomology of a

function called the symplectic action functional, and thereby arrive at a chain complex

(CFsymp(L0, L1), ∂symp). Under suitable hypotheses on the data, the symplectic action

is defined on the space of paths in M terminating at the Li. The critical points (i.e.,

the generators of CFsymp(L0, L1)) are the intersection points of the two Lagrangians,

and the gradient flow lines are maps from the unit strip in C to M which satisfy the J-

holomorphic equation and have Lagrangian boundary conditions. Here, non-degeneracy

can be achieved by perturbing the Lagrangians so they intersect transversely. Floer’s

theorem says that in this situation, and for a suitable choice of J , the boundary op-

erator squares to zero. (This theorem was extended by Oh [33] to include a wide
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class of symplectic manifolds which will be relevant to us.) The resulting cohomology

HFsymp(L0, L1), called Lagrangian intersection Floer cohomology, then depends only

on M,ω, and the Lj .

One relationship between these two Floer cohomology theories was outlined by

Atiyah in [2]. To describe this relationship, we continue to assume that Y is closed,

connected and oriented. Fix a function f : Y → R together with a regular value r in

the image of f , so Σ := f−1(r) is a compact smooth surface. Then Y + := f−1([r,∞))

and Y − := f−1((−∞, r]) are 3-manifolds with boundary Σ, and their union is Y .

•

f

YΣ
Y − Y +

r
R

��

Figure 1.1: Using a Morse function to decompose a manifold Y into handle-bodies Y ±.

The trivial SU(2)-bundle over Y restricts to bundles over Σ, and the Y ±. As shown

by Atiyah and Bott [3], the gauge equivalence classes of flat connections on Σ form

a finite-dimensional symplectic space M(Σ), and any choice of metric on Σ induces

an almost complex structure on M(Σ). Similarly, we let L(Y ±) denote the gauge

equivalence classes of flat connections on Y ±. Then restricting to the boundary provides

maps L(Y ±) → M(Σ), and the image of each is Lagrangian in M(Σ). Furthermore,

the intersection points of the Lagrangians are exactly the gauge equivalence classes of

flat connections on Y . Assuming, for now, that both of the Floer chain complexes

(CFinst(Y ), ∂inst) and (CFsymp(L(Y −), L(Y +)), ∂symp) are defined, this is saying that

there is a natural isomorphism CFinst(Y ) ∼= CFsymp(L(Y −), L(Y +)) of abelian groups.

Recall that the resulting Floer cohomologies do not depend on the choice of metric

(instanton case) or almost complex structure (Lagrangian case). Atiyah [2] pointed out

that if one begins with a metric and modifies it in such a way that a fixed neighborhood
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Figure 1.2: An illustration of the process of ‘stretching the neck’ for a 3-manifold
decomposed into handle-bodies.

of Σ in Y is becoming increasingly long, then the instanton equation defining ∂inst ap-

proximates the J-holomorphic curve equation defining ∂symp. He called this procedure

‘stretching the neck’. In principle, for suitable metrics, these two boundary operators

should be counting the same thing. Atiyah and Floer were consequently led to make

the following conjecture:

Atiyah-Floer Conjecture. There is a natural isomorphism

HFinst(Y ) ∼= HFsymp(L(Y −), L(Y +)). (1.1)

There has been much work towards a resolution of this conjecture in the past two

decades. For example, Taubes [40] was able to show that the Euler characteristics of the

two cohomologies agree. We describe various other approaches momentarily. It should

be noted, however, that there is a real difficulty present even in the statement of the

Atiyah-Floer conjecture. Namely, the Lagrangian Floer cohomology on the right-hand

side of (1.1) is not well-defined. This is due to the presence of reducible connections

on Σ, which lead to singularities in the symplectic space M(Σ) (as well as in the

Lagrangians). This is a serious difficulty from the symplectic perspective, and part of

the conjecture is identifying what exactly should go on the right-hand side of (1.1).

One possible resolution of this issue lies in a program of Salamon and Wehrheim [36]

[45] [46] [47] [49] [39], where they introduce a third Floer group which counts instantons

which have (infinite-dimensional) Lagrangian boundary conditions. See [50] for a nice

survey of this approach.

A second resolution, and the one we adopt in this thesis, is to work with a non-

trivial bundle Q → Y (in which case H1(Y,Z) is necessarily non-zero). This idea was

put forward by Floer in [15], where he takes Q to be a non-trivial SO(3)-bundle. The
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non-triviality of the bundle resolves the problem of reducibles on the instanton side, and

essentially the same proof as in the SU(2) case shows that HFinst(Q) is well-defined

(this group may now depend on the particular isomorphism class of Q). Using this

set-up, and Atiyah’s idea to ‘stretch-the-neck’, Dostoglou and Salamon [10] [11] [12]

[13] were able to prove the conjecture in the case where

Y = YΦ := ([0, 1]× Σ) /Φ

is the mapping torus of some surface diffeomorphism Φ : Σ → Σ. They assume the

bundle has been chosen so that it restricts to a non-trivial bundle on Σ. Then there

are no reducibles over Σ and M(Σ) is a smooth symplectic manifold. Pullback by Φ

induces a symplectomorphism Φ∗ : M(Σ) → M(Σ), and Dostoglou and Salamon show

that HFinst(Q) ∼= HFsymp(Graph(Φ∗),∆). Here, Graph(Φ∗) ⊂ M(Σ) ×M(Σ) is the

graph of Φ∗, ∆ ⊂ M(Σ) ×M(Σ) is the diagonal, and both of these are Lagrangian

submanifolds of the product M(Σ)×M(Σ).

The approach we take in this dissertation is to generalize the Dostoglou-Salamon

approach in the following fashion: Suppose Y is a closed connected oriented 3-manifold

equipped with a map f : Y → S1 which is not homotopically trivial. (The mapping

tori considered by Dostoglou and Salamon are examples, but there are many more

than just these.) Just as in the Dostoglou-Salamon case, it is possible to choose a

principal SO(3)-bundle Q for which instanton Floer cohomology is well-defined. As we

will see in the next section, after a suitable refinement of f , the data (Y, f) provides

a decomposition of Y into a finite union of elementary cobordisms
{
Yi(i+1)

}N
i=1

which

pairwise intersect along surfaces {Σi}Ni=1.

It is possible to choose Q so its restriction to each Σi is non-trivial, hence the M(Σi)

are smooth symplectic manifolds. Restricting to each of the two boundary components

of the elementary cobordisms defines two smooth Lagrangian submanifolds L(0), L(1)

of the product M(Σ1) × . . . ×M(ΣN ). As a consequence, HFsymp(L(0), L(1)) is well-

defined. In this dissertation we take this as a candidate for the right-hand side of (1.1).

It follows almost immediately from the definitions that there is a natural isomorphism

of abelian groups CFinst(Q) ∼= CFsymp(L(0), L(1)) (see Proposition 2.4.3 below). The
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Y12Y23

Y34 Y41

S1

Figure 1.3: A decomposition of Y into a cyclic union of cobordisms using a circle-valued
Morse function.

main result of this thesis is the following theorem, which says that, for a suitable

metric, every instanton trajectory counted by the boundary operator ∂inst is close to

some holomorphic trajectory counted by the boundary operator ∂symp.

Theorem A. Let (Y, f) and Q→ Y be as above, and assume that all flat connections on

Q are non-degenerate. For each i ∈ {1, . . . , N}, fix a tubular neighborhood [0, 1]×Σi ↪→

Y of Σi ⊂ Y . Then there is a family of metrics {gε}ε>0 on Y with the following

significance:

Let a−, a+ be flat connections on Q, and suppose (εν)ν∈N is a sequence of positive

numbers converging to zero. Fix q > 2 and suppose that, for each ν, there is a connection

Aν on R × Q of Sobolev class W 1,q which is an instanton with respect to the metric

ds2 + gεν , and lies in the zero-dimensional component of the moduli space of instantons

limiting to a± at ±∞. Then there is a subsequence (still denoted (Aν)ν), a sequence

of gauge transformations (uν)ν , a sequence of real numbers (sν)ν , and a continuous

connection A∞ on R×Q of Sobolev class W 1,q
loc , such that:

(i) A∞ represents a holomorphic strip with Lagrangian boundary conditions,

(ii) A∞|{s}×Y converges to a± as s→ ±∞, and
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(iii) for each i ∈ {1, . . . , N}, the Σi-components in the sequence
(
u∗ντ

∗
sνAν

)
ν

converge

to the Σi-component of A∞ in C0 on compact subsets of R× I × Σi.

Here, τ∗s denotes R-translation by s.

Theorem A is an immediate corollary of the Main Theorem 2.4.1, below. We follow

the ‘stretch-the-neck’ approach of Atiyah, as is suggested by the family of metrics gε

(although in our case, there are actually multiple ‘necks’, one for each of the Σi). To

outline this proof in a little more detail, we first mention that the instanton equation is

conformally invariant, so ‘stretching the neck’ is equivalent to keeping the neck a fixed

length, but shrinking the volumes of the surface fibers Σi. Consequently, we shrink

the volumes of the elementary cobordisms Yi(i+1) at the same rate. An instanton with

respect to such a metric can be viewed as a tuple of maps
(
{αi} ,

{
ai(i+1)

})
, where αi is

a map from the ‘neck’ R× [0, 1] into the space of connections on Σi, and ai(i+1) is a map

from R into the space of connections on Yi(i+1). It is sufficient to consider instantons

with fixed small energy (this is effectively what is implied by the condition in Theorem

A that the instantons Aν lie in the zero-dimensional component of the moduli space).

The small volumes imply that either (i) the curvatures of the αi and ai(i+1) are close

to zero, or (ii) there is a non-trivial amount of energy localized at a point. Case (ii)

is ruled out by a bubbling analysis, where we show that it contradicts the assumption

that the energy is small and fixed. It therefore suffices to consider case (i), where the

curvatures are close to zero. By means of a Narasimhan-Seshadri correspondence on

the surfaces, and a gradient flow on the cobordisms (referred to below as the Yang-

Mills heat flow), the tuple
(
{αi} ,

{
ai(i+1)

})
descends to an honest holomorphic strip

in M(Σ1)× . . .×M(ΣN ) with Lagrangian boundary conditions given by L(0) and L(1),

and we are able to show that this holomorphic strip is close to the original instanton.

Remark 1.0.1. (a) In the case where there are no elementary cobordisms, we find

ourselves in exactly the situation considered by Dostoglou and Salamon. The technique

considered here should be contrasted with the strategy of [12, Theorems 8.1, 9.1] and
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convenient for performing the adiabatic limit.
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Figure 1.5: Moving from left to right, the metric on the manifold Y is being deformed
in such a way that the volume of the Σi and the Yi(i+1) are going to zero. However, the
volume in the I-direction (the ‘neck’) is remaining fixed. This process is conformally
equivalent to ‘stretching the neck’, wherein the volumes of the Σi and Yi(i+1) are fixed,
but the volume on the neck parameter I is increased.

[13, Theorem 3.1], where, for our case, having established various properties of the

Narasimhan-Seshadri correspondence and Yang-Mills heat flow (Theorems 3.1.1 and

3.2.3 below), we can avoid much of the analysis on the instantons themselves. This

is particularly useful in our more general setting, since an analytic approach in the

case of elementary cobordisms requires additional boundary estimates which are dif-

ficult to obtain for our particular choice of degenerating metrics. More concretely,

Dostoglou-Salamon’s [12, Lemma 8.2] should be viewed as a first order approximation

of the Narasimhan-Seshadri correspondence of Theorem 3.1.1. The usefulness of the

sharper Theorem 3.1.1 becomes apparent in, for example, Theorem 4.2.1 appearing in

this thesis. On the other hand, the Dostoglou and Salamon’s result [13, Theorem 3.3]

gives a slightly stronger result.
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(b) It should be mentioned that in [20] and [21], Fukaya describes an approach very

similar to the one presented here. Though quite similar, there is one striking difference

between his approach and ours: Fukaya deals with a fixed smooth (albeit not everywhere

positive definite) metric, whereas we deal with a sequence of metrics which degenerate to

a singular metric, and these metrics are not smooth. It seems this may be a distinction

that is only really relevant at the level of the analysis, but since neither program has

been successfully carried out to its desired conclusion, at the moment it is difficult to

make any precise statement to this effect.

(c) Recently M. Lipyanskiy has developed compactness results for quilts consisting

of mixed patches of instantons and holomorphic curves. The motivation is that these

quilts may define a chain map which interpolates between the trajectories defining each

of the two Floer theories.

(d) Though the results here can be described in terms of Lagrangian intersection

Floer cohomology, geometrically it is more natural to use the language of holomorphic

quilts as developed by Wehrheim and Woodward [52] [53] [54]. In section 2.3, we recall

the definitions from quilted Floer cohomology which will be used.

(e) Roughly speaking, the significance of the Lie group SU(2) in the gauge the-

ory described above stems from the following properties: 1) SU(2) is compact and

simply-connected; 2) SU(2) is simple with a discrete center; 3) SU(2)-bundles are

well-understood. When passing to the quotient SO(3) = SU(2)/Z(SU(2)), these prop-

erties descend to properties which are desirable from the Floer-theoretic perspective.

It turns out that this can be generalized from SU(2) to SU(r), for r ≥ 2, where

PSU(r) = SU(r)/Z(SU(r)) now plays the role that SO(3) did previously.

The basic outline for the remainder of this paper is as follows. Section 2 begins

with a definition of the types of 3-manifolds being considered, and a discussion of

the particular metrics that are used for our adiabatic (i.e., ‘stretch-the-neck’) limit.

The remainder of section 2 is dedicated to supplying the relevant background. We

end section 2 with precise statement of the Main Theorem 2.4.1 as well as a proof

that the two Floer cohomology theories have the same generators. Section 4 contains
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the proof of the Main Theorem, and section 3 develops the geometric results about

the Narasimhan-Seshadri correspondence and Yang-Mills heat flow which are used in

section 4.

Finally, we remark that a full proof of the Atiyah-Floer conjecture, along the lines

we present here, would require showing that near each holomorphic strip there is a

unique instanton, up to gauge equivalence, and for a suitably stretched neck. That is,

one would need to establish an injection F from trajectories of holomorphic curves to

instanton trajectories. The Main Theorem we present here can be viewed as saying

that such a map would be onto, assuming it exists. Using an implicit function theorem

argument, Dostoglou and Salamon [12] were able to show its existence in the case

where Y = YΦ is a mapping torus. However, the already delicate analysis used in their

proof becomes even more fickle in our situation, due to the presence of the non-trivial

cobordisms Yi(i+1). At the point of writing, the existence of such an F in our setting is

an active research project.
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Chapter 2

Background on the Atiyah-Floer conjecture

2.1 Smooth manifold theory

In this section we describe the particular decompositions of the 3-manifolds we are

considering. This will allow us to define the family of metrics used to ‘stretch-the-

neck’. However, to do this in a meaningful way, we will need to impose a special family

of smooth structures on the 3-manifold. Finally, we introduce our notation for bundles

and metrics which will be used throughout the remainder of this thesis.

2.1.1 Broken fibrations of 3-manifolds

We begin with a closed connected oriented manifold Y , and we want to describe when Y

admits a non-homotopically trivial map to the circle. Since S1 is the Eilenberg-MacLane

space for the group Z, there is a group isomorphism between the first cohomology of Y

and the space of homotopy classes of maps to the circle:

H1(Y,Z) ∼=
[
Y, S1

]
.

(The group structure on the right is induced from the group structure on S1.) This

isomorphism can be realized explicitly as follows: Any b ∈ H1(Y,Z) can integrated over

paths in Y with one fixed basepoint. This integral depends only on the homotopy class

of the path, and so we get a map Y → R, which is well-defined up to an overall constant

given by a generator n of

{b(γ)|γ ∈ π1(Y )} ⊆ Z.

So b determines a well-defined map
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f : Y −→ R/nZ,

and hence a group homomorphism

H1(Y,Z) −→
[
Y, S1

]
.

It is immediate that b = 0 if and only if n = 0 if and only if f is homotopic to a point, so

this homomorphism is injective. Conversely, given a smooth f : Y → S1, the pullback of

the positive generator ofH1(S1,Z) determines a class inH1(Y,Z). This can equivalently

be realized by differentiating f and passing to cohomology, b := [df ] ∈ H1(Y,Z). If f

and b are related in this way, then we will say that f is a representative of b. As

mentioned in the introduction, we are interested in 3-manifolds Y equipped with non-

homotopically trivial maps f : Y → S1. It follows that such maps exist if and only if

H1(Y,Z) is non-zero. By standard homological considerations, this happens (for closed

oriented 3-manifolds) if and only if Y has positive first Betti number.

It is a well-known fact from Morse theory that each class b ∈ H1(Y,Z) has a rep-

resentative f whose critical points are all non-degenerate (i.e., f is locally a Morse

function), and that these critical points have distinct critical values [29, Theorem 2.7].

Now suppose Y is a 3-manifold. Then critical points of index 0 and 3 correspond to local

‘maxima’ and ‘minima’. If we assume b 6= 0, then any representative f : Y → S1 has

no global maxima or minima, and so any index 0 or 3 critical points can be homotoped

away, see [29] or [22]. In particular, if b 6= 0, then we may further assume that each

critical point of f has index 1 or 2.

Fix such a function f : Y → S1 and let N denote the number of critical points.

Assume, for now, that N > 0 is positive. Identify S1 ∼= R/CZ for some C > 0. Find

regular values ri ∈ S1 such that, for each 1 ≤ i ≤ N , there is exactly one critical value

ci(i+1) with ri + δ < ci(i+1) < ri+1 − δ, for some fixed δ > 0 (this is possible because

we have assumed the critical points have distinct critical values). Here and below we

work with i modulo N . We may assume the circumference C is large enough to take

δ = 1/2. Define
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Σi := f−1(ri − 1/2), Yi(i+1) := f−1 ([ri + 1/2, ri+1 − 1/2]) ,

which are closed surfaces, and compact cobordisms, respectively. The orientation on

Y and the data of f provide canonical orientations on the Σi. The Yi(i+1) inherit

orientations as well.

I × Σ1

I × Σ2

I × Σ3

I × Σ4

Y12Y23

Y34 Y41

• r1

•
r2

•r3

•
r4

∗ c12∗c23

∗c34 ∗ c41

Y

S1

��

Figure 2.1: An illustration of the correspondence between the critical and regular values,
and the Yi(i+1) and Σi.

Fix a metric g on Y and we assume that g is suitably generic in a sense that we

will make precise later. We refer to g, or its restriction to any submanifold of Y , as the

fixed metric. Note that there are no critical values between ri − 1/2 and ri + 1/2, so

V := ∇f/ |∇f | is well-defined on f−1([ri − 1/2, ri + 1/2]). The time-1 gradient flow of

V provides an identification

f−1([ri − 1/2, ri + 1/2]) ∼= I × Σi, (2.1)

where we have set I := [0, 1]. This also provides an identification of f−1(t) with Σi for

t ∈ [ri − 1/2, ri + 1/2]. So the function f together with the metric g allow us to view

Y as the composition of cobordisms
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YN1 ∪Σ1 (I × Σ1) ∪Σ1 Y12 ∪Σ2 . . . ∪ΣN−1
Y(N−1)N ∪ΣN (I × ΣN )∪ΣN (2.2)

Note that this is cyclic in the sense that the cobordism I × ΣN on the right is glued

to the cobordism YN1 on the left, reflecting the fact that f maps to the circle. By

construction, each Yi(i+1) is an elementary cobordism since it admits an I-valued

Morse function with no more than one critical point, and this Morse function preserves

the cobordism structure between Yi(i+1) and I.

Since each critical point has index either 1 or 2, it follows from standard Morse

theory considerations [29, Theorem 3.14] that the genus of Σi differs from that of Σi+1

by one. For example, if a critical point ci(i+1) has index 1, then Σi+1 is obtained from Σi

by attaching a single 1-cell, and f |Yi(i+1)
contains the data for how this is done. If the

index is 2, then the situation between Σi+1 and Σi is reversed since dimensions 1 and 2

are dual for 3-manifolds. Hence, as we traverse along the circle, the genus of the fiber

remains constant, except for at the critical points where it changes by ±1. However

when we return to where we started the genus must have had a net change of zero, and

we conclude that there are just as many critical points of index 1 as there are of index

2. In particular, N is necessarily an even number. This also shows that each of the

cobordisms in (2.2) all have the same number of connected components. Moreover, if f

has k connected components in each fiber, then there exists a function f̃ : Y → S1 with

f(y) = f̃(y)k, the kth power. So there exists a representative f with connected fibers if

and only if [df ] is not a multiple of any other integer cohomology class. In particular,

this is always the case when Y has positive first Betti number. Circle-valued functions

f which are locally Morse with connected fibers were considered by Lekili [28], where

he called them broken fibrations. From now on we assume f : Y → S1 is a broken

fibration. It follows that, in this case, the manifolds Σi and Yi(i+1), described above,

are connected.

This set-up can be modified to include the case with no critical points, N = 0, as

follows: Let r ∈ R/Z be any point (necessarily a regular value) and Σ0 := f−1(r). By

performing a suitable homotopy to the Morse function f we can replace f by a Morse

function with two critical points (this is the opposite procedure to the cancellation of
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critical points [29], and is the Morse-theoretic version of stabilization for handlebody

decompositions). This does not change the underlying manifold, only the particular

choice of circle-valued Morse function in its homotopy class.

2.1.2 ε-Dependent smooth structures

As a matter of notational convenience, we set

Σ• :=
⊔
i

Σi, Y• := Y \ (I × Σ•) .

We will refer to the connected components of the boundary ∂Y• as the seams, and we

will use the letter t to denote the coordinate variable on the interval I. In particular,

dt ∈ Ω1(I × Σ) is identified with df/ |df | ∈ Ω1
(
∪if−1 ([ri − 1/2, ri + 1/2])

)
under the

identification (4.4).

Over I × Σ• the metric g has the form

dt2 + gΣ

where gΣ is a path of metrics on Σ•. We assume that g has been chosen so that gΣ is

a constant path, which can always be achieved using the decomposition in (2.2) and a

bump function. For ε > 0 define a new metric

gε :=

 dt2 + ε2gΣ on I × Σ•

ε2g on Y•

We will be interested in taking the limit as ε approaches 0.

Let S1 denote the smooth structure on Y (i.e. the smooth structure in which g and

f are smooth). We call this the standard smooth structure. It is important to note

that when ε 6= 1, the metric gε is not smooth with the standard smooth structure. For

example, take V = ∇f/ |∇f |, where the norm and gradient are taken with respect to

g = g1. Then V is smooth on (Y,S1), but

gε(V, V ) =

 1 on I × Σ•

ε2 on Y•

(2.3)
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is not even continuous, so gε cannot be continuous on (Y,S1).

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

I × Σ• Y•

Figure 2.2: This vector field V is not continuous with respect to the topology on TY
defined using the standard smooth structure. However, it is continuous with respect to
the topology defined using the ε-dependent smooth structure.

However, there is a different smooth structure Sε in which gε is smooth, and (Y,Sε)

is diffeomorphic to (Y,S1). This can be seen as follows: View Y as the topological

manifold obtained from the cobordisms Yi(i+1) and I×Σi by using the identity map on

Σi to glue along the seams {0, 1}×Σi, as in (2.2). Following Milnor [29, Theorem 1.4],

any choice of collar neighborhoods determines a smooth structure, and any two choices

are given by isotopic data. These isotopies determine a diffeomorphism between the

smooth structures. The smooth structure S1 can be viewed as arising in this way by

choosing collar neighborhoods of the seams determined by the time-δ gradient flow of

f , and then using the identity to glue these neighborhoods on the overlap. Here δ > 0

is arbitrary, but fixed. On the other hand, the smooth structure Sε arises by taking the

time-δ gradient flow on the Yi(i+1) side of the seam {1} × Σi, but the time-δε gradient

flow on the [0, 1]× Σi side of the seam, and then gluing using the map

(t, σ) 7→ (εt, σ). (2.4)

So Milnor tells us that there is a diffeomorphism

Fε : (Y,S1) −→ (Y,Sε) (2.5)

and, in fact, there is a canonical choice given by taking the obvious straight line ho-

motopy from the map (2.4) to the identity. The pullback metric F ∗ε gε is smooth on

(Y,S1). Indeed, it is just ε2g. In cases when it is necessary to remember the smooth
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structure we will write Y ε for (Y,Sε). However, we will often abuse notation slightly

and refer to gε as a metric on Y . When a function, section of a bundle, connection, etc.

is smooth in the smooth structure Sε we will say that it is ε-smooth. In particular,

if a is a function, section, etc., then a is ε-smooth if and only if the pullback F ∗ε a is

smooth in the standard smooth structure.

Remark 2.1.1. The discontinuity in (2.3) shows that the identity map Id : Y → Y ,

which is a homeomorphism, does not give a diffeomorphism from (Y,S1) to (Y,Sε).

This also illustrates the subtle way in which the topology of the tangent bundle TM to

a smooth manifold M depends on the smooth structure of M : Letting TY ε and T ∗Y ε

denote tangent and cotangent bundles to Y with smooth structure Sε, we have that gε is a

continuous (in fact, smooth) section of the symmetric product bundle Sym2T ∗Y ε → Y ε

and V is a continuous (in fact, smooth) section of TY 1 → Y 1. However, (2.3) shows

that gε(V, V ) = gε(Id∗V, Id∗V ) is not continuous, so Id∗ : TY 1 → TY ε is not continuous,

even though Id : Y → Y is. (Though, of course, (Fε)∗ : TY 1 → TY ε is smooth.)

We can also see that, though gε fails to be smooth on Y 1, it only fails to do so at the

seams where the I ×Σi glue to the Yi(i+1), and even there gε is smooth in the directions

parallel to the seam. So the discontinuity illustrated in (2.3) is the only type of thing

that goes wrong. The same holds for any function, section of a bundle, connection, etc.

which is smooth with the smooth structure Sε.

Moreover, by passing to local coordinates, it is straightforward to show that, for

1 ≤ p ≤ ∞, every ε-smooth function on Y ε is of Sobolev class W 1,p
loc (Y ) with respect to

the standard smooth structure. This is because the underlying topologies are identical,

so the function is continuous on Y 1 and, on the complement of the seams, it is 1-

smooth with bounded derivative. However, in general, ε-smooth forms will only be in

Lploc with respect to the standard smooth structure. Any form which is non-zero in

directions transverse to the seam will necessarily have a jump discontinuity, and so

taking a derivative transverse to the seam will introduce a delta function. This applies

to connections as well.
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2.1.3 Bundles, metrics, and the Hodge star

Let X be a smooth manifold (possibly with boundary). Given a fiber bundle E → X,

we denote the space of smooth sections by Γ(E).

Now suppose E is a vector bundle. Then we write

Ω•(X,E) :=
⊕
k

Ωk(X,E), Ωk(X,E) := Γ(ΛkT ∗X ⊗ E),

for the space of smooth E-valued forms on X. If E is equipped with a fiber-wise inner

product 〈·, ·〉 : E ⊗ E → R, then this combines with the wedge to form a bilinear map

Ωj(X,E)⊗ Ωk(X,E) −→ Ωj+k(X)

µ⊗ ν 7−→ 〈µ ∧ ν〉

If X is compact and oriented then integrating defines a non-degenerate bilinear pairing

on forms of dual degree:

Ωk(X,E)⊗ Ωn−k(X,E) −→ R

µ⊗ ν 7−→
∫
X
〈µ ∧ ν〉,

(2.6)

where n := dim(X). If, in addition, X is equipped with a metric, then this combines

with the orientation to induce a Hodge star ∗ : Ωk(M,E)→ Ωn−k(M,E), which satisfies

∗∗ = (−1)k(n−k) : Ωk(X,E) −→ Ωk(X,E). (2.7)

Sticking ∗ in the second slot of (2.6) defines the following L2-inner product on the vector

space Ωk(X,E):

(µ, ν) :=

∫
X
〈µ ∧ ∗ν〉

for µ, ν ∈ Ωk(X,E). We then set

‖µ‖L2(E) :=
√

(µ, µ).
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Similarly, for p ≥ 1 we can define the Lp norm by

‖µ‖pLp(E)
:=

∫
X
|µ|p dvol,

where we have set

|µ| := (∗〈µ ∧ ∗µ〉)1/2 .

Remark 2.1.2. When the bundle E is clear from context we will often write Lp instead

of Lp(E). Similarly, it will be convenient to abuse notation and write Lp(X) instead of

Lp(E) in cases where it is important to emphasize the underlying base manifold.

Below we will be interested in various scalings of product metrics, so it will be

useful to establish a few formulas. Suppose that X = M ×N is a product, and M,N

are oriented manifolds equipped with metrics gM , gN . Assume X is equipped with the

product metric g = gM ⊕ gN and product orientation (our convention is to use the

‘left-to-right convention’: vectors on M come first, then vectors on N). The metrics

and orientations on M and N induce Hodge stars ∗M and ∗N , respectively, and these

satisfy

∗(µ ∧ ν) = (−1)k(dim(M)−j) ∗M µ ∧ ∗Nν,

where µ ∈ Ωj(M) and ν ∈ Ωk(N).

Example 2.1.3. Suppose X = R × N , and let ds denote the standard 1-form on R.

Then

∗ν = (−1)kds ∧ ∗Nν, ∗ ds = ∗N (1), ∗ (ds ∧ ν) = ∗Nν,

where ν ∈ Ωk(N) is a k-form on N . If N is equipped with a vector bundle E → N then

the same formula holds for ν ∈ Ωk(N,E).

For a real number c > 0, let ∗c denote the Hodge star associated to the conformally

scaled metric c2g on X. Then
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∗cµ = cdim(X)−2k ∗ µ. (2.8)

for µ ∈ Ωk(X,E).

Let G be a Lie group with Lie algebra g, and π : P → X a principal G-bundle.

Given any matrix representation ρ : G → GL(V ), where V is a vector space, we can

form the associated bundle

P (V ) := P ×G V = (P × V )/G.

This is naturally equipped with the structure of vector bundle P (V ) → X. Of par-

ticular interest is the case when V = g is the Lie algebra of G, and ρ is the adjoint

representation. We will assume that g is equipped with an Ad-invariant inner product

〈·, ·〉. This is always the case if G is compact or simple. The Ad-invariance implies

that the inner product ascends to a well-defined fiber-wise inner product on the vector

bundle P (g).

The Lie bracket [·, ·] : g ⊗ g → R is Ad-invariant, and so combines with the wedge

to define a graded-commutative bilinear map

Ωj(X,P (g))⊗ Ωk(X,P (g)) −→ Ωj+k(X,P (g))

µ⊗ ν 7−→ [µ ∧ ν]

thereby equipping Ω•(X,P (g)) with the structure of a graded algebra. Pullback by

π : P → X induces a linear map

π∗ : Ω•(X,P (g)) −→ Ω•(P, g).

The Lie bracket defines a graded algebra structure on the codomain, and with this

structure π∗ is a graded algebra homomorphism. Moreover, π∗ is injective with image

given by the basic forms

Ω•(P, g)basic :=

µ ∈ Ω•(P, g)

∣∣∣∣∣∣∣
(gP )∗µ = Ad(g−1)µ, ∀g ∈ G

ιξPµ = 0, ∀ξ ∈ g

 .
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Here gP (resp. ξP ) is the image of g ∈ G (resp. ξ ∈ g) under the map G → Diff(P )

(resp. g→ Vect(P )) afforded by the group action. We will often use π∗ to identify the

spaces Ω•(X,P (g)) and Ω•(P, g)basic.

2.2 Gauge theory

Denote by

A(P ) =

A ∈ Ω1(P, g)

∣∣∣∣∣∣∣
(gP )∗A = Ad(g−1)A, ∀g ∈ G

ιξPA = ξ, ∀ξ ∈ g


the space of connections on P . The space of connections A(P ) is an affine space

modeled on Ω1(X;P (g)), and the affine action is given by:

Ω1(X,P (g))×A(P ) −→ A(P )

(µ,A) 7−→ A+ π∗µ.

In particular, A(P ) is a smooth (infinite dimensional) manifold with tangent space

Ω1(X,P (g)). Each connection A ∈ A(P ) determines a covariant derivative

dA : Ω•(X,P (g)) −→ Ω•+1(X,P (g))

µ 7−→ (π∗)−1 (d (π∗µ) + [A ∧ π∗µ])

where d is the trivial connection on the trivial bundle P × g. Composing dA with itself

we obtain a degree two map FA := dA ◦ dA : Ω•(X,P (g)) → Ω•(X,P (g)), called the

curvature of A. This can be computed as follows

FA = (π∗)−1
(
dA+

1

2
[A ∧A]

)
∈ Ω2(X,P (g))

Here and below we use the convention that the algebra Ω•(X,P (g)) acts on itself by

left multiplication. So, for example, the statement dA ◦ dA = FA means

dA(dA(µ)) = [FA ∧ µ] , µ ∈ Ω•(X,P (g)).
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As noted above, if A ∈ A(P ) and µ ∈ Ω1(X,P (g)) then A + π∗µ ∈ A(P ) is another

connection. However, in identifying Ω•(X,P (g)) with Ω•(P, g)basic we will typically

drop π∗ from the notation. The covariant derivative and curvature satisfy the following

dA+µ = dA + µ

FA+µ = FA + dAµ+ 1
2 [µ ∧ µ] .

Another useful formula is the Bianchi identity, which says

dAFA = 0.

Given a connection A ∈ A(P ) with covariant derivative dA, we define the formal

adjoint

d∗A : Ωk(X,P (g)) −→ Ωk−1(X,P (g))

µ 7−→ −(−1)(n−k)(k−1) ∗ dA ∗ µ.

Stokes’ theorem shows that this satisfies

(dAµ, ν) = (µ, d∗Aν)

when X is closed and µ ∈ Ωk(X,P (g)), ν ∈ Ωk+1(X,P (g)). By (2.8) it follows that

d∗,cA = c−2d∗A,

where d∗,cA is the adjoint defined with respect to the metric c2g; that is, using ∗c in place

of ∗.

Suppose X is an oriented Riemannian 4-manifold. Then (2.7) shows that on 2-

forms the Hodge star squares to the identity, and it has eigenvalues ±1. Denoting by

Ω2,±(X,P (g)) the ±1 eigenspace of ∗, then we have an L2-orthogonal decomposition

Ω2(X,P (g)) = Ω2,+(X,P (g))⊕ Ω2,−(X,P (g)),
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with the orthogonal projection to Ω2,±(X,P (g)) given by µ 7→ 1
2(1±∗)µ. The elements

of Ω2,−(X,P (g)) are called anti-self dual 2-forms. A connection A ∈ X is said to

be anti-self dual (ASD) or an instanton if its curvature FA ∈ Ω2,−(X,P (g)) is an

anti-self dual 2-form; that is, if

FA + ∗FA = 0.

In dimensions 2 and 3, we will be interested in the flat connections A. By definition,

these satisfy FA = 0, and we will denote the set of flat connections on P by Aflat(P ).

If A is flat then Im dA ⊆ ker dA and we can form the harmonic spaces

Hk
A := Hk

A(X,P (g)) :=
ker

(
dA|Ωk(X,P (g))

)
Im (dA|Ωk−1(X,P (g)))

.

We say that A is irreducible if H0
A = 0. By the formula (2.14) it is clear that if A is

irreducible, then the gauge action at A is locally free. A similar condition that we will

be interested in is when X is 3-dimensional. In that case we say that a connection A is

non-degenerate if H1
A = 0. (The importance of this condition comes in that if X is

closed and orientable then A is non-degenerate as a flat connection if and only if it is

a non-degenerate critical point of the Chern-Simons functional. We will have more to

say about this below.)

Suppose now that X is closed. Then the Hodge isomorphism [44, Theorem 6.8] says

H•A
∼= ker(dA ⊕ d∗A), Ω•(X,P (g)) ∼= H•A ⊕ Im(dA)⊕ Im(d∗A), (2.9)

for any flat connections A on X. Here the decomposition is orthogonal with respect to

the L2 inner product defined above. We will treat these isomorphisms as identifications.

From the first isomorphism in (2.9) we see that H•A is finite dimensional since dA ⊕ d∗A
is elliptic (locally its leading order term is d ⊕ d∗). Furthermore, it is clear that ∗ :

H•A → Hn−•
A restricts to an isomorphism on the harmonic spaces, and so the pairing

(2.6) continues to be non-degenerate when restricted to the harmonic spaces.

Example 2.2.1. Suppose X = Σ is a closed, oriented surface equipped with a metric.

Then on 1-forms the pairing (2.6) is anti-symmetric and ∗ squares to -1. This data de-

fines a complex structure on Ω1(Σ, P (g)). Furthermore, the pairing in (2.6) determines
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a symplectic structure ω on Ω1(Σ, P (g)) and the triple (Ω1(Σ, P (g)), ∗, ω) is Kähler.

As mentioned above, for any flat connection A on X the Hodge star and non-

degenerate pairing (2.6) restrict to the harmonic spaces H•A. In particular, (H1
A, ∗, ω)

is Kähler and finite dimensional.

We end this section with a brief discussion of the Yang-Mills functional, which

is defined to be the map

YM : A(P ) −→ R

A 7−→ 1

2
‖FA‖2L2

We will refer to the value as the energy of a connection. When X is closed, the critical

points of this functional are precisely the connections A satisfying

d∗AFA = 0.

These connections are called the Yang-Mills connections. Clearly if a flat connection

exists, then it is Yang-Mills and has minimum energy among all connections. However,

in dimensions greater than 3 there need not exist any flat connections. For example,

in dimension 4 the Bianchi identity shows that the ASD connections are Yang-Mills as

well, and it is straight-forward from the definitions that the ASD connections are those

with the minimum energy. In particular, the existence of a non-trivial instanton on

a bundle over a closed 4-manifold precludes the existence of a flat connection on that

bundle.

A gauge transformation is an equivariant bundle map u : P → P covering the

identity. The set of gauge transformations on P forms a Lie group, called the gauge

group, and is denoted G(P ). There are two other equivalent ways of viewing gauge

transformations. The first as the set Map(P,G)G of G-equivariant maps P → G. Here

G acts on itself by conjugation. The relationship with the first definition is given by

sending u : P → P to the map gu : P → G defined by the following formula
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u(p) = gu(p) · p

The third equivalent formulation is as the set of section Γ(P ×GG) of the group bundle

P ×G G→ X, which is formed by taking the action of G on itself by conjugation. It is

an easy exercise to show Map(P,G)G = Γ(P ×G G).

The exponential map exp : g → G intertwines the adjoint action with conjugation,

and so defines a map Ω0(X,P (g)) → Γ(P ×G G) = G(P ), where the image of ξ ∈

Ω0(X,P (g)) is the section

x 7−→ exp(−ξ(x))

of P ×G G. (The minus sign here is a convention used to make (2.14) free of signs.)

Viewing G(P ) as G-equivariant bundle maps P → P , the element exp(−ξ) : P → P

acts by sending

p 7−→ p · exp(−ξ(p)),

where we are now thinking of ξ as an element in Ω0(P, g)basic
∼= Ω0(X,P (g)). The

exponential map allows us to define a smooth structure on G(P ) making G(P ) into a

Lie group with Lie algebra Ω0(X,P (g)).

Remark 2.2.2. Just as with the theory of finite-dimensional Lie groups, there are

various times when it is convenient to consider the gauge group and its Lie algebra

as subsets of the same space. This can be achieved by fixing a matrix representation

G→ GL(Cn) ⊂ End(R). This induces a Lie algebra representation g→ End(R). Then

Ω0(X,P (g)) and G(P ) both map into Γ(P ×G End(R)). If, in addition, the matrix

representation is faithful, then these are embeddings.

As an example of the usefulness of this vantage point, note that in the ambient

space Γ(P ×G End(R)) it makes sense to multiply Lie group elements with Lie algebra

elements. Hence, we can identify the tangent space TuG(P ) with the translation of the

Lie algebra by u
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uΩ0(X,P (g)).

This is entirely analogous to the finite-dimensional case.

The gauge group acts on the left on the space Ω•(P, g) by pulling back by the inverse:

(u,A) 7−→ uA := (u−1)∗A, (2.10)

for u ∈ G(P ), A ∈ Ω•(P, g). Here the star indicates the pullback map induced by the

bundle map u−1 : P → P . Sometimes it will be useful to alternatively write u(A)

for uA. The action of G(P ) on Ω•(P, g) restricts to actions on Ω•(P, g)basic and A(P ).

Viewing a gauge transformation as a map u : P → G we can write this action as

(u−1)∗A = Ad(g)A+D (Lu)D(u−1), (2.11)

where D (Lg) : TG → TG is the pushforward of the map Lg : G → G given by left

multiplication by g ∈ G, and D(u−1) represents the pushforward of the map P → G

given by p 7→ u−1(p). That is, on the right-hand side of (2.11) we are viewing the gauge

transformation u as a map P → G and the formula should be treated pointwise on the

values of u. For example, Du : TP → TG, and so D (L(u)) D(u−1) ∈ g. From the

perspective of covariant derivatives the action of G(P ) takes the form

d(u−1)∗A = Ad(u)dA +D (Lu)D(u−1), (2.12)

Similarly to the situation in Remark 2.2.2, fixing a matrix representation of G allows

us to write this formula in a less notation-heavy way:

(u−1)∗A = uAu−1 + uD(u−1), (2.13)

where now the concatenation appearing on the right is just matrix multiplication. If

the representation is faithful then there is no information lost in expressing the action

(2.11) as we have in (2.13).

The infinitesimal action of G(P ) at A ∈ A(P ) takes the form
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Ω0(X,P (g)) −→ Ω1(X,P (g))

ξ 7−→ dAξ
(2.14)

More generally, the derivative of (2.10) at (u,A) is

uΩ0(X,P (g))× Ω1(X,P (g)) −→ Ω1(M,P (g))

(uξ, η) 7−→ Ad(u)dAξ + Ad(u)η

= (du∗A(uξ))u−1 + uηu−1.

(2.15)

where, in writing this expression, we have chosen a faithful matrix representation of G

as in Remark 2.2.2.

The gauge group also acts on the left on Ω•(X,P (g)) by the pointwise adjoint action

(so we are viewing G(P ) as sections of P ×G G), and π∗ : Ω•(X,P (g)) → Ω•(P, g)

intertwines the two actions. The curvature of A ∈ A(P ) transforms under u ∈ G(P ) by

F(u−1)∗A = Ad(u)FA.

This shows that G(P ) restricts to an action on Aflat(P ) and, in 4-dimensions, the

instantons.

2.2.1 Topology aspects of principal PSU(r)-bundles

We first review some basic facts about PSU(r). By definition we have

PSU(r) = SU(r)/Zr = U(r)/U(1),

where Zr and U(1) are the centers of SU(r) and U(r), respectively. It follows that

PSU(r) has trivial center, and is connected and compact. Furthermore,

π1(PSU(r)) ∼= Zr,



28

since SU(r) is simply-connected. Being the quotient of SU(r) by a discrete set, we have

a Lie algebra isomorphism psu(r) ∼= su(r). Hence PSU(r) is simple and so there is a

canonical choice of Ad-invariant metric 〈·, ·〉 on PSU(r) given by declaring the highest

coroot to have norm
√

2. We will always assume psu(r) is equipped with this inner

product. Explicitly, this is given by

〈µ, ν〉 =
1

4π2
tr(µ · ν∗) = − 1

4π2
tr(µ · ν),

where the trace is the one induced from the identification psu(r) ∼= su(r) ⊂ End(Cr).

Having fixed an inner product, the adjoint can be viewed as a representation of the

form Ad : PSU(r) → SO(psu(r)), and this is faithful. Finally, consider the action of

U(r) on itself by conjugation. The center U(1) fixes every point in U(r), and so this

action descends to an action of PSU(r) on U(r). This PSU(r) action fixes the subgroup

SU(r) ⊂ U(r).

In [56], L.M. Woodward exploited the adjoint representation to classify the princi-

pal PSU(r)-bundles over spaces of dimension ≤ 4. This classification scheme assigns

cohomology classes

t2(P ) ∈ H2(X,Zr), q4(P ) ∈ H4(X,Z)

to each principal PSU(r)-bundle P → X. For example, q4 is the second Chern class of

the complexified adjoint bundle P (g)C := P (g)⊗ C,

q4(P ) = c2 (P (g)C) . (2.16)

where g = psu(r). The class t2 is defined as the mod r reduction of a suitable first

Chern class. We will be mostly interested in the case where X is a smooth manifold,

but these classes are defined for CW complexes as well.

Example 2.2.3. When r = 2 we have PSU(r) = SO(3), and the classes t2 and q4 are

exactly the 2nd Stiefel-Whitney class and 1st Pontryagin class, respectively.

We summarize the properties of these classes which we will need.
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• If dim(X) ≤ 4 and X is a manifold, then two bundles P and P ′ over X are

isomorphic if and only if t2(P ) = t2(P ′) and q4(P ) = q4(P ′);

• The class t2(P ) is zero if and only if the structure group of P can be lifted to

SU(r); that is, P = P ×SU(r) PSU(r) for some principal SU(r)-bundle P → X

[56, p. 517]. Here the action of SU(r) on PSU(r) is by left multiplication via the

projection SU(r)→ PSU(r).

• In the case of manifolds of dimension 2 or 3, the class q4 is always zero, and t2

determines a bijection between isomorphism classes of PSU(r)-bundles and the

space H2(X,Zr). In particular, if X is a closed oriented surface or an oriented

elementary cobordism between two such surfaces, then t2 is a bijection

t2 :

 isomorphism classes of

PSU(r)-bundles over X

 ∼=−→ Zr

• These classes satisfy

q4(P ) = t2(P )2 mod r (2.17)

• The classes t2 and q4 are functorial in the sense that they commute with pullback

by maps f : X ′ → X:

t2(f∗P ) = f∗t2(P ), q4(f∗P ) = f∗q4(P ).

As an application, we use these characteristic classes to study the components of

the gauge group G(P ) for a principal PSU(r)-bundle P → X. Donaldson notes the

following fact. We include a proof here for convenience.

Proposition 2.2.4. [8, Section 2.5.2] Let G be a compact Lie group, X a smooth

manifold and P → G a principal G-bundle. Then there is a bijection between π0(G(P ))

and isomorphism classes of principal G-bundles over S1 ×X which restrict to P on a
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fiber. This bijection is induced from the map which sends a gauge transformation u to

the bundle

Qu := [0, 1]× P/(0, p) ∼ (1, u(p)), (2.18)

given by the mapping torus.

Proof. Well-defined: The isomorphism class of the bundle Qu depends only on the path

component of u in G(P ). The gauge group is locally path-connected (it is locally mod-

eled on the vector space consisting of sections of P (g)), so the connected components

are the path components, and the map (2.18) descends to a give a well-defined map

from π0(G(P )) to the isomorphism classes of principal G-bundles over S1 × X which

restrict to P on a fiber.

Surjective: Suppose we are given any bundle Q → S1 × X with Q|{1}×X = P ,

and consider the obvious projection π : Q → S1. Since G is compact, Q admits a

G-invariant metric. (This can be obtained by first choosing any metric (·, ·) and then

declaring

(v, w)inv :=
1

vol(G)

∫
G

(DRgv,DRgw) dvolG,

where DRg is the pushforward of multiplication by g ∈ G and we are using an invariant

Haar measure to define the integral on G.) Let Φt : Q→ Q denote the time-t gradient

flow of π, normalized so Φ1 maps each fiber to itself (this is just saying the circle has

length 1). The G-invariance implies that Φ is G-equivariant. Then u := Φ1|π−1(1) :

P → P is the desired gauge transformation.

Injective: Suppose there is some u ∈ G(P ) with Ψ : Qu
∼=→ S1×P . Let Φ• : I×Qu →

Qu be the gradient flow as constructed in the previous paragraph, and π : S1×P → P

the projection. Then consider the composition

π ◦Ψ ◦ Φ• ◦Ψ−1| : I × P −→ P.

where, in the domain, we have set P = {1} × P ⊂ Q. Since everything is equivariant,

this is a path in G(P ) from u to the identity map.
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Now we combine this with L.M. Woodward’s classification. Fix a principal PSU(r)-

bundle P → X and assume X is a manifold of dimension ≤ 3. Let u ∈ G(P ), define

Qu → S1 ×X as above, and consider the classes

t2(Qu) ∈ H2(S1 ×X,Zr), q4(Qu) ∈ H4(S1 ×X,Zr).

By the Künneth formula, we have an isomorphism

Hk(S1 ×X,R) ∼= Hk(X,R)⊕Hk−1(X,R),

where R = Z or Zr. The image of t2(Qu) in H2(X,Zr) is exactly t2(P ), so the depen-

dence of t2(Qu) on the gauge transformation u is contained entirely in the projection

of t2(Qu) to H1(X,Zr). We denote this projection by

η(u) ∈ H1(X,Zr),

and call this the parity of u.

Now consider the class q4(Qu). Note that the relation (2.17) gives

q4(Qu) = 2t2(P ) ` ds ` η(u), mod r, (2.19)

where ds ∈ H1(S1,Zr) is the generator. This follows because t2(P )2 is a 4-form on a

3-manifold, and ds2 = 0. In particular, q4(Qu) is always even. Due to the dimensional

restrictions on X, there is an isomorphism H4(S1×X,Z) ∼= H3(X,Z). If X is a closed

connected oriented 3-manifold, then H3(X,Z) ∼= Z. In this case, declare deg(u) ∈ Z to

be the image of q4(Qu)/2 under this isomorphism; we call this the degree of u.

Proposition 2.2.4, and the properties of t2 and q4 immediately imply that the parity

and degree detect the components of the gauge group:

• If dimX ≤ 2, or if dimX = 3 and X is compact with non-empty boundary, then

there is an injection

η : π0(G(P )) ↪→ H1(X,Zr).
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• If dimX = 3 and X is closed, connected and oriented, then there is an injection

(η,deg) : π0(G(P )) ↪→ H1(X,Zr)× Z.

See [11], [15] for alternative realizations of the parity and degree.

Proposition 2.2.5. Fix a gauge transformation u : P → PSU(r). Then the following

are equivalent:

• η(u) = 0;

• u : P → PSU(r) lifts to a PSU(r)-equivariant map ũ : P → SU(r);

• When restricted to the 1-skeleton of X, u is homotopic to the identity map.

Moreover, if X is a compact connected oriented 3-manifold and η(u) = 0, then

deg(u) is divisible by r.

Proof. Let γ : X1 → X be a continuous map, where X1 is a CW complex. Then

any u ∈ G(P ) defines a pullback gauge transformation γ∗u ∈ G(γ∗P ). Moreover, it is

immediate from the functoriality of t2 that

η(γ∗u) = γ∗η(u) ∈ H1(X1,Zr).

Now suppose X1 ⊂ X is the 1-skeleton, and γ is the inclusion. Then γ∗ : H1(X,Zr)→

H1(X1,Zr) is an isomorphism and so η(u) = 0 if and only if η(γ∗u) = 0. Since γ∗u

is a gauge transformation over a 1-dimensional space, this is equivalent to saying that

γ∗u ∈ G0(γ∗P ) lies in the identity component. This shows the equivalence of the first

and second items.

Set G = PSU(r) and consider the group bundles

P ×G G→ X, P ×G SU(r)→ X,

where, in both cases, G is acting on the second factor by conjugation. There is a

residual free action of the center Zr ⊂ SU(r) on the second bundle, and the projection



33

P ×G SU(r) −→ (P ×G SU(r)) /Zr = P ×G G,

is a principal Zr-bundle, and hence a normal covering space. The normal covering

spaces of P ×G G correspond to normal subgroups of the fundamental group of P ×G

G. In particular, the Zr-covering space P ×G SU(r) corresponds to the kernel of a

homomorphism µ : π1(P ×GG)→ Zr, which we view as an element of H1(P ×GG,Zr).

Any gauge transformation u can be viewed as a map X → P ×G G. Then an

equivariant lift of u, as described in the first item of the proposition, is exactly a lift ũ

to P ×G SU(r):

P ×G SU(r)

X
u -

ũ

-

P ×G G
?

By the lifting property for covering spaces, u lifts if and only if the pullback u∗µ = 0

vanishes as an element of H1(X,Zr). This happens if and only if u∗π1(X) ⊂ π1(P×GG)

lies in the image of π1(P×GSU(r)), and this happen if and only if the pulled back gauge

transformation

γ∗u : X1 −→ γ∗P ×G G

lifts to a section

X1 −→ γ∗P ×G SU(r).

The fibers of the bundle γ∗P ×G SU(r) → X1 are simply connected, so any section

is homotopic to the identity. So u lifts exactly when its restriction to the 1-skeleton

γ∗u : X1 → PSU(r) is homotopic to the identity. This shows the equivalence of the

second and third items. The final assertion is immediate from (2.19).
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It will be useful to have an alternate characterization of the degree of a gauge

transformation. To set this up, we first note the following Chern-Weil formula, which

holds for a closed oriented 4-manifold X,1

q4(P ) = −r
∫
X
〈FA ∧ FA〉 ∈ Z. (2.20)

Here, A is any connection on P → X; it follows from the Bianchi identity that this is

independent of the choice of A. This formula is immediate the definition of q4, together

with the usual Chern-Weil formula for the second Chern class on SU(r) bundles.

Now suppose X is a closed connected oriented 3-manifold. Fix a connection a0 ∈

A(P ) and a gauge transformation u ∈ G(P ). Let a : I → A(P ) be any path from a0

to u∗a0. This defines a connection A on I × P → I ×X by declaring A|{s}×X = a(s).

Moreover, A descends to a connection on Qu, so we have

deg(u) = −r
2

∫
I×X
〈FA ∧ FA〉.

The curvature decomposes into components as FA = Fa(s) + ds ∧ ∂sa(s), and so

deg(u) = −r
∫
I

(∫
X
〈Fa(s) ∧ ∂sa(s)〉

)
. (2.21)

We conclude this section by defining the bundles we will be considering in the sequel.

Proposition 2.2.6. Let Y and f : Y → S1 be as in section 2. For each d ∈ Zr there

is a principal PSU(r)-bundle Q→ Y such that

t2(Q|f−1(r)) = d

1Here the particular normalization in (2.20) depends on our choice of inner product on g. For
example, suppose r = 2, so q4 = p1 is the first Pontryagin class. In [9], Donaldson and Kronheimer use
the Frobenius inner product 〈·, ·〉DK = −tr(· ·), and their formula (2.1.40, 41) reads

p1(P ) = − 1

2π2

∫
X

〈FA ∧ FA〉DK.

Similarly, Dostoglou and Salamon use 〈·, ·〉DS = −4tr(· ·), so with this convention the first Pontryagin
class takes the form

p1(P ) = − 1

8π2

∫
X

〈FA ∧ FA〉DS.

Regardless of the normalization, the classes p1 and q4 are, of course, integral.
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for any regular value r ∈ S1. Furthermore, Q depends only on d and the homotopy class

of f , in the sense that it is independent of all other choices up to bundle isomorphism

covering the identity on Y .

Proof. This is basically just a patching argument: By the classification of PSU(r)-

bundles there are bundles Qi(i+1) → Yi(i+1) and I × Pi → I × Σi each restricting

to bundles of the specified class d on each boundary component. Since d uniquely

characterizes PSU(r)-bundles on surfaces, up to isomorphism, for each i there are gauge

transformations

Qi(i+1)|Σi → {1} × Σi, Qi(i+1)|Σi+1 → {0} × Σi+1,

which we use to glue all of these bundles together to form the desired bundleQ→ Y .

Remark 2.2.7. We will be interested in bundles Q as in Proposition 2.2.6, where d is

a generator of Zr (see Theorems 2.2.15 and 2.2.16, below). We will use

Qi(i+1) := Q|Yi(i+1)
, Pi := Q|Σi

to denote the restrictions.

Let Fε : Y 1 → Y ε be the diffeomorphism from (2.5), and define

Qε := (F−1
ε )∗Q,

which is a smooth PSU(r)-bundle over Y ε enjoying the same properties as Q. Since Fε

is the identity on Y• and {0} × Σ• it follows that the restrictions

Q• := Qε|Y• , P• := Qε|{0}×Σ•

do not depend on ε.

2.2.2 Compactness results and gauge fixing

This section begins with a review of some basic facts about Sobolev spaces. We then

move on to describe two foundational compactness results pertaining to connections
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with bounded curvature. The section ends with a discussion of the Coulomb and tem-

poral gauge-fixing conditions. We refer the reader to [51, Appendix B] for more details

and proofs of the various assertions.

Let X be an oriented Riemannian n-manifold, and E → X a vector bundle equipped

with a connection ∇. Let k ≥ 0 be an integer, and p ≥ 1 a real number. Then we

denote by W k,p(E) the closure of the space of compactly supported smooth sections in

Γ(E) with respect to the norm

‖e‖p
Wk,p(E)

:=
∑

0≤j≤k
‖∇je‖pLp(E).

The vector space W k,p(E) equipped with this norm is a Banach space. Note that

W 0,p(E) = Lp(E). When k < 0 is a negative integer, we define

W k,p(E) :=
(
W−k,p

∗
(E)

)∗
to be the dual Banach space to W−k,p

∗
(E), where p∗ is the conjugate exponent: 1/p∗+

1/p = 1. When the bundle E is clear from context, we will write W k,p for W k,p(E). In

situations where it is particularly important to emphasize the particular Sobolev space

or the underlying base manifold, we will write W k,p or W k,p(X) instead of W k,p(E).

See Remark 2.1.2.

As a vector space W k,p(E) is independent of the choice of connection ∇, and any

two choices determine equivalent norms. The Sobolev embedding theorem states that

if X is compact then W k,p(E) embeds as a topological vector space into W k′,p′(E)

whenever

k − n

p
≥ k′ − n

p′
, and k > k′ ≥ 0. (2.22)

Furthermore, this embedding is compact whenever the first inequality in (2.22) is strict;

this means that any sequence which is bounded W k,p(E) has a subsequence which

converges in W k′,p′ . In the above we have assumed p and p′ are both real numbers,

however this result has an extension to p′ =∞, in which case we need to assume that

the first inequality in (2.22) is strict. When this is the case, the image of W k,p(E) ↪→
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W k′,∞(E) lies in Ck
′
(E) ⊂W k′,∞(E), the subspace of sections whose k′th derivative is

continuous.

We will also be interested in understanding how these Sobolev spaces interact with

multiplication. So we assume that the fibers of E are equipped with the structure of

an algebra, which defines a smooth bundle map

E ⊗ E −→ E, (f, g) 7−→ fg.

In our applications, this will be given by the Lie bracket. Suppose k ≥ 0 is a positive

integer, and 1 ≤ p, r, s <∞ satisfy

r, s ≥ p, 1

r
+

1

s
<
k

n
+

1

p
.

Then fiberwise multiplication defines a bounded bilinear map

W k,r(E)⊗W k,s(E) −→W k,p(E).

Now suppose P → X is a principal G-bundle such that g admits an Ad-invariant

inner product. This data determines a fiber-wise norm |·| on each vector bundle

ΛkT ∗X ⊗ P (g), and any choice of smooth reference connection Aref ∈ A(P ) combines

with the Levi-Civita connection to allow us to define the space W k,p
(
ΛjT ∗X ⊗ P (g)

)
of Sobolev class W k,p j-forms with values in P (g). Define

Ak,p(P ) := Aref +W k,p (T ∗X ⊗ P (g)) .

Using the pullback π∗ we have that the smooth connections A(P ) ⊂ Ak,p(P ) form

a dense subspace. Furthermore, the space Ak,p(P ) is independent of the choice of

Aref ∈ A(P ), and the norm only depends on the choice of reference connection Aref

up to norm equivalence. The Sobolev embedding theorem carries over directly to the

space Ak,p(P ) of connections.

When X is compact the assignment A 7→ FA is bounded as a map Ak,p(P ) →

W k−1,p(Λ2T ∗X ⊗P (g)) provided p ≥ n/(k+ 1) and k ≥ 1. Likewise, if A is continuous

the exterior derivative dA defines a bounded linear map
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dA : W k,p(Λ•T ∗X ⊗ P (g)) −→W k−1,p(Λ•+1T ∗X ⊗ P (g)).

When A ∈ A(P ) is flat the isomorphisms (2.9) continue to hold in the W k,p-completions

of the relevant spaces. The direct sum decomposition remains L2-orthogonal, even

though the spaces may not be complete in the L2 norm.

Remark 2.2.8. Suppose X is closed (compact with no boundary) and p ≥ dim X.

The curvature map A 7→ FA extends to a bounded linear map A0,p(P )→W−1,p(Λ2 T ∗

⊗P (g)). To see this, fix a smooth reference connection Aref . Then for A ∈ A0,p(P ),

define

FA := FAref
+ dAref

(A−Aref) +
1

2
[A−Aref ∧A−Aref ] .

The first term is smooth and so clearly in W−1,p. The derivative term dAref
(A− Aref)

should be interpreted distributionally (i.e., acting on W 1,p∗, where 1/p + 1/p∗ = 1),

and so also lies in W−1,p. The final term is the product of two Lp forms and so is an

Lp/2 form. This latter space embeds into W−1,p whenever p ≥ dim X (this is an easy

consequence of Sobolev embedding for k ≥ 0 mentioned above).

Note that if A ∈ Ak,p(P ) with k < 0, then one runs into difficulty defining the

curvature by this formula. This is due to the presence of the quadratic term, which acts

by pointwise function multiplication, but the elements of Ak,p(P ) are not all functions

when k < 0.

When we have an embedding G ⊆ U(r), then we can define Gk,p(P ) to be the

subset of functions in W k,p(End(Cr)) whose images lie in G ⊂ U(r) ⊂ End(Cr). Note

that under such an embedding G necessarily has measure zero in End(Cr); nonetheless,

this is a meaningful definition whenever we are in the continuous range for Sobolev

embedding (e.g. kp ≥ dim X and k ≥ 2, or kp > 2 and k = 1). If X is non-compact,

then we write Ak,ploc (P ) and Gk,ploc (P ) for the locally W k,p sections.

The space Gk,p(P ) forms a group when we are in the continuous range, and the

group operations are smooth, making Gk,p(P ) a Banach Lie group. Moreover, when
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this is the case, the group Gk,p(P ) acts smoothly on Ak−1,p(P ). See [51, Appendix B]

for more details.

Below we include statements of two compactness theorems for connections. They

are originally due to Uhlenbeck [43], however [51] is an excellent reference as well. For

the second assertion in Uhlenbeck’s Strong Compactness Theorem, we direct the reader

to [8, Proposition 2.1]. In both theorems, we assume X is a Riemannian n-manifold

and P → X is a principal G-bundle with G compact. We allow X to have boundary

unless otherwise specified. If X is non-compact, then we assume there exists a sequence

of compact subsets Xν ⊆ X with Xν ⊆ Xν+1, ∪Xν = X and each Xν is a deformation

retract of X.

Theorem 2.2.9. (Weak Compactness) Suppose P → X be as above, and 1 < p <

∞ is such that p > n/2. Let (Aν)ν∈N ⊂ A
1,p
loc(P ) be a sequence of connections with

supν ‖FAν‖Lp(X) < ∞. Then there is a subsequence (still denoted by (Aν)ν∈N) and a

sequence of gauge transformations uν ∈ G2,p
loc (P ) such that u∗νAν converges weakly in

W 1,p on compact sets to a limiting connection in A1,p(P ).

Theorem 2.2.10. (Strong Compactness) Suppose P → X is as above, but assume X

has empty boundary. Let 1 < p <∞ be such that p > n/2, and we suppose in addition

that p > 4/3 when n = 2. If (Aν)ν∈N ⊂ A
1,p
loc(P ) is a sequence of Yang-Mills connections

with supν ‖FAν‖Lp(X) <∞, then there is a subsequence (still denoted by (Aν)ν∈N) and

a sequence of gauge transformations uν ∈ G2,p
loc (P ) such that u∗νAν converges in C∞ on

compact sets to a limiting smooth Yang-Mills connection.

Furthermore, if dimX = 4, each Aν is ASD and supν ‖FAν‖L2(X) < ∞, then there

is a finite set of points X0 ⊂ X such that, after passing to a subsequence and applying

gauge transformations, the Aν converge in C∞ on compact subsets of X\X0. Moreover,

there is a constant δ0 > 0 such that if ‖FAν‖L2(X) < δ0 for all but finitely many ν, then

X0 is empty.

There are several places where we will find it convenient to choose a particular gauge

for a connection A. That is, we replace A by u∗A, for some gauge transformation u,

where u∗A now satisfies some desirable property.
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The first example of this that we discuss is temporal gauge. For this, we suppose we

are working on a product manifold R ×X, and that there is a bundle P → X. Then

we equip R×X with the pullback bundle R× P . Let s denote the coordinate variable

on R, and

∂

∂s
∈ Vect(R× P )

the obvious vector field. Then a connection A ∈ Ω1(R×P, g) is in temporal gauge if

its contraction with ∂/∂s vanishes

ι∂/∂sA = 0.

This terminology is justified, since, for each connection A there is a gauge transforma-

tion u ∈ G(R× P ) with u∗A in temporal gauge. Indeed, viewing elements of G(R× P )

maps R→ G(P ), then u can be taken to be the unique solution of the ODE

−
(
ι∂/∂sA

)
u =

∂

∂s
u, u(0) = Id,

where we have chosen a faithful representation of G to write this using matrix notation

(see Remark 2.2.2). It follows that u can be taken to lie in the identity component

G0(R × P ). It is useful to note that any connection A ∈ A(R × P ) can be written in

the form

A = a(s) + p(s) ds

for unique a : R → A(P ) and p : R → Ω0(X,P (g)), where ds ∈ Ω1(R × Y ) is the

obvious 1-form. Then A is in temporal gauge if and only if p = 0.

Next, we discuss Coulomb gauge. Fix a Riemannian manifold X and a principal

G-bundle P → X. Given connections A,A0 ∈ A(P ), we say that A is in Coulomb

gauge with respect to A0 if

d∗A0
(A−A0) = 0.
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The theorem that is useful to us is the following (see [51, Theorem 8.1] for a proof):

Theorem 2.2.11. (Coulomb Gauge) Suppose X is a closed Riemannian n-manifold

and P → X is a principal G-bundle with G compact. Let 1 < p ≤ q <∞ be such that

p >
n

2
,

1

n
>

1

q
>

1

p
− 1

n
.

For any A0 ∈ A1,p(P ) and c0 > 0, there exist δ > 0 and C > 0 such that the following

holds: For every A ∈ A1,p(P ) with

‖A−A0‖Lq ≤ δ, ‖A−A0‖W 1,p ≤ c0,

there exists a gauge transformation u ∈ G2,p(P ) with u∗A in Coulomb gauge with respect

to A0, and satisfying the following estimates

‖u∗A−A0‖Lq ≤ C‖A−A0‖Lq , ‖u∗A−A0‖W 1,p ≤ C‖A−A0‖W 1,p .

2.2.3 Moduli spaces of flat connections

This section introduces various moduli spaces of flat connections which are the building

blocks for the quilted Floer cohomology of our 3-manifold Y . It turns out that these

moduli spaces are finite-dimensional and have natural symplectic structures.

Before defining the moduli spaces themselves, we review the relevant symplectic

geometry. See [30] and [33] for more details on this material. A symplectic manifold

is a pair M = (M,ω), where M is a smooth manifold, and ω ∈ Ω2(M), called the

symplectic form, is a 2-form which is closed and non-degenerate. It follows that M is

necessarily even-dimensional. A diffeomorphism ϕ : M0 →M1 between two symplectic

manifolds (M0, ω0) and (M1, ω1) is called a symplectomorphism if ϕ∗ω1 = ω0.

Example 2.2.12. 1. If M = (M,ω) is a symplectic manifold, then M− := (M,−ω) is

also a symplectic manifold.

2. If (Mj , ωj) are symplectic manifolds for j = 0, 1, then M0 ×M1 is symplectic

with symplectic form given by π∗0ω0 +π∗1ω1, where πj : M0×M1 →Mj is the projection.
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An almost complex structure on a symplectic manifoldM is a map J ∈ End(TM)

which squares to minus the identity J2 = −Id (so J is a complex structure on the tan-

gent bundle TM). An almost complex structure J is said to be compatible with the

symplectic form ω if ω(Jv, Jw) = ω(v, w) for all v, w ∈ TpM and ω(v, Jv) > 0 whenever

v 6= 0. When this is the case, the assignment

v ⊗ w 7−→ ω(v, Jw)

defines a metric on TM . We denote the induced norm on vectors by | · |M . The space of

compatible almost complex structures is always non-empty and contractible. It follows

that the first Chern class c1(M) := c1(TM, J) ∈ H2(M,Z) associated to the complex

vector bundle (TM, J) is well-defined, and independent of the choice of compatible J .

The minimal Chern number of (M,ω) is defined to be

N := inf {k > 0 | c1(A) = k, for some A ∈ π2(M)} .

In our applications this will be finite. We say that (M,ω) is monotone if there is a

constant τ > 0, called the monotonicity constant, such that

[ω] (A) = τc1(A), for A ∈ π2(M),

where [ω] denotes the cohomology class of the closed form ω. For example, this is given

by

[ω] (A) =

∫
S2
u∗ω,

where u : S2 → M represents A ∈ π2(M). The key point of these properties is that

if M is monotone with monotonicity constant τ and if M has finite minimal Chern

number N , then

[ω] (A) ∈ (τN)Z (2.23)

for all A ∈ π2(M).
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Given a symplectic manifold (M,ω), an embedded submanifold L ↪→ M is called

Lagrangian if dimL = 1
2 dimM and the symplectic form vanishes on L.

Example 2.2.13. Suppose ϕ : M0 → M1 is a symplectomorphism. Then its graph

Graph(ϕ) ⊂M−0 ×M1 is Lagrangian. In particular, if M0 = M1 and ϕ is the identity,

then this shows that the diagonal in M−0 ×M0 is Lagrangian.

Suppose L ⊂ M is Lagrangian. Given a map u : (D2, ∂D2) → (M,L), we can find

a trivialization

u∗TM ∼= D2 × Tu(0)M

that restricts to a symplectomorphism on the fibers. Then restricting to the boundary

provides a loop

S1 = ∂D2 −→ Lag(Tu(0)M) (2.24)

into the Grassmannian of Lagrangian subspaces of Tu(0)M . It is well-known that

π1(Lag(Tu(0)M)) = Z,

and we declare I(u) ∈ Z to be the degree of the map (2.24). It follows that I(u) is

independent of all choices and depends only on the homotopy class of u. We therefore

obtain a map

I : π2(M,L) −→ Z

called the Maslov index. There is a second map

AL : π2(M,L) −→ R,

called the (symplectic) action, which is given by

AL(u) :=

∫
D2
u∗ω.
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Then the Lagrangian L is called monotone if it satisfies

2AL = τI

for some τ > 0. Here τ is called the monotonicity constant. If L is monotone with

monotonicity constant τ , then M must be monotone as well, with the same mono-

tonicity constant τ . Moreover, if L is simply-connected and M is monotone, then L is

automatically monotone. See [54, Lemma 4.1.1].

With this background in hand, we are at a place where we can introduce and discuss

the various properties of the moduli space of flat connections. Fix a principal PSU(r)-

bundle P → X, and we assume dim(X) ≤ 3. For 2 ≤ q <∞, define

M(P ) := A1,q
flat(P )/G2,q

0 (P ),

where G2,q
0 (P ) ⊆ G2,q(P ) is the identity component of the gauge group (it follows from

section 2.2.1 that, in dimensions 2 and 3, a gauge transformation u lies in the identity

component G2,q
0 (P ) if and only if η(u) = 0 and deg(u) = 0). Let

Π : A1,q
flat(P ) −→M(P )

be the quotient map. Then Π and M(P ) are independent of the choice of 2 ≤ q < ∞

in the sense that the diagram commutes

A1,q
flat(P ) −−−→ A1,2

flat(P )

Π

y yΠ

A1,q
flat(P )/G2,q

0 (P ) −−−→ A1,2
flat(P )/G2,2

0 (P )

and the bottom line is an isomorphism.

In favorable cases, the spaceM(P ) inherits the structure of a smooth finite-dimensional

manifold. This is stated in Theorem 2.2.15 for surfaces and Theorem 2.2.16 for cobor-

disms. See [3] or [26] for more details in the case of surfaces. Over a closed manifold,

this smooth structure is obtained, roughly, as follows (for notational convenience we

are suppressing Sobolev exponents): The tangent space to Aflat(P ) at α is given by

ker(dα) ⊂ Ω1(X,P (g)). By the Hodge decomposition (2.9), we can write
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ker(dα) = Im(dα)⊕H1
α,

where H1
α is the (finite-dimensional) harmonic space. Infinitesimally, the gauge group

acts by dα, so at the linear level the quotient Aflat(P )/G0(P ) looks like

ker(dα)/Im(dα) = H1
α.

The Coulomb gauge condition, Theorem 2.2.11, says that this infinitesimal description

at the linear level carries through to the local level, thereby providing charts for M(P ).

The only thing one needs to worry about is whether the gauge group acts freely. By

choosing P → X to be a suitably non-trivial bundle (e.g., dim(X) = 2, G = PSU(r) and

t2(P ) ∈ Zr is a generator), we have that H0
α = 0, which means that the infinitesimal

gauge action is free. By analyzing the local behavior of this gauge action for G =

PSU(r), it follows that the action of the identity component G0(P ) is free (the full

gauge group does not act freely). We record this for later use.

Lemma 2.2.14. [53] Fix 2 ≤ q < ∞. Let Σ be a closed, connected, oriented surface,

and suppose P → Σ is a principal PSU(r)-bundle, with t2(P ) ∈ Zr a generator. Then all

flat connections on P are irreducible. Moreover, for every flat connection A ∈ A1,q
flat(P )

the stabilizer of A in G2,q
0 (P ) is trivial:

{
u ∈ G2,q

0 (P )
∣∣∣u∗A = A

}
= {e} .

Any natural properties exhibited by the harmonic space H1
α are then expected to be

enjoyed by the moduli space M(P ). For example, in dimension 2, the harmonic space

H1
α is a symplectic vector space and so we expect M(P ) to be a symplectic manifold.

The next theorem states that this is indeed the case. For a proof, see the first two

paragraphs in the proof of [53, Theorem 3.3.2], together with the last two paragraphs

in the proof of [53, Proposition 3.2.4].2

2In [53], the authors work with G = U(r) and the space of central curvature connections with fixed
determinant, rather than the space of flat PSU(r) connections, as we consider here. Their theorems
carry over verbatim to our situation. In fact, the space of central curvature U(r)-connections with fixed
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Theorem 2.2.15. Let Σ be a closed, connected, oriented surface, and P → Σ a prin-

cipal PSU(r)-bundle with t2(P ) ∈ Zr a generator.

1. [53, Prop. 3.2.4, Thm. 3.3.2] If Σ has genus g(Σ) ≥ 1, then the moduli space

M(P ) is a nonempty compact, symplectic manifold of dimension (2g(Σ) − 2)(r2 − 1),

with even minimal Chern number, and with monotonicity constant 1/2r. The tangent

space at [A] ∈ M(P ) isomorphic to H1
A and the symplectic form ωM(P ) is given by

restricting the pairing (2.6). If g(Σ) = 0, then M(P ) = ∅. Moreover, M(P ) is always

connected and simply-connected.3

2. [53, Lemma 3.3.5] If P ′ → Σ is a second principal PSU(r)-bundle then any

PSU(r)-equivariant bundle isomorphism ψ : P → P ′ covering the identity induces a

symplectomorphism ψ∗ : M(P ′) → M(P ) by pullback. Furthermore, if φ : P → P ′

is a second bundle map then ψ∗ = φ∗, so the moduli spaces M(P ) and M(P ′) are

canonically symplectomorphic.

An immediate corollary of the second part of Theorem 2.2.15 is that M(P ) depends

(up to canonical symplectomorphism) only on characteristic class t2(P ) ∈ Zr.

Since Σ is assumed to be oriented, any choice of metric on Σ induces a Hodge star,

∗. Then ∗ descends to a compatible complex structure on the tangent bundle TM(P )

(still denoted by ∗).

Given a symplectic manifold M = (M,ω), let M− denote the symplectic manifold

(M,−ω). Then reversing the orientation of the surface X in the previous theorem

changes M(P ) to M(P )−. Now suppose Y is a 3-manifold with non-empty boundary

∂Y = Σ−tΣ+, having two connected components. Let Q→ Y be a principal G-bundle.

Then restriction to each boundary component induces a G(Q)-equivariant map

ρ : A(Q) −→ A(Q|Σ−)×A(Q|Σ+)

determinant is isomorphic to the space of flat PSU(r)-connections, and this isomorphism intertwines
the actions given by fixed determinant gauge transformations on the former space and G0(P ) on the
latter (see [53, Lemma 3.2.5]).

3The particular monotonicity constant depends on our choice of Ad-invariant metric on the Lie
algebra to PSU(r). See section 2.2.1.
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that preserves the flat connections (G(Q) acts on the right by the restriction homomor-

phisms G(Q)→ G(Q|Σ−)×G(Q|Σ+)). In particular, the map ρ descends to a map, still

denoted by ρ, at the level of moduli spaces. This allows us to define

L(Q) := ρ(M(Q)) ⊂M(Q|Σ−)− ×M(Q|Σ+).

Note that if Y is an elementary cobordism, then restriction to the boundary component

Σ± provides an isomorphism H2(Y,Zr) ∼= H2(Σ±,Zr) = Zr. Due to the functoriality

of the characteristic class t2, it follows that for any d ∈ Zr there is a principal PSU(r)-

bundle Q→ Y with t2(Q) = t2(Q|Σ+) = t2(Q|Σ−) = d.

Theorem 2.2.16. Let Y be an elementary cobordism between closed connected ori-

ented surfaces Σ±, equipped with bundles P± → Σ± with the same characteristic class

t2(P−) = t2(P+) ∈ Zr, which we assume is also a generator of Zr. Let Q → Y be a

principal PSU(r) bundle that restricts to P± on Σ±.

1. [53, Theorem 3.4.1] The map ρ : M(Q) → L(Q) ⊂ M(P−)− × M(P+) is a

Lagrangian embedding. Furthermore, L(Q) is compact, oriented, simply-connected, and

spin. In particular, L(Q) is monotone.

2. [53, Lemma 3.4.4] The Lagrangian L(Q) is independent of the choice of Q under

the canonical symplectomorphisms of Theorem 2.2.15. If Y = I × Σ− is a product

cobordism from Σ− = Σ+ to itself, then L(Q) ⊂M(P−)− ×M(P−) is the diagonal.

It follows from the second assertion in Theorem 2.2.16 that given flat connections

on P± there is at most one flat connection on Q restricting to these connections, up to

the action of G0(Q).

Remark 2.2.17. The moduli space of flat connections has an alternative description

which is often quite useful. See, for example, [3] for more details. For simplicity, let X

be a closed, connected manifold, and P → X a principal G-bundle with G compact. Fix

a basepoint x0 ∈ X. Then given a flat connection α ∈ Aflat(P ), the based holonomy is

a group homomorphism

π1(X,x0) −→ G.
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This defines a map

Aflat(P ) −→ hom(π1(X,x0), G), (2.25)

which intertwines the action of the gauge group on the left, and the action of G on the

right (this latter action is given by conjugating the image values). So (2.25) descends

to a map of the form

Aflat(P )/G(P ) −→ hom(π1(X,x0), G)/G. (2.26)

Consider π1(X,x0) equipped with the discrete topology. This endows

hom(π1(X,x0), G)/G

with a topology for which (2.26) is continuous. Moreover, the map (2.26) is an injective

local homeomorphism mapping onto a union of connected components. (Conversely,

every connected component of hom(π1(X,x0), G)/G lies in the image of (2.26) for a

suitably chosen bundle P .) Since X is compact, it follows that π1(X,x0) is finitely

generated, and so hom(π1(X,x0), G)/G is compact. In particular,

Aflat(P )/G(P ) (2.27)

is compact. (This whole discussion carries through with suitable Sobolev completions as

well.)

Note that (2.27) is not M(P ) := Aflat(P )/G0(P ), since in M(P ) is defined by only

modding out by identity component of the gauge group. However, the projection

M(P ) −→ Aflat(P )/G(P ),

is a principal π0(G(P ))-bundle (if H is any topological group, then its set of connected

components is naturally a group as well). Hence,

M(P )/π0(G(P )) ∼= Aflat(P )/G(P )
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is compact.

2.3 Floer cohomology

This section defines the instanton and quilted Floer cohomology groups associated to

our 3-manifold Y . We begin by describing the former. Consider a principal G-bundle

Q → Y over a closed oriented Riemannian 3-manifold Y , with G compact. Equip g

with an Ad-invariant inner product 〈·, ·〉. There is a natural 1-form defined on the space

of connections sending v ∈ TaA(Q) = Ω1(Y,Q(g)) to

λa(v) :=

∫
Y
〈Fa ∧ v〉.

This form is closed, and since A(Q) is contractible, it follows that λ is exact. Indeed,

fixing a reference connection a0 ∈ A(Q), we obtain a well-defined function

CSa0(a1) :=

∫
I
λa(s)(∂sa(s)) ds

where a : I → A(Q) is any path with a(j) = aj for j = 0, 1. The function CSa0 :

A(Q)→ R is called the Chern-Simons functional and a computation shows

CSa0(a0 + v) :=
1

2

∫
Y

2〈Fa0 ∧ v〉+ 〈da0v ∧ v〉+
1

3
〈[v ∧ v] ∧ v〉.

Moreover, CSa0 only depends on a0 up to an overall constant. This same discussion

carries over when A(Q) is replaced by its W 1,p-completion A1,q(Q), at least for q suffi-

ciently large e.g., q ≥ 2. It is convenient to take a0 to be flat, though this is not strictly

necessary. For G = PSU(r) we pick the canonical inner product described in section

2.2.1. Then it follows from the definition of CS, and the formula (2.21), that

CSa0(a)− CSa0(u∗a) =
1

r
deg(u)

for a ∈ A(Q) and u ∈ G(Q). Note that if η(u) = 0, then the right-hand side is an

integer by Proposition 2.2.5.

From the definition of λ, it is clear the critical points of CSa0 are precisely the flat

connections. As described in section 2.2, any metric g on Y induces a metric on the
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space of connections given by the L2 inner product. Then the gradient of CSa0 with

respect to this metric is the vector field a 7→ ∗Fa.

Instanton Floer cohomology HFinst(Q) can be viewed as the Morse cohomology,

modulo gauge, of the Chern-Simons functional. Moreover, when it is defined, HFinst(Q)

is the cohomology associated to a chain complex (CFinst(Q), ∂inst). Here

CFinst(Q) :=
⊕

[a]∈M(Q)

Z2〈[a]〉

is generated over Z2 by the gauge equivalence classes of flat connections on Q. (We

have chosen to work with Z2 to avoid a discussion of orientations, which will not arise in

this thesis.) The desirable cases are when all of the critical points have non-degenerate

Hessians. In general, a flat connection a is non-degenerate (i.e. H1
a = 0) if and only if

the Hessian, when viewed as an operator on Ω1(Y,Q(g))/Im(da), is a non-degenerate

quadratic form.

The boundary operator ∂inst is given by a mod-2 count of isolated negative gradient

trajectories of the Chern-Simons functional. To define this precisely, we need to digress

a bit to discuss moduli spaces of instantons. The negative gradient trajectories of the

Chern-Simons functional are solutions a : R→ A(Q) to

∂sa = − ∗ Fa. (2.28)

This equation is plainly gauge invariant, so we consider solutions modulo G0(Q). Al-

ternatively, the path of connections s 7→ a(s) can be viewed as a single connection

A = a(s) on the bundle R × Q → R × Y , in which case (2.28) is just the ASD equa-

tion from section 2.2 with the metric ds2 + g (hence the instanton in ‘instanton Floer

cohomology’).

More generally, every connection on R×Q has the form A = a(s) + p(s) ds where

a : R → A(Q) and p : R → Ω0(Y,Q(g)). The curvature decomposes into components

as

FA = Fa − (∂sa− dap) ∧ ds,
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so the ASD equations for A take the form

∂sa− dap = − ∗ Fa, (2.29)

which reduces to (2.28) when A = a(s) +p(s) = a(s) is in temporal gauge. So solutions

to (2.28) modulo G0(Q) are identical to solutions of (2.29) modulo G0(R × Q). Fur-

thermore, the following conditions are equivalent for an instanton A = a(s) + p(s) on

R×Q:

(i) The connection A has finite energy:

YM(A) =
1

2

∫
Y
|FA|2 <∞.

(ii) The slice-wise curvature Fa(s) decays exponentially to zero as s→ ±∞:

‖Fa(s)‖L2(Y ) ≤ Ce−κ|s|

for some constants C, κ > 0.

(iii) The connection A converges to flat connections a± ∈ Aflat(Q) at ±∞:

lim
s→±∞

a(s) = a±, lim
s→±∞

p(s) = 0;

here the convergence is in C∞ on Y .

The proof proceeds roughly as follows (for more details see [8, Chapter 4]). For (iii)

⇒ (i), it follows by direct computation that

YM(A) = −1

2

∫
R×Y
〈FA ∧ FA〉 = CSa0(a−)− CSa0(a+) (2.30)

for any reference connection a0. Conversely, one considers the sequenceAν := A|[ν,ν+1]×Y ,

which we view as instantons on [0, 1] × Q. Since A has finite energy it follows that

‖FAν‖L2 → 0 as ν → ±∞, and so (iii) follows by Uhlenbeck’s Strong Compactness

Theorem 2.2.10. Clearly (ii) implies (i), and for the converse, one shows the function
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J(S) :=

∫ ∞
S
‖Fa(s)‖2L2(Y ) ds

satisfies

dJ

dS
≤ −κJ + C0J

3/2

for some constants κ,C0 > 0. This implies that J decays exponentially at +∞, and

then one uses elliptic estimates to deduce that the quantity ‖FA‖2L2((S,S+1)×Y ) does as

well.

For [a±] ∈M(Q), define

MQ(
[
a−
]
,
[
a+]) :=

A = a(s) + p(s) ds

∣∣∣∣∣∣∣
∂sa− dap = − ∗ Fa

lim
s→±∞

A|{s}×Q ∈
[
a±
]

/
G0(R×Q)

to be the set of gauge equivalence classes of finite energy ASD connections limiting

to a±, modulo G0(Q), at ±∞. The space MQ([a−] , [a+]) admits an action of R by

translation, and we set

M̂Q(
[
a−
]
,
[
a+]) :=MQ(

[
a−
]
,
[
a+])/R.

The next theorem, originally due to Floer, is the mechanism that makes instanton

cohomology well-defined:

Theorem 2.3.1. Fix 2 ≤ q < ∞. Let Q → Y be a principal PSU(r)-bundle over a

closed connected oriented 3-manifold Y . Assume all flat connections are non-degenerate.

Suppose in addition that there is an embedding ι : Σ→ Y of a closed oriented connected

surface Σ such that the characteristic class t2(ι∗Q) ∈ Zr is a generator. Then the

following hold.

1) The set M(Q) = A1,q
flat(Q)/G2,q

0 (Q) is finite.

2) For a comeager subset of metrics on Y (in the C∞ topology), the moduli space

MQ([a−] , [a+]) is a smooth finite dimensional manifold for every pair [a−] , [a+] ∈

M(Q). Denote by µinst(a
−, a+) := dimMQ([a−] , [a+]) the dimension of this space.
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3) Whenever µinst(a
−, a+) = 1, the action of R on MQ([a−] , [a+]) is free and the

quotient space

M̂Q(
[
a−
]
,
[
a+]) :=MQ(

[
a−
]
,
[
a+])/R

is compact, zero-dimensional, and hence finite.

The proof of Theorem 2.3.1 is almost identical to the one given by Floer in [15],

where he considers non-trivial PSU(2)-bundles (see also [14] for similar results). The

additional information needed to generalize Floer’s result to G = PSU(r) for r > 2

can be expressed in the form of the following lemma. (An explicit appearance of the

analogous statement for PSU(2)-bundles can be found in [11, Lemma 2.5].)

Lemma 2.3.2. [11] Fix 2 ≤ q < ∞. Let X be a closed, orientable 3-manifold and

Q→ X a principal PSU(r)-bundle. Suppose, in addition, that there is an embedding of

a closed, connected, oriented surface ι : Σ → X such that t2(ι∗Q) ∈ Zr is a generator.

Then all of the flat connections on Q are irreducible. Moreover, for every flat connection

A ∈ A1,q
flat(Q) the stabilizer of A in G2,q

0 (Q) is trivial:

{
u ∈ G2,q

0 (Q)
∣∣∣u∗A = A

}
= {e} .

The proof of this lemma follows almost exactly as in the proof of [11, Lemma 2.5],

with Lemma 2.2.14 replacing [11, Lemma 4.1].

Remark 2.3.3. (a) In general, it need not be the case that all flat connections on Q are

non-degenerate. Consequently the above theorem is vacuous in such cases. To have a

non-trivial theorem, one needs to perturb the Chern-Simons functional as follows (here

we follow [14], but another good reference is [8, Section 5.5]): Consider
∨m
i=1 S

1, the

wedge sum of m circles, which we view as embedded in R3 in such a way that their

only intersection point is at the origin, and they all have the same tangent vector there.

Given an embedding γ :
(∨m

i=1 S
1
)
×D2 → Y , and a point z ∈ D2, define γz := γ(·, z)

to be the restriction. The holonomy around the circles in the image of γz provides a

map A(Q) → Gm, which we denote by γz(a). Fix a non-negative 2-form µ on D2
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with compact support in the interior, and which integrates to 1. Then, given any Ad-

invariant map h : Gm → G, one can define

hγ : A(Q) −→ R

a 7−→
∫
D2
h(γz(a)) µ,

which is gauge invariant. We consider perturbations of the Chern-Simons functional

that have the form CSa0 + hγ : A(Q) → R. One then repeats the Morse-theoretic

discussion above by considering the chain complex generated by the critical points of

CSa0 + hγ, and the boundary operator defined by counting gradient trajectories of this

perturbed function (these satisfy a perturbed ASD equation) which have finite (perturbed)

energy. Floer’s theorem [14, Theorem 1c.1] says that, for a dense set of choices (h, γ),

the conclusions of Theorem 2.3.1 continue to hold. Likewise, the conclusions of The-

orem 2.3.4, below, continue to hold under this hypothesis as well. Furthermore, any

two choices of such perturbations yield canonically isomorphic cohomology groups [14,

Theorem 2].

(b) Suppose we are in the case of Theorem 2.3.1. When it is non-empty, the di-

mension of the moduli space MQ([a−] , [a+]) can be computed using the following index

formula [4]:

µinst(a
−, a+) = 1

2 (ηa+ − ηa−) + CPSU(r)

∫
〈FA ∧ FA〉 (2.31)

for any connection A on R × Y limiting to a± at ±∞. Here, ηa is the η-invariant of

the operator

 ∗da da

d∗a 0


associated to CSa0 (c.f. [4], [11]), and CPSU(r) > 0 is a constant depending only on

PSU(r) and the choice of invariant metric on the Lie algebra.

When µinst(a
−, a+) = 1, the set M̂Q([a−] , [a+]) is finite and we define #Q(a−, a+)
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to be the mod-2 count of its elements. With these preliminaries out of the way, we

define ∂inst : CFinst(Q)→ CFinst(Q) by

∂inst〈
[
a−
]
〉 =

∑
[a+] ∈M(Q)

µinst(a
−, a+) = 1

#Q(a−, a+)〈
[
a+]〉.

Now we can state Floer’s main theorem.

Theorem 2.3.4. [14] Suppose Q → Y satisfies the conditions of Theorem 2.3.1, and

a metric has been chosen from the comeager subset described in Theorem 2.3.1. Then

∂2
inst = 0, and so

HFinst(Q) :=
ker ∂inst

Im ∂inst

is well-defined. Furthermore, HFinst(Q) is independent, up to isomorphism, of the

choice of metric.

Unless otherwise stated, whenever we are discussing these moduli spaces orHFinst(Q)

we assume we are in the realm where these satisfy the conclusions of the above theorems

(e.g., the metric is generically chosen).

Remark 2.3.5. Theorem 2.3.4 states that HFinst(Q) depends only on the bundle Q

(it is not clear whether this is an invariant of Y since there may be multiple non-

isomorphic bundles over Y satisfying the hypotheses). The proof of the independence

of the metric proceeds roughly as follows (see [8, Section 5.3] for more details): Let Y

be as in the theorem, and g0, g1 metrics in the open dense set of Theorem 2.3.1 (2).

Consider R× Y equipped with any metric G which is of the form ds2 + g0 at −∞ and

ds2 +g1 at +∞. Counting isolated instantons on R×Y with respect to G defines a map

ζG : HFinst(Q, g0) → HFinst(Q, g1). Here, the group HFinst(Q, g) is just HFinst(Q),

except we are now remembering the metric. The count of isolated instantons is always

an integer depending continuously on the metric G, so ζ = ζG must be independent of

G. Reversing the roles of g0 and g1 produces an inverse ζ−1, and so ζ is the canonical

isomorphism of Theorem 2.3.4.
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In fact, HFinst(Q) depends only on the bundle equivalence class of Q. This is im-

mediate since bundle isomorphisms are just elements of the gauge group, and we have

quotiented out by gauge everywhere. See Remark 2.3.10 for similar statements in the

setting of quilted Floer cohomology.

Now we specialize to the bundle Qε → Y ε constructed from Remark 2.2.7. Observe

that the hypothesis appearing in Theorems 2.3.1 and 2.3.4 regarding the embedded

surface is clearly satisfied by considering any regular fiber of f . As for the perturbation

of the Chern-Simons functional, we will ignore this for now and come back to it in the

last section when we consider perturbations in general. In particular, we may assume

that the moduli spaces MQε ([a−] , [a+]) satisfy the conclusions of these theorems for

all a± ∈ Aflat(Q
ε).

Recall that Y ε is obtained by gluing the cobordisms Y• and I×Σ• using appropriate

ε-dependent collar neighborhoods. We have seen that every connection A on R×Y can

be written in the form A = a(s) + p(s) ds. Similarly, over R× I × Σ• we have

A|{(s,t)}×Σ•
= α(s, t) + φ(s, t) ds+ ψ(s, t) dt,

for some α : R×I → A(P•) and φ, ψ : R×I → Ω0(Σ•, P•(g)). We also have a(s)|{t}×Σ =

α(s, t) +ψ(s, t) dt and p(s)|{t}×Σ = φ(s, t). The curvature FA on the four-manifold can

be written in terms of component as

FA = Fα − (∂sα− dαφ) ∧ ds− (∂tα− dαψ) ∧ dt+ (∂sψ − ∂tφ− [ψ, φ]) ds ∧ dt.

We can therefore view ∂inst as counting G0(R × Qε)-equivalence classes of connections

A ∈ A(R×Qε) satisfying
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• (ε-ASD on R× I × Σ•) ∂sα− dαφ+ ∗ (∂tα− dαψ) = 0

∂sψ − ∂tφ− [ψ, φ] = −ε−2 ∗ Fα

• (ε-ASD on R× Y•) ∂sa− dap = −ε−1 ∗ Fa

• (finite energy)

∫
R×I×Σ•

ε−2 |Fα|2 + |∂sα− dαφ|2 < ∞∫
R×Y•

ε |∂sa− dap|2 < ∞

• (limits at infinity) lim
s→±∞

a(s) = (u±)∗a±

lim
s→±∞

p(s) = 0

(2.32)

for some u± ∈ G0(Qε). Here the norms and Hodge stars are all with respect to the fixed

metric g.

Remark 2.3.6. For a connection

A =

 α+ φ ds+ ψ dt on R× I × Σ•

a+ p ds on R× Y•
it will be notationally convenient to write

βs := ∂sα− dαφ, βt := ∂tα− dαψ, γ := ∂sψ − ∂tφ− [ψ, φ]

bs := ∂sa− dap.

So, for example, we have

FA =

 Fα − βs ∧ ds− βt ∧ dt+ γ ds ∧ dt on R× I × Σ•

Fa − bs ∧ ds on R× Y•
and the ε-ASD equations over R× I × Σ• can be written as

βs + ∗βt = 0, ε2γ = − ∗ Fα.
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Now we move on to discuss quilted Floer theory. We refer the reader to [53, Section

4] and [54] for more details. Let (Mi, ωi) be symplectic manifolds for 1 ≤ i ≤ N ,

with N > 0. A cyclic generalized Lagrangian correspondence is a tuple L =

(L12, L23, . . . , LN1) with

Li(i+1) ⊂M−i ×Mi+1

a Lagrangian submanifold in the usual sense, where M−i is the manifold Mi equipped

with the negative symplectic form −ωi.

Here we study

CFsymp(L) :=
⊕

e∈I(L)

Z〈e〉,

where

I(L) :=
{
e = (m1, . . . ,mN ) ∈M1 × . . .×MN

∣∣∣(mi,mi+1) ∈ Li(i+1)

}
are the generalized intersection points. These are analogous to the flat connections

in the instanton theory. Rather than instantons, in this situation we are interested in

pseudoholomorphic quilts, which are tuples v = (v1, . . . , vN ), where vi is a map

R× I →Mi satisfying

∂svi + Ji∂tvi = 0.

For each i we have fixed an almost complex structure Ji ∈ End(TMi) which is ωi-

compatible. We require that these satisfy the following Lagrangian seam conditions

(vi, vi+1) ∈ Li(i+1).

The relevant notion of energy (i.e., the analogue of YM) here is the quantity E(v) :=∑
i

E(vi), where

E(vi) :=
1

2

∫
R×I
|∂svi|2Mi

.
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Here the norm is the one on Mi given by combining the symplectic structure ωi with

the almost complex structure Ji. Similarly to the instanton case, it follows that v has

finite energy if and only if it converges exponentially to generalized intersection points

at ±∞ [37, Proposition 1.21].

We therefore consider the moduli spaces

ML(e−, e+) :=


v = (vi : R× I →Mi)1≤i≤N

∣∣∣∣∣∣∣∣∣∣∣
∂svi + Ji∂tvi = 0

(vi, vi+1) ∈ Li(i+1)

lim
s→±∞

vi(s, ·) = m±i


,

where e± = (m±1 , . . . ,m
±
N ) ∈ I(L). Notice that these spaces also admit and action of

R given by translation, so we set

M̂L(e−, e+) :=ML(e−, e+)/R.

The elements of this space can be viewed as (equivalence classes of) quilted pseudo-

holomorphic cylinders. These are maps from the decorated cylinder in Figure 8 to the

relevant spaces indicated by the labels.

M1

M2

M3
M4

L12L23

L34 L41

Figure 2.3: Here is the quilted cylinder. The labels indicate where the components are
mapped. For example, the strip labeled M4 is mapped to the symplectic manifold M4,
while the vertical line labeled with L41 is mapped to the Lagrangian L41 ⊂M4 ×M1.

The next two results are also originally due to Floer [16], and Oh [33], though [54]

and [55] are good references for the quilted set-up.
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Theorem 2.3.7. Let (Mi, ωi) be symplectic manifolds for 1 ≤ i ≤ N , and L =

(L12, L23, . . . , LN1) a cyclic generalized Lagrangian correspondence. Suppose

• each symplectic manifold (Mi, ωi) is simply-connected, compact, has even minimal

Chern number, and is monotone with positive monotonicity constant independent

of i;

• each Lagrangian Li(i+1) is oriented, simply-connected (hence monotone), and spin;

Then the following properties hold:

1) For a generic set of Hamiltonian perturbations of L, the set I(L) is finite.

2) For a generic (element in a comeager set) tuple of compatible almost complex

structures (J1, . . . , JN ), the moduli space ML(e−, e+) is a smooth finite dimensional

orientable manifold for every pair e−, e+ ∈ I(L). Let ML,0(e−, e+) denote the dimen-

sion zero component of ML(e−, e+).

3) The action of R on ML,0([a−] , [a+]) is free whenever this space is non-empty,

and the quotient space

M̂L,0(e−, e+) :=ML,0(e−, e+)/R

is compact, zero-dimensional, and hence finite.

Denote by #L(e−, e+) the mod-2 count of the elements in the set M̂L,0(e−, e+).

Then we define ∂symp : CFsymp(L)→ CFsymp(L) by

∂symp〈e−〉 =
∑

e+ ∈ I(L)

#L(e−, e+)〈e+〉.

Theorem 2.3.8. Suppose (Mi, ωi) 1 ≤ i ≤ N , and L satisfy the conditions of Theorem

2.3.7. Also suppose that Hamiltonian perturbations and almost complex structures are

chosen as in that theorem. Then ∂2
symp = 0, and so

HFsymp(L) :=
ker ∂symp

Im ∂symp
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is well-defined. Furthermore, HFsymp(L) is independent, up to isomorphism, of the

choice of almost complex structures and Hamiltonian perturbations.

Unless otherwise stated, whenever we are discussing the moduli space or HFsymp(L)

we assume we are in the realm where these satisfy the conclusions of the above theorems

(e.g., the compatible almost complex structures are generically chosen).

Remark 2.3.9. (a) When N is even, quilted Floer cohomology can be equivalently

viewed as Lagrangian intersection Floer cohomology HF (L(0), L(1)) for the pair of La-

grangians

L(0) := L12 × L34 × . . .× L(N−1)N

L(1) := (L23 × L45 × . . .× LN1)T
(2.33)

in the symplectic manifold M := M−1 ×M2 ×M−3 × . . . ×MN , where Z 7→ ZT is the

map

M−2 ×M3 × . . .×M−N ×M1 −→M−1 ×M2 ×M−3 × . . .×MN

transposing the last factor to the front and changing each symplectic form to its negative.

This is also true when N is odd, but one needs to include a diagonal and shuffle the

indices in (2.33). In both cases, there is a natural identification I(L) ∼= L(0) ∩ L(1).

(b) The proof of the independence of HFsymp(L) from the underlying data follows

the same basic schematic as outlined in Remark 2.3.5. For example, one connects

two compatible almost complex (a.c.) structures by a path. This path can equivalently

be viewed as a time-dependent a.c. structure. By counting strips in M which are

holomorphic with respect to this time-dependent a.c. structure, one obtains a canonical

isomorphism between the Lagrangian Floer cohomology groups. This count depends

continuously on the underlying data, and so is independent of the choice of path. See,

for example, [30] for more details on this type of argument in the symplectic setting.

(c) Similarly to the instanton theory, there is a map µsymp(e−, e+) :ML(e−, e+)→

Z, which measures the local dimension of the moduli space ML(e−, e+). In fact, each
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component of ML(e−, e+) has the same dimension mod 2N , where N is the minimum

Chern number. In particular, µsymp(e−, e+) defines a unique element of Z2N .

Now we specialize: Let Q→ Y be the bundle from Remark 2.2.7, and take

Qi(i+1) := Q|Yi(i+1)
, Pi := Q|{0}×Σi

Q• = Q|Y• , P• = Q|{0}×Σ•

as above. By Theorems 2.2.15 and 2.2.16, the manifolds M(Pi) and L(Qi(i+1)) satisfy

the conditions of Theorems 2.3.7 and 2.3.8, except possibly for the transversality con-

dition in Theorem 2.3.7. This can always be achieved by replacing L(Q) with a generic

(open dense) Hamiltonian perturbation. We ignore this detail for now and come back

to it later when where we consider all of the necessary perturbations at once. The

compatible almost complex structures are provided by the Hodge stars associated to

gΣ, and choosing g suitably generically ensures that these almost complex structures

belong to the comeager set guaranteed by Theorem 2.3.7. It follows that the quilted

Floer cohomology HFsymp(L(Q)) is well-defined, where

L(Q) := (L(Q12), L(Q23), . . . , L(QN1)) .

Remark 2.3.10. Theorem 2.3.8 implies that HFsymp(L(Q)) depends only on the data

of the bundle Q → Y together with the choice of f : Y → S1. In fact, Wehrheim and

Woodward have shown that this cohomology group depends only on the homotopy class

of f [53] (the bundle equivalence class of Q is determined uniquely by the homotopy class

of f). This proceeds roughly as follows: Gay and Kirby have shown that any pair of

homotopic Morse functions f, f ′ : Y → S1 can be connected through a path of functions

which are Morse except at a finite number of points, where a critical point birth, death

or switch occurs [22]. As a consequence, Woodward and Wehrheim only need to show

that Lagrangian Floer cohomology is unchanged, up to canonical isomorphism, under

isotopy, and critical point birth, death and switch. At the level of generators this is
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fairly straight-forward, and is perhaps most evident from the realization of the moduli

spaces of flat connections as (equivalence classes of) representations of the fundamental

group. On the other hand, the equivalence of the chain maps associated to f and f ′

follows from a technical ‘strip-shrinking’ analysis [52], which is a quilted analogue of

the ‘stretch-the-neck’ analysis considered here.

In particular, HFsymp(L(Q)) depends only on the bundle equivalence class of Q.

This is consistent with the predictions of the Atiyah-Floer conjecture since HFinst(Q)

depends only on this equivalence class as well. See Remark 2.3.5.

We need to understand HFsymp(L(Q)) in terms of the underlying connections. Un-

raveling the definitions, one finds that I(L(Q)) is the set of tuples

e = ([a12] , [a23] , . . . , [aN1]) ,

of G0(Qi(i+1))-equivalence classes of ai(i+1) ∈ Aflat(Qi(i+1)) satisfying

[
ai(i+1)

∣∣∣
Σi

]
=

[
a(i−1)i

∣∣∣
Σi

]
, (2.34)

where each ai(i+1) is a flat connection on Qi(i+1), the bracket

[
ai(i+1)

∣∣∣
Σi

]
denotes the

G0(Pi)-equivalence class. (Here we are working with smooth connections and gauge

transformations to simplify notation, but one could equally well work with their Sobolev

completions.)

Similarly, each moduli space ML(Q)(e
−, e+) consists of G0(P1) × . . . × G0(PN )-

equivalence classes of tuples (α1, . . . , αN ) where each αi : R × I → Aflat(Pi) satisfies

the following conditions:



64

• (holomorphic) ∂sαi + ∗∂tαi ∈
(
H1
αi

)⊥
= Im (dαi)⊕ Im

(
d∗αi

)

• (Lagrangian seam) ([αi (s, 1)] , [αi+1 (s, 0)]) ∈ L(Qi(i+1))

• (finite energy)

∫
R×I

∥∥projαi∂sαi
∥∥2
L2(Σi)

<∞

• (limits at infinity) lim
s→±∞

αi(s, ·) =
(
u±i

)∗
a±(i−1)i

∣∣∣
Σi

for some u±i ∈ G0(Pi),

where projαi : TαiA(Pi)→ H1
αi is the orthogonal projection to the harmonic space and

e± =
([
a±12

]
, . . . ,

[
a±N1

])
.

It will be useful to express these conditions in a more explicit fashion. The holo-

morphic condition is equivalent to ∂sαi + ∗∂tαi = dαiφi + ∗dαiψi for some φi, ψi :

R × I → Ω0(Σi, Pi(g)). In fact, φi, ψi are uniquely determined by this equation since

dαi is injective on 0-forms (recall all of the flat connections are irreducible). Equiva-

lently, differentiating Fαi = 0 gives dαi∂sαi = 0 (resp. dαi∂tαi = 0), so the expression

∂sαi − dαiφi (resp. ∂tαi − dαiψi) can be viewed as the orthogonal projections of ∂sαi

(resp. ∂tαi) onto the harmonic space. Furthermore, φi and ψi are as smooth in s, t as

αi. We record this for later use.

Lemma 2.3.11. Let P → X is a bundle over a compact manifold, and assume all

flat connections are irreducible. Suppose α : R → A1,q
flat(P ) is a smooth path of flat

connections. Then there is a unique smooth path φ : R→W 2,q(P (g)) such that

∂sα(s)− dα(s)φ(s) ∈ H1
α(s)

for each s ∈ R. Moreover, if α(s) ∈ Aflat(P ) is smooth for each s, then the 0-form

φ(s) ∈ Ω0(X,P (g)) is smooth for each s.

As we noted above, the finite energy condition automatically implies that the αi

converge at ±∞ to an element of Isymp, and that the integrand converges exponentially
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to zero. Then the limit at infinity condition just says we obtain the specified limiting

values. It also follows that

lim
s→±∞

φi(s, ·) = 0

lim
s→±∞

ψi(s, ·) = ψ±i

(2.35)

where, modulo gauge, ψ±i ∈ Ω0(Σi, Pi(g)) is the dt-component of the limiting connection

a±(i−1)i.

The Lagrangian seam condition implies that there is some path ai(i+1) : R →

Aflat(Qi(i+1)) with (αi (s, 1) , αi+1 (s, 0)) =

(
ai(i+1)(s)

∣∣∣
Σi
, ai(i+1)(s)

∣∣∣
Σi+1

)
. By Lemma

2.3.11, the irreducibility of flat connections on Qi(i+1) implies that there is a unique

pi(i+1) : R→ Ω0(Yi(i+1), Qi(g)) with

∂sai(i+1) − dai(i+1)
pi(i+1) ∈ H1

ai(i+1)
.

It will be notationally convenient to write α (resp. a) for the connection on Σ•

(resp. Y•) that restricts to αi on Σi (ai(i+1) on Yi(i+1)). Likewise, we define φ, ψ which

are forms on Σ•, and p which is a form on Y•.

To summarize, the boundary operator ∂symp counts isolated G0-equivalence classes

of tuples (α, φ, ψ, a, p) satisfying
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• (holomorphic) ∂sα− dαφ+ ∗(∂tα− dαψ) = 0

Fα = 0

• (Lagrangian seam) (α (s, 1) , α (s, 0)) =
(
a(s)|∂1Y•

, a(s)|Σ∂sY•
)

Fa = 0

• (finite energy)

∫
R×I×Σ•

|∂sα− dαφ|2 < ∞

• (limits at infinity) lim
s→±∞

α(s, ·) = (u±)
∗
a±
∣∣
∂1Y•

lim
s→±∞

φ(s, ·) = 0

lim
s→±∞

ψ(s, ·) = ψ±

lim
s→±∞

a(s, ·) = (u±)
∗
a±

lim
s→±∞

p(s, ·) = 0,

(2.36)

for some identity component gauge transformations u± ∈ G0(Qi(i+1)).

The form p provides seam conditions for the forms φ and ψ as follows: Note that

Y• is a (disconnected) cobordism from Σ• to itself. We let ∂1, ∂2 : Y• → Σ• be the

restriction to the first, second copies of Σ•, respectively. The uniqueness of φ (Lemma

2.3.11) combines with the Lagrangian seam condition to imply that p(s) restricts to

φ(s, 1) and φ(s, 0) on ∂1Y• and ∂2Y•. Similarly, restricting a(s) to ∂1Y• or ∂2Y•, and

then taking the normal component recovers ψ(s, 1) or ψ(s, 0).

It is important to note that though the metric on the Σ• makes an appearance in the

definition of the boundary operator (through the Hodge star), the resulting cohomology

group is independent of the choice of metric.

Remark 2.3.12. (a) The holomorphic and Lagrangian seam conditions in (2.36) earn

their name because they become honest holomorphic and Lagrangian seam conditions

when we descend to the finite dimensional symplectic moduli spaces. However, they

can be viewed as holomorphic and Lagrangian seam conditions on infinite dimensional
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spaces of connections in the following way. The Hodge star, viewed as an operator from

TαA(Pi) = Ω1(Σi, Pi(g)) to itself, provides a holomorphic structure on each A(Pi).

However, it does not restrict to a holomorphic structure on Aflat(Pi) since it car-

ries ker(dα) = TαAflat(Pi) to ker(d∗α) it is never the case that ker(d∗α) is contained

in ker(dα) (indeed, the intersection is always the harmonic space, which is finite di-

mensional by elliptic theory, but ker(d∗α) is always infinite dimensional). Similarly

wedging and integration determine a symplectic form on Aflat(Pi). (This form is closed

because TαAflat(Pi) = ker(dα), and hence this same formula does not provide a closed

form on all of A(Pi).) In particular, we can discuss holomorphic maps into A(Pi) and

Lagrangian subspaces of Aflat(Pi).

This being said, the holomorphic condition in (2.36) is exactly the perturbed holo-

morphic equation for the curve α : C→ A(Pi), whose image happens to lie in Aflat(Pi).

It is notable that the perturbation, given by dαiφi + ∗dαiψi, lies in Im(dαi) ⊕ Im(d∗αi),

which is why the perturbed holomorphic equation descends to an honest holomorphic

equation when we pass to the moduli space.

Similarly, the Lagrangian boundary condition in (2.36) are exactly boundary condi-

tions for the curve αi given by the embedded Lagrangian submanifold Aflat(Qi(i+1)) ↪→

Aflat(Pi)
− ×Aflat(Pi+1), where the inclusion is given by restriction.

(b) Observe that, in the small ε limit, the equations in (2.32) reduce to those in

(2.36). This thesis is a step in the direction of showing that we can identify the moduli

spaces in these two situations, at least for small ε and for suitable limits at ±∞.

2.4 Statement of the Main Theorem

We write the components of a connection A as

A =

 α(s, t) + φ(s, t) ds+ ψ(s, t) dt on {(s, t)} × Σ•

a(s) + p(s) ds on {s} × Y•.

For s0 ∈ R, we have a map τs0 : R × Y → R × Y , given by translating by s0. This

ascends to a pullback map on connections and forms in the usual way. For example,
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τ∗s0 : A1,q(R×Q) −→ A1,q(R×Q)

is given by

(
τ∗s0A

)
|{s}×Y := A|{s+s0}×Y

and this preserves the ε-ASD connections. Now we are at a place where we can state

the main result.

Main Theorem 2.4.1. Let Q → Y be as in Remark 2.2.7, and suppose all flat con-

nections on Q are non-degenerate. Fix q > 2 and two flat connections a± ∈ Aflat(Q).

Let (εν)ν∈N be a sequence of positive numbers converging to 0. Suppose that for each

ν there is an εν-ASD connection Aν ∈ A1,q
loc(R × Q), which descends to an element

of the zero-dimensional moduli space M̂Qεν ,0([a−] , [a+]). Then there is a continuous

connection

A∞ =

 α∞(s, t) + φ∞(s, t) ds+ ψ∞(s, t) dt on {(s, t)} × Σ•

a∞(s) + p∞(s) ds on {s} × Y•

in A1,q
loc(R×Q), which

(i) is holomorphic:

∂sα∞ − dα∞φ∞ + ∗ (∂tα∞ − dα∞ψ∞) = 0, Fα∞ = 0;

(ii) has Lagrangian boundary conditions:

Fa∞ = 0;

(iii) and converges to the flat connections a± at ±∞:

lim
s→±∞

(
u±
)∗
A∞|{s}×Y = a±, for some u± ∈ G2,q

0 (Q).
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Furthermore, there is a subsequence (still denoted by Aν) which converges to A∞ in the

following sense: There is a sequence of gauge transformations uν ∈ G2,q
loc (R×Q), and a

sequence of times sν ∈ R, with

∥∥α∞ − u∗ντ∗sναν∥∥C0(K×Σ•)
ν−→ 0

for every compact K ⊂ R× I. Here the action of uν on αν is the (s, t)-pointwise action

of uν(s, t) ∈ G2,q(P•) on connections over the surface Σ•.

Remark 2.4.2. (a) Theorem A, from the introduction, is an immediate consequence

of Theorem 2.4.1.

(b) Included in the statement of Theorem 2.4.1 (as well as in a few other places

in this thesis) is the hypothesis that all flat connections on Q are non-degenerate. In

general, this need not be the case, and so Theorem 2.4.1 is, strictly speaking, vacuous in

such cases. To account for this, one would need to replace the Chern-Simons functional

by a suitable perturbation. See Remark 2.3.3. For the most part this is a fairly standard

general position argument (see, e.g., [8, Proposition 5.17], [11]), though one still needs

to verify that the perturbations in both Floer theories are compatible in some sense. We

ignore most of these details here, relegating a complete discussion of perturbations to a

future paper.

Section 4 is dedicated to the proof of the Main Theorem. We conclude the current

section by showing that the generators of the two Floer theories agree, up to the action

of the group

Hη := ker (η : G(Q)→ Zr) /G0(Q) ∼= Z,

where the isomorphism is given by the degree. The gauge group action descends to an

action of Hη on the moduli space of flat connection M(Q). Observe that if u ∈ ker η,

then the restriction u|Yi(i+1)
has parity zero and so is in the identity component of

G(Qi(i+1)). In particular, if a ∈ Aflat(Q), then the restrictions a|Yi(i+1)
and u∗a|Yi(i+1)

are G0(Qi(i+1))-gauge equivalent, and so the map
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Ψ : M(Q)/Hη −→ I(L(Q))

[a] 7−→ ea :=
([
a|Y12

]
,
[
a|Y23

]
, . . . ,

[
a|YN1

])
,

(2.37)

is well-defined. Here the brackets denote the G0-equivalence class on the relevant 3-

manifold.

Proposition 2.4.3. The map Ψ is a set bijection. Moreover, Ψ is natural in the sense

that if Q → Q′ is any PSU(r)-bundle map covering the identity, then the diagram

commutes:

M(Q)/Hη −−−→ M(Q′)/Hη

Ψ

y yΨ

I(L(Q)) −−−→ I(L(Q′))

Proof. The naturality is immediate since bundle maps covering the identity are gauge

transformations, and everything is gauge invariant. It therefore suffices to show Ψ is a

bijection. Throughout we will denote by ι : Σi ↪→ Yi(i+1) and ι′ : Σi+1 ↪→ Y(i−1)i the

inclusion of the boundary components. For simplicity in notation we do not keep track

of the index i in the notation of ι and ι.

To prove that Ψ is injective we first show that any two a, a′ ∈ Aflat(Q) that restrict

(modulo gauge) to the same connection on Y•, also restrict (modulo gauge) to the

same connection on I × Σ•. This is essentially a consequence of the injectivity of the

restriction

M(I × P ) ↪→M ({0} × P )×M ({1} × P )

from Theorem 2.2.16 for bundles I×P → I×Σ over product cobordisms. Indeed, that a

and a′ restrict to the same connection mod gauge on Y•, in particular, means that they

restrict to the same connection (modulo gauge) on each Σi. So
[
a|I×Σi

]
and

[
a′|I×Σi

]
have the same image in M(Σi)×M(Σi) and hence these are equal

[
a|I×Σi

]
=
[
a′|I×Σi

]
.

So there are gauge transformations ui ∈ G0(I × Pi) and ui(i+1) ∈ G0(Qi(i+1)) such that

u∗i a|I×Σi
= a′|I×Σi

and u∗i(i+1)a
∣∣∣
Yi(i+1)

= a′|Yi(i+1)
. The data

{
ui, ui(i+1)

}
i=1,...,N

patch
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together to form a global (possibly discontinuous) gauge transformation u. We will

have proven injectivity if we can show that u is in fact smooth (it is contained in ker η

by construction).

We first claim that u is continuous. To see this, note that

(
ui|{1}×Σ

)∗ (
a|{1}×Σi

)
= a′|{1}×Σi

= a′|ι(Σi)

=

(
ui(i+1)

∣∣∣
ι(Σi)

)∗ (
a|ι(Σi)

)
.

The functoriality of the characteristic classes from section 2.2.1 imply that the map ι∗ :

G(Qi(i+1)) → G(Pi) induced by ι restricts to a map G0(Qi(i+1)) → G0(Pi). This shows

that

(
ui(i+1)

∣∣∣
ι(Σi)

)−1

ui|{1}×Σi
is an element of G0(Σi) and fixes a|{1}×Σi

= a|ι(Σi).

By Lemma 2.2.14 we must have that this is the identity gauge transformation, and

so ui(i+1)

∣∣∣
ι(Σi)

= ui|{1}×Σi
. A similar argument shows ui(i+1)

∣∣∣
ι′(Σi+1)

= ui+1|{0}×Σi+1
.

This proves the claim.

To see that u is actually smooth, we use the following trick from [9, Chapter 2.3.7]

to bootstrap: As in the (2.13), by choosing a faithful matrix representation we can

write the action of u on a as

u∗a = u−1au− u−1du,

where on the left we are viewing the gauge transformation as a map u : Q → G, and

the concatenation is matrix multiplication. Rearranging this and using u∗a = a′ gives

du = au+ ua′.

The right-hand side is C0, so u is of differentiability class C1. Repeatedly bootstrapping

in this way shows that u is in C∞, and hence u ∈ G(Q).

Now we show that u ∈ G0(Q) is in the component of the identity. We have that each

ui(i+1) : Yi(i+1) → Qi(i+1) ×G G and ui : I ×Σi → I × Pi ×G G are all homotopic to the
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identity. We can assume these homotopies agree at the boundary (i.e. the homotopy

for u1 restricted to {1}×Σ1 equals the homotopy for u12 when restricted to Σ1 ⊂ ∂Y12).

Then these homotopies patch to give a homotopy for u to the identity.

Now we must prove that (2.37) is surjective. Fix some ([a12] , [a23] , . . . , [aN1]) ∈

I(L(Q)). We need to show that there is some a ∈ Aflat(Q) with a|Yi(i+1)
∈
[
ai(i+1)

]
.

Choose a representative ai(i+1) ∈ Aflat(Qi(i+1)) for each
[
ai(i+1)

]
. These give us an

obvious definition of a over the Y•, however we need to define a over I × Σ• as well.

To do this, let αi := a(i−1)i

∣∣∣
ι′(Σi)

. Then αi ∈ Aflat(Pi) is flat, and therefore so is

proj∗αi where proj : I × Σi → Σi is the projection. The boundary condition (2.34)

implies that there is some µi ∈ G0(Pi) with µ∗iαi = ai(i+1)

∣∣∣
ι(Σi)

. By definition, G0(Σi)

is path-connected so there is some path ui : I → G0(Pi) connecting the identity to µi.

We can equivalently view the path ui ∈ G(I × Pi) as a gauge transformation over the

cylinder I × Σi. Then u∗i (proj∗αi) is a flat connection on I × Pi connecting a(i−1)i to

ai(i+1). Define a to be ai(i+1) over Yi(i+1) and to be u∗i (proj∗αi) over I ×Σi. Then a is

continuous, flat and restricts to the desired connections over the Yi(i+1). By choosing

the path ui : I → G0(Pi) to extend smoothly to be constant at the endpoints we can

also ensure that a is smooth. This completes the proof of Proposition 2.4.3.
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Chapter 3

Small curvature connections in dimensions 2 and 3

In our proof of the main result, we will encounter connections on surfaces and 3-

manifolds, and these connections will have uniformly small curvature. We want a

uniform way of identifying nearby flat connections. In the case of surfaces, this can be

made precise by the complexified gauge group, which acts freely on the subset of connec-

tions having sufficiently small curvature. It is well-known to experts that quotienting

this subset by the action of the complexified gauge group (called a Narasimhan-

Seshadri correspondence) recovers the moduli space of flat connections. This was

originally carried out for unitary bundles on surfaces by Narasimhan and Seshadri [32],

using algebraic techniques. Later, it was extended to more general structure groups by

Ramanathan in his thesis [35]. (See also Kirwan’s book [27] for a finite-dimensional

version.) Our approach is more in the spirit of Donaldson [7], where he works in an

analytic category and uses an implicit function theorem argument. In section 3.1, we

develop precise C1 and C2-estimates associated to this quotient, which will be needed

for our proof of the Main Theorem 2.4.1.

In the case of 3-manifolds it is not clear how to set up an analogous implicit function

theorem argument. To obtain similar results, we instead appeal to the Yang-Mills heat

flow, which was worked out by R̊ade [34] for closed 3-manifolds. In section 3.2, we

extend R̊ade’s result to compact manifolds with boundary. The lack of an implicit

function theorem means that we only obtain C0 estimates, however this is sufficient for

our purposes.

3.1 Semistable connections over a surface

The goal of this section is to define a gauge-equivariant deformation retract
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NS : Ass → Aflat,

and establish some of its properties. Here Ass is a neighborhood of Aflat (the superscript

stands for semistable). The relevant properties of the map NS are laid out in Theorem

3.1.1, below. After stating the theorem, we will define the complexified gauge group

GC and its action on A (this is only used in the proofs appearing in this section, and

will not be used in the rest of the thesis). The proof of the theorem will show that for

each α ∈ Ass, there is a ‘purely imaginary’ complex gauge transformation u such that

u∗α a flat connection, and u is unique provided it lies sufficiently close to the identity.

We then define NS(α) := u∗α.

After proving Theorem 3.1.1 below, where the map NS is formally defined, we

spend the remainder of this section establishing useful properties and estimates for

NS. For example, in the proof of Lemma 3.1.11 we establish the Narasimhan-Seshadri

correspondence

Ass/GC0 ∼= Aflat/G0,

and in Proposition 3.1.9 and Corollary 3.1.13 we show that, to first order, the map NS is

the identity plus the L2 orthogonal projection to the tangent space of flat connections.

Theorem 3.1.1. Suppose G is a compact connected Lie group, Σ is a closed oriented

Riemannian surface, and P → Σ is a principal G-bundle such that all flat connections

are irreducible. Then for any 1 < q <∞, there are constants C > 0 and ε0 > 0, and a

G2,q(P )-equivariant deformation retract

NSP :
{
α ∈ A1,q(P )

∣∣∣ ‖Fα‖Lq(Σ) < ε0
}
−→ A1,q

flat(P ) (3.1)

which is smooth with respect to the W 1,q-topology on the domain and codomain. More-

over, the map NSP is also smooth with respect to the Lp-topology on the domain and

codomain, for any 2 < p <∞.

Remark 3.1.2. The restriction in the second part of the theorem to 2 < p < ∞
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is merely an artifact of our proof, and it is likely that the conclusion holds for, say,

1 < p ≤ 2 as well. See Lemma 3.1.12.

Our strategy for the proof of Theorem 3.1.1 is to work in the setting of holomor-

phic structures on a complex vector bundle, rather than on the space of connections

themselves. Geometrically this is nothing more than a change of perspective, but this

perspective has the advantage that it makes clear how the gauge group action extends

to an action of the complexified gauge group. Before proving Theorem 3.1.1 we recall

the definition and various properties of the complexified gauge group.

Set G be a compact, connected Lie group and fix a faithful Lie group embedding

ρ : G ↪→ U(n) for some n. We identify G with its image in U(n). Define E := P ×GCn,

and equip it with the G-invariant Hermitage structure induced by the embedding G ⊂

U(n). Let JE denote the complex structure on E induced from the standard complex

structure on Cn. The metric and orientation on Σ determine a complex structure jΣ,

and we will use the notation Ωk,l(Σ, E) to denote the smooth E-valued forms of type

(k, l). Observe that jΣ acts by the Hodge star on 1-forms.

Consider the space

C(E) :=

D : Ω0(Σ, E)→ Ω0,1(Σ, E)

∣∣∣∣∣∣∣
D(fξ) = f(Dξ) + (∂f)ξ,

for ξ ∈ Ω0(Σ, E), f ∈ Ω0(Σ)

 ,
of Cauchy-Riemann operators on E. This can be naturally identified with the space

of holomorphic structures on E (see [30, Appendix C]). Each element D ∈ C(E) has a

unique extension to an operator D : Ωj,k(Σ, E) → Ωj,k+1(Σ, E) satisfying the Leibniz

rule.

Let A(E) denote the space of C-linear covariant derivatives on E:

A(E) :=

D : Ω0(Σ, E)→ Ω1(Σ, E)

∣∣∣∣∣∣∣
D(fξ) = f(Dξ) + (df)ξ,

for ξ ∈ Ω0(Σ, E), f ∈ Ω0(Σ)


There is a natural isomorphism

A(E) −→ C(E)

D 7−→ 1
2 (D + JED ◦ jΣ)

(3.2)
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Here and below we are using the symbol ◦ to denote composition of operators. For

example, if M : Ω(Σ, E) → Ω(Σ, E) is a derivation we define M ◦ jΣ : Ω(Σ, E) →

Ω(Σ, E) to be the derivation of the same degree given by

ιX ((M ◦ jΣ) ξ) = ιjΣX (Mξ) .

Let P (g)C denote the exemplification of the vector bundle P (g). Then we have the

bundle inclusions P (g) ⊂ P (g)C ⊂ End(E), where End(E) is the bundle of complex

linear anthropomorphism of E and the latter inclusion is induced by the embedding ρ.

Each connection α ∈ A(P ) induces a covariant derivative dα,ρ : Ωk(Σ, E)→ Ωk+1(Σ, E),

and its corresponding curvature Fα,ρ = dα,ρ ◦ dα,ρ ∈ Ω2(Σ, P (g)). Since the representa-

tion ρ is faithful, we have pointwise estimates of the form

c|Fα,ρ| ≤ |Fα| ≤ C|Fα,ρ|,

which allow us to discuss curvature bounds in terms of Fα or Fα,ρ. Furthermore, the

map A(P ) → A(E) is an embedding of Ω1(Σ, P (g))-spaces. Here Ω1(Σ, P (g)) acts on

A(E) via the inclusion Ω1(Σ,End(E)). In particular, restricting to the image of A(P )

in A(E), the map (3.2) becomes an embedding

A(P ) −→ C(E)

α 7−→ ∂α := 1
2 (dα,ρ + JEdα,ρ ◦ jΣ)

(3.3)

The image of (3.3) is the set of covariant derivatives which preserve the G-structure,

and we denote it by C(P ). See [30, Appendix C] for the case when G = U(n). The

space C(P ) is an affine space modeled on Ω0,1(Σ, P (g)C). Similarly, we have seen that

A(P ) is an affine space modeled on Ω1(Σ, P (g)). The mapping (3.3) is affine under

the identification Ω1(Σ, P (g)) ∼= Ω0,1(Σ, P (g)C) sending µ to its anti-linear part µ0,1 :=

1
2 (µ+ JEµ ◦ jΣ). To summarize, we have a commutative diagram

A(P )
∼=−−−→ C(P )y y

A(E)
∼=−−−→ C(E)
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As mentioned above, the complexified gauge group acts on A(P ). To describe this,

we need to first recall some basic properties of the complexification of compact Lie

groups. See [25] or [23] on this material. Since G is compact and connected, there

is a connected complex group GC with G ⊂ GC a maximal compact subgroup, and

with Lie algebra gC, the complexification of g. This group GC is unique up to natural

isomorphism and is called the complexification of G. We may further assume that

the representation ρ extends to an embedding GC ↪→ GL(Cn), and we identify GC with

its image (see [23, Proof of Theorem 1.7]). Then we have

G =
{
u ∈ GC

∣∣∣u†u = Id
}
,

where u† denotes the conjugate transpose on GL(Cn). It follows that we can write

GC = {g exp(iξ) |g ∈ G, ξ ∈ g} ,

and this decomposition is unique. The same holds true if we replace g exp(iξ) by

exp(iξ)g. It is then immediate that

g exp(iξ) = exp(iAd(g)ξ)g (3.4)

for all g ∈ G and all ξ ∈ g.

We can now define the complexified gauge group on P to be

G(P )C := Γ(P ×G GC).

Similarly to the real case, we may identify Ω0(Σ, P
(
g)C

)
with the Lie algebra Lie

(
G(P )C

)
via the map

ξ 7→ exp(−ξ), (3.5)

(compare this with (2.14)) hence the Lie group theoretic exponential map on G(P )C is

given pointwise by the exponential map on GC. It follows by the analogous properties

of GC that each element of G(P )C can be written uniquely in the form
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g exp(iξ) (3.6)

for some g ∈ G(P ) and ξ ∈ Ω0(Σ, P (g)), and (3.4) continues to hold with g, ξ interpreted

as elements of G(P ),Ω0(Σ, P (g)), respectively.

The complexified gauge group acts on C(P ) by

G(P )C × C(P ) −→ C(P )

(u,D) 7−→ u ◦D ◦ u−1

(3.7)

Viewing G(P ) as a subgroup of G(P )C in the obvious way, then the identification (3.3)

is G(P )-equivariant. We can then use (3.3) and (3.7) to define an action of the larger

group G(P )C on A(P ), extending the G(P )-action. We denote the action of u ∈ G(P )C

on α by u∗α. Explicitly, the action on A(P ) takes the form

du∗α,ρ = (u†)−1 ◦ ∂α ◦ u† + u ◦ ∂α ◦ u−1.

where the dagger is applied point-wise. Of particular note is that the infinitesimal

action at α ∈ A(P ) is given by

Ω0
(
Σ, P (g)C

)
−→ Ω1 (Σ, P (g))

ξ + iζ 7−→ dα,ρξ + ∗dα,ρζ

(3.8)

More generally, the derivative of the map (u, α) 7→ u∗α at (u, α) with u ∈ G(P ) (an

element of the real gauge group) is a map

u
(
Ω0(Σ, P (g))⊕ iΩ0(Σ, P (g))

)
× Ω1(Σ, P (g)) −→ Ω1(Σ, P (g))

given by

(u(ξ + iζ), η) 7−→ Ad(u) (dαξ + ∗dαζ + η)

= {du∗α(uξ) + ∗du∗α(uζ)}u−1 + Ad(u)η

(3.9)
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Compare with (2.15). Here we are using the fact that G(P )C and its Lie algebra both

embed into the space Γ(P×GEnd(Cn)), and so it makes sense to multiply Lie group and

Lie algebra elements. See Remark 2.2.2. The curvature transforms under u ∈ G(P )C

by

u−1 ◦ Fu∗α,ρ ◦ u = Fα,ρ + ∂α
(
h−1∂αh

)
, (3.10)

where we have set h = u†u. We will mostly be interested in this action when u = exp(iξ)

for ξ ∈ Ω0(Σ, P (g)), in which case the action can be written as

exp(−iξ) ◦ Fexp(iξ)∗α,ρ ◦ exp(iξ) = ∗F(α, ξ), (3.11)

where we have set

F(α, ξ) := ∗
(
Fα,ρ + ∂α (exp(−2iξ)∂α exp(2iξ))

)
. (3.12)

It will be useful to define the (real) gauge group on E and the complexified

gauge group on E by, respectively,

G(E) := Γ(P ×G U(n)), G(E)C := Γ(P ×G GL(Cn)).

(Note that the complexification of U(n) is GL(Cn), so this terminology is consistent,

and in fact motivates, the terminology above.) These are both Lie groups with Lie

algebras

Lie(G(E)) = Γ(P ×G u(n)), Lie(G(E)) = Γ(P ×G End(Cn)),

where we are identifying End(Cn) with the Lie algebra of GL(Cn). We have the obvious

inclusions

G(P ) −−−→ G(P )Cy y
G(E) −−−→ G(E)C

The space G(E)C acts on C(E) by the map
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G(E)C × C(E) −→ C(E)

(u,D) 7−→ u ◦D ◦ u−1

(3.13)

Using (3.2), this induces an action of G(E)C on A(E) (hence an action of G(E) on

A(E)), though, neither G(E)C nor G(E) restrict to actions on A(P ), unless G = U(n).

Finally, we mention that the vector spaces

Lie(G(E)), Lie(G(E)C), and Lie(G(P )C),

admit Sobolev completions. For example, the space Lie(G(P )C)k,q is theW k,q-completion

of the vector space Γ(P ×G P (g)C). When we are in the continuous range for Sobolev

embedding (e.g., when kq > 2) then these are Banach Lie algebras. Similarly, when we

are in the continuous range we can form the Banach Lie groups

Gk,q(E), Gk,q(E)C, and Gk,q(P )C,

by taking the W k,q-completions of the groups of smooth functions

G(E), G(E)C, and G(P )C

which we view as lying in the vector space Γ(P ×G End(Cn))k,q (compare with section

2.2.2). The complexified gauge action extends to a smooth action of Gk,q(E)C on

Ak−1,q(E), and this restricts to a smooth action of Gk,q(P )C on Ak−1,q(P ).

Proof of Theorem 3.1.1. Set G = PSU(r). Suppose we can define NSP on the set

{
α ∈ A1,q(P )

∣∣∣ distW 1,q

(
α,A1,q

flat(P )
)
< ε0

}
, (3.14)

for some ε0 > 0, and show that it satisfies the desired properties on this smaller domain.

Then the G2,q-equivariance will imply that it extends uniquely to the flow-out by the

real gauge group:
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{
u∗α ∈ A1,q(P )

∣∣∣ u ∈ G2,q(P ), distW 1,q

(
α,A1,q

flat(P )
)
< ε0

}
,

and continues to have the desired properties on this larger domain. The next claim

shows that this flow-out contains a neighborhood of the form appearing in the domain

in (3.1), thereby reducing the problem to defining NSP on a set of the form (3.14).

Claim: For any ε̃0 > 0, there is some ε0 > 0 with

{
α ∈ A1,q(P )| ‖Fα‖Lq < ε0

}

⊆
{
u∗α ∈ A1,q(P )

∣∣∣ u ∈ G2,q(P ), distW 1,q

(
α,A1,q

flat(P )
)
< ε̃0

}
.

For sake of contradiction, suppose that for all ε > 0 there is a connection α with

‖Fα‖Lq < ε, but

‖u∗α− α0‖W 1,q ≥ ε̃0, ∀u ∈ G2,q(P ), ∀α0 ∈ A1,q
flat(P ) (3.15)

So we may find a sequence of connections αν with ‖Fαν‖L2 → 0, but (3.15) holds with αν

replacing α. By Uhlenbeck’s Weak Compactness Theorem 2.2.9, there is a sequence of

gauge transformations uν ∈ G2,q(P ) such that, after possibly passing to a subsequence,

u∗ναν converges weakly in W 1,q to a limiting connection α[. The condition on the

curvature implies that α[ ∈ A
1,q
flat(P ) is flat. Moreover, the embedding W 1,q ↪→ L2q is

compact, so the weak W 1,q-convergence of u∗ναν implies that u∗ναν converges strongly

to α[ in L2q. By redefining uν if necessary, we may suppose that u∗ναν is in Coulomb

gauge with respect to α[ (section 2.2.2):

d∗α0
(u∗ναν − α[) = 0,

and still retain the fact that u∗ναν converges to α∞ strongly in L2q (see Theorem 2.2.11,

use p = 1
2(1 + q) when 1 < q ≤ 2). This gives
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‖u∗ναν − α[‖
q
W 1,q = ‖u∗ναν − α[‖

q
Lq + ‖dα[ (u∗ναν − α[) ‖

q
Lq + ‖d∗α[ (u∗ναν − α[) ‖

q
Lq

≤ ‖u∗ναν − α[‖
q
Lq + ‖Fαν‖

q
Lq + 1

2‖u
∗
ναν − α[‖

q
L2q

≤ C
(
‖u∗ναν − α[‖

q
L2q + ‖Fαν‖

q
Lq

)
where we have used the formula

Fα[+µ = dα[(µ) +
1

2
[µ ∧ µ] .

Hence

‖u∗ναν − α[‖
q
W 1,q −→ 0,

in contradiction to (3.15). This proves the claim.

To define NSP , it therefore suffices to show that for α sufficiently W 1,q-close to

Aflat(P ) there is a unique Ξ(α) ∈ Ω0(Σ, P (g)) close to 0, with Fexp(iΞ(α))∗α,ρ = 0. Once

we have shown this, then we will define

NSP (α) := exp(iΞ(α))∗α.

In light of (3.10) finding Ξ(α) is equivalent to solving for ξ in F(α, ξ) = 0. To do this

we need to pass to suitable Sobolev completions.

It follows from the formula (3.10) and the Sobolev embedding and multiplication

theorems that F , defined in (3.12), extends to a map

A1,q(P )× Lie(G(P ))2,q −→ Lie(G(P ))0,q,

whenever q > 1. Suppose α0 is a flat connection. The linearization of F at (α0, 0) in

the direction of (0, ξ) is

D(α0,0)F(0, ξ) = 2JE ∗ ∂α0∂α0(ξ),
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where we have used the fact that dα,ρ commutes with JE = i (this is because the

complex structure JE is constant and the elements of A(P ) are unitary). Observe that

jΣ acts by the Hodge star on vectors, so

dα0,ρ(dα0,ρ ◦ jΣ) = dα0,ρ ∗ dα0,ρ, (dα0,ρ ◦ jΣ)dα0,ρ = Fα0,ρ ◦ (jΣ, Id). (3.16)

Using this and the fact that Fα0,ρ = 0, we have

D(α0,0)F(0, ξ) =
1

2
∆α0,ρξ

where ∆α0,ρ = d∗α0,ρdα0,ρ + dα0,ρd
∗
α0,ρ is the Laplacian. By assumption, all flat connec-

tions are irreducible, so Hodge theory tells us that the operator ∆α0,ρ : Lie(G(P ))2,q →

Lie(G(P ))0,q is an isomorphism. Since α0 is flat, the pair (α0, 0) is clearly a solution

to F(α, ξ) = 0. It therefore follows by the implicit function theorem that there are

εα0 , ε
′
α0
> 0 such that, for any α ∈ A1,q with ‖α− α0‖W 1,q < εα0 , there is a unique

Ξ = Ξ(α) ∈ Lie(G(P ))2,q

with ‖Ξ(α)‖W 2,q < ε′α0
and

F(α,Ξ(α)) = 0.

The implicit function theorem also implies that Ξ(α) varies smoothly α in the W 1,q-

topology. Moreover, by the uniqueness assertion, it follows that Ξ(α) = 0 if α is flat.

We need to show that εα0 and ε′α0
can be chosen to be independent of α0 ∈ A1,q

flat(P ).

Since the moduli space of flat connections is compact, it suffices to show that εα0 =

εu∗α0 , for all real gauge transformations u ∈ G2,q(P ), and likewise for ε′α0
. Fix u ∈

G2,q(P ) and α a connection W 1,q-close to α0, then find Ξ(α) as above. By (3.4) and

the statement following (3.6) we have

u exp(iΞ(α)) = exp(iAd(u)Ξ(α))u. (3.17)

Since the curvature is G2,q(P )-equivariant, we also have
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0 = Ad(u)Fexp(iΞ)∗α

= F(u exp(iΞ))∗α

= Fexp(iAd(u)Ξ)∗(u∗α)

so Ξ(u∗α) = Ad(u)∗Ξ(α) since this is the defining property of Ξ(u∗α). It follows

immediately that εu∗α0 = εα0 and ε′u∗α0
= ε′α0

, so we can take ε0 to be the minimum

of inf [α0]∈M(P ) εα0 > 0 and inf [α0]∈M(P ) ε
′
α0
> 0. This also shows that NSP is G2,q(P )-

equivariant.

Finally, we show that NSP (α) depends smoothly on α in the Lp-topology for p > 2.

It suffices to show that α 7→ Ξ(α) extends to a map A0,p → Lie(G(P ))1,p which is

smooth with respect to the specified topologies. To see this, note that F from (3.12) is

well-defined as a map

A0,p(P )× Lie(G(P ))1,p −→ Lie(G(P ))−1,p.

and is smooth with respect to the specified topologies (the restriction to p > 2 is

required so that Sobolev multiplication is well-defined, see Section 2.2.2). Then the

implicit function theorem argument we gave above holds verbatim to show that for each

α sufficiently Lp-close toA0,p
flat(P ), there is a unique W 1,p-small Ξ̃(α) ∈ Lie(G(P ))1,p such

that exp(iΞ̃(α))∗α is flat. Moreover, the assignment

A0,p
flat(P ) −→ Lie(G(P ))1,p, α 7−→ Ξ̃(α)

is smooth. The uniqueness of Ξ̃(α) and Ξ(α) ensures that the former is indeed an

extension of the latter.

Remark 3.1.3. Let Π : A1,q
flat(P ) → M(P ) denote the projection. The above proof

shows that the composition Π ◦NSP is invariant under a small neighborhood of G2,q(P )

in G2,q(P )C. Indeed, α and exp(iξ)∗α both map to the same flat connection under NSP

whenever they are both in the domain of NSP .



85

3.1.1 Analytic properties of almost flat connections

This section is of a preparatory nature. The results extend several elliptic properties,

which are standard for flat connections, to connections with small curvature. The

following lemma addresses elliptic regularity for the operator dα on 0-forms.

Lemma 3.1.4. Suppose G is a compact Lie group, Σ is a closed oriented Riemannian

surface and P → Σ is a principal G-bundle such that all flat connections are irreducible.

Let 1 < q < ∞. Then there are constants C > 0 and ε0 > 0 with the following

significance.

(i) Suppose that either α ∈ A1,q(P ) with ‖Fα‖Lq(Σ) < ε0, or α ∈ A0,q(P ) with ‖α −

α[‖L2q(Σ) < ε0 for some α[ ∈ A
0,2q
flat (P ). Then the map

dα : W 1,q(P (g)) −→ Lq(P (g))

is a Banach space isomorphism onto its image. Moreover, the following estimate

holds

‖f‖W 1,q(Σ) ≤ C‖dαf‖Lq(Σ) (3.18)

for all f ∈W 1,q(P (g)).

(ii) For all α ∈ A1,q(P ) with ‖Fα‖Lq(Σ) < ε0, the Laplacian

d∗αdα : W 2,q(P (g)) −→ Lq(P (g))

is a Banach space isomorphism. Moreover, the following estimate holds

‖f‖W 2,q(Σ) ≤ C‖dα ∗ dαf‖Lq(Σ) (3.19)

for all f ∈W 2,q(P (g)).

Proof. This is basically the statement of [12, Lemma 7.6], but adjusted a little to suit

our situation. We prove (ii), the proof of (i) is similar.
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The assumptions on the bundle imply that all flat connections α[ are irreducible,

and so the kernel and cokernel of the elliptic operator

d∗α[dα[ : W 2,q(P (g)) −→ Lq(P (g))

are trivial. In particular, we have an estimate

‖f‖W 2,q ≤ C‖dα[ ∗ dα[f‖Lq

for all f ∈W 2,q(P (g)), and the statement holds when α = α[ is flat.

Next, let α ∈ A1,q(P ) and α[ ∈ A
1,q
flat(P ). Then, by the above discussion, and the

relation

dα[f = dαf + [α[ − α, f ] ,

we have

‖f‖W 2,q ≤ C‖dα[ ∗ dα[f‖Lq

≤ C {‖dα ∗ dαf‖Lq

+ ‖dα [∗(α− α[), f ] ‖Lq + ‖[α− α[ ∧ [∗(α− α[), f ]]‖Lq}

≤ C {‖dα ∗ dαf‖Lq

+ C ′ (‖dα ∗ (α− α[)‖Lq + ‖α− α[‖L2q) ‖f‖W 2,q} ,

for all f ∈W 2,q(P (g)), where we have used the embeddings

W 2,q ↪→W 1,q and W 2,q ↪→ L∞

in the last step. Now suppose that ‖α−α[‖L2q < 1/2CC ′ is small. Then by composing

α[ with a suitable gauge transformation, we may suppose α is in Coulomb gauge with

respect to α[, and still retain the fact that ‖α − α[‖L2q < 1/2CC ′. Then the above

gives
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‖f‖W 2,q ≤ C‖dα ∗ dαf‖Lq +
1

2
‖f‖W 2,q ,

which shows that d∗αdα is injective when sufficiently L2q-close to the space of flat con-

nections.

Now we prove the lemma. Suppose the result of (ii) in the lemma does not hold.

Then there is some sequence of connections αν with ‖Fαν‖Lq → 0, but the estimate

(3.19) does not hold for any C > 0. By Uhlenbeck’s Weak Compactness Theorem 2.2.9,

after possibly passing to a subsequence, there is some sequence of gauge transformations

uν , and a limiting flat connection α[, such that

‖αν − u∗να[‖L2q −→ 0.

So the discussion of the previous paragraph shows that, for ν sufficiently large, the

estimate (3.19) holds with α replaced by αν . This is a contradiction, and it proves the

lemma.

Now we move on to study the action of dα on 1-forms. First we establish a Hodge-

decomposition result for connections with small curvature. For 2 ≤ q <∞ and k ∈ Z,

let V k,q denote the W k,q-closure of a vector subspace V ⊆ W k,q(T ∗Σ ⊗ P (g)). The

standard Hodge decomposition (2.9) reads

W k,q(T ∗Σ⊗ P (g)) = H1
α[
⊕
(
Im dα[

)k,q ⊕ (Im d∗α[

)k,q
, (3.20)

for any flat connection α[. Here H1
α[

is finite dimensional (with a dimension that is

independent of α[ ∈ A[), and so is equal to its W k,q-closure. Furthermore, the direct

sum in (3.20) is L2-orthogonal, even though the spaces need not be complete in the

L2-metric. We have a similar situation whenever α has small curvature, as the next

lemma shows.

Lemma 3.1.5. Assume that P → Σ satisfies the conditions of Lemma 3.1.4, and let

1 < q < ∞ and k ≥ 0. Then there are constants ε0 > 0 and C > 0 with the following

significance. If α ∈ A1,q(P ) has ‖Fα‖Lq(Σ) < ε0, then
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H1
α := (ker dα)k,q ∩ (ker d∗α)k,q ⊆W k,q(T ∗Σ⊗ P (g))

has finite dimension equal to dim H1
α[

, for any flat connection α[. Furthermore, the

space H1
α equals the L2-orthogonal complement of the image of dα ⊕ d∗α:

H1
α =

(
(Im dα)k,q ⊕ (Im d∗α)k,q

)⊥
,

and so we have a direct sum decomposition

W k,q (T ∗Σ⊗ P (g)) = H1
α ⊕

(
(Im dα)k,q ⊕ (Im ∗ dα)k,q

)
. (3.21)

In particular, the L2-orthogonal projection

projα : W k,q(T ∗Σ⊗ P (g)) −→ H1
α

(3.22)

is well-defined.

Remark 3.1.6. It follows by elliptic regularity that the space

(ker dα)k,q ∩ (ker d∗α)k,q

consists of smooth forms. In fact, when k−2/q ≥ k′−2/q′, the inclusion W k,q ⊆W k′,q′

restricts to an inclusion of finite-dimensional spaces

(ker dα)k,q ∩ (ker d∗α)k,q ↪→ (ker dα)k
′,q′ ∩ (ker d∗α)k

′,q′ ,

and this map is onto by dimensionality. Hence, the definition of H1
α is independent of

the choice of k, q.

Proof of Lemma 3.1.5. We first show that, when ‖Fα‖Lq(Σ) is sufficiently small, we have

a direct sum decomposition

W k,q (T ∗Σ⊗ P (g)) = H1
α ⊕ (Im dα)k,q ⊕ (Im ∗ dα)k,q .
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We prove this in the case k = 0, the case k > 0 is similar but slightly easier. By

definition of H1
α, it suffices to show that the images of dα and ∗dα intersect trivially.

Towards this end, write dαf = ∗dαg for 0-forms f, g of Sobolev class Lq = W 0,q. Acting

by dα and then dα∗ gives

[Fα, f ] = dα ∗ dαg, [Fα, g] = −dα ∗ dαf.

A priori, dα ∗ dαg and dα ∗ dαf are only of Sobolev class W−2,q, however, the left-hand

side of each of these equations is in Lr, where 1/r = 1/q + 1/p. So elliptic regularity

implies that f and g are each W 2,q. (This bootstrapping can be continued to show that

f, g are smooth, but we will see in a minute that they are both zero.) By Lemma 3.1.4

and the embedding W 2,q ↪→ L∞ it follows that, whenever ‖Fα‖Lq is sufficiently small,

we have

‖f‖L∞ ≤ C‖dα ∗ dαf‖Lq

= C‖ [Fα, g] ‖Lq

≤ C‖Fα‖Lq‖g‖L∞ .

Similarly, ‖g‖L∞ ≤ C‖Fα‖Lq‖g‖L∞ , and hence

‖f‖L∞ ≤ C2‖Fα‖2Lq‖f‖L∞ .

By requiring that ‖Fα‖2Lq < C−2, this can be happen only if f = g = 0. This establishes

the direct sum (3.21).

Now we prove that the dimension of H1
α is finite and equals that of H1

α[
for any flat

connection α[. It is well-known that the operator

dα[ ⊕ ∗dα[ : W k+1,q(P (g))⊕W k+1,q(P (g)) −→W k,q(T ∗Σ⊗ P (g))

is elliptic, and hence Fredholm, whenever α[ is flat. The irreducibility condition implies

that it has trivial kernel, and so has index given by −dim(H1
α[

), which is a constant



90

independent of α[. Then for any other connection α, the operator dα⊕∗dα differs from

dα[ ⊕ ∗dα[ by the compact operator

µ 7−→ [α− α[, µ] + ∗ [α− α[, µ] ,

and so dα ⊕ ∗dα is Fredholm with the same index −dim(H1
α[

) [30, Theorem A.1.5]. It

follows from Lemma 3.1.4 that the (bounded) operator

dα ⊕ ∗dα : W k+1,q(P (g))⊕W k+1,q(P (g)) −→W k,q(T ∗Σ⊕ P (g))

is injective whenever ‖Fα‖Lq(Σ) is sufficiently small, and hence the cokernel has finite

dimension dim(H1
α[

):

dim(H1
α) = dim(H1

α[
).

This finishes the proof of Lemma 3.1.5.

Next we show that the L2-orthogonal projection to H1
α = ker dα ∩ ker d∗α depends

smoothly on α in the Lq topology.

Proposition 3.1.7. Suppose that P → Σ and ε0 > 0 are as in Lemma 3.1.5, and let

1 < q <∞. Then the assignment α 7→ projα is affine-linear and bounded

‖projα − projα′‖op,Lq ≤ C‖α− α′‖Lq(Σ), (3.23)

provided ‖Fα‖Lq , ‖Fα′‖Lq < ε0, where ‖ · ‖op,Lq is the operator norm on the space of

linear maps Lq(T ∗Σ⊗ P (g))→ Lq(T ∗Σ⊗ P (g)).

Proof. We will see that defining equations for projα are affine linear, and so the state-

ment will follow from the implicit function theorem in the affine-linear setting.

First, we introduce the following shorthand:

W k,q(Ωj) := W k,q
(
∧jT ∗Σ⊗ P (g)

)
, Lq(Ωj) := W 0,q(Ωj).
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Next, we note that for µ ∈ Lq(Ω1), the L2-orthogonal projection projαµ is uniquely

characterized by the following properties:

Property A: µ− projαµ = dαu+ d∗αv, for some (u, v) ∈W 1,q(Ω0)⊕W 1,q(Ω2),

Property B: (projαµ, dαa+ d∗αb) = 0, for all (a, b) ∈W 1,q∗(Ω0)⊕W 1,q∗(Ω2),

where q∗ is the Sobolev dual to q: 1/q + 1/q∗ = 1. Here and below, we are continuing

to use the notation

(µ, ν) :=

∫
Σ
〈µ ∧ ∗ν〉

to denote the pairing on forms. Note that by Lemma 3.1.4, the operators dα and d∗α

are injective on 0- and 2-forms, respectively, so any pair (u, v) satisfying Property A is

unique.

Consider the map

(
A0,q ⊕ Lq(Ω1)

)
×
(
Lq(Ω1)⊕W 1,q(Ω0)⊕W 1,q(Ω0)

)

−→
(
W 1,q∗(Ω0)

)∗
⊕
(
W 1,q∗(Ω2)

)∗
⊕ Lq(Ω1)

(3.24)

defined by

(α, µ; ν, u, v) 7−→ ((ν, dα (·)) , (ν, d∗α (·)) , µ− ν − dαu− d∗αv)

The key point is that a tuple (α, µ, ν, u, v) maps to zero under (3.24) if and only if this

tuple satisfies Properties A and B above. By the identification (W k,q∗)∗ = W−k,q, can

equivalently view (3.24) as a map

(
A0,q × Lq(Ω1)

)
×
(
Lq(Ω1)×W 1,q(Ω0)×W 1,q(Ω0)

)

−→W−1,q(Ω0)⊕W−1,q(Ω2)⊕ Lq(Ω1)

(3.25)

defined by
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(α, µ; ν, u, v) 7−→ (d∗αν, dαν, µ− ν − dαu− d∗αv) .

(The topology on each space is given by the Sobolev norm indicated in its exponent.)

Claim 1: The map (3.25) is bounded affine linear in the A0,q-variable, and bounded

linear in the other 4 variables.

Claim 2: The linearization at (α, 0; 0, 0, 0) of (3.25) in the last 3-variables is a Banach

space isomorphism, provided ‖α − α[‖Lq is sufficiently small for some flat connection

α[.

Before proving the claims, we describe how they prove the lemma. Observe that

(α, 0; 0, 0, 0) is clearly a zero of (3.25) for any α. Claim 1 implies that (3.25) is smooth,

and so by Claim 2 we can use the implicit function theorem to show that, for each pair

(α, µ) ∈ A0,q ⊕ Lq(Ω1), with ‖α − α[‖Lq sufficiently small, there is a unique (ν, u, v) ∈

Lq(Ω1)⊕W 1,q(Ω0)⊕W 1,q(Ω0) such that (α, µ; ν, u, v) is a zero of (3.25). (A priori this

only holds for µ in a small neighborhood of the origin, but since (3.25) is linear in that

variable, it extends to all µ.) It will then follow that ν = projαµ depends smoothly on

α in the Lq-metric. In fact, (3.25) is affine linear in α and linear in the other variables,

so the uniqueness assertion of the implicit function theorem implies that projα depends

affine-linearly on α, and so we get:

‖projα − projα[‖op,Lq = inf‖µ‖Lq=1 ‖
(
projα − projα[

)
µ‖Lq

≤ C inf‖µ‖Lq=1C‖α− α[‖Lq‖µ‖Lq

= C‖α− α[‖Lq .

This proves the lemma for all α sufficiently Lq-close to Aflat. To extend it to all α with

‖Fα‖Lq sufficiently small, one argues by contradiction as in the proof of Lemma 3.1.4,

using Uhlenbeck’s Weak Compactness Theorem 2.2.9. It therefore remains to prove the

claims.
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Proof of Claim 1: It suffices to verify boundedness for each of the three (codomain)

components separately. The first component is the map

A0,q × Lq(Ω1) −→ W−1,q(Ω0)

(α, ν) 7−→ d∗αν

(3.26)

It is a standard consequence from the principle of uniform boundedness that a bilinear

map is continuous if it is continuous in each variable separately. The same holds if the

map is linear in one variable and affine-linear in the second, so it suffices to show that

(3.26) is bounded in each of the two coordinates separately. Fix α and a flat connection

α[. Then

‖dαν‖W−1,q ≤ ‖dα[ν‖W−1,q + ‖ [α− α[ ∧ ν] ‖W−1,q

≤ ‖dα[ν‖W−1,q + ‖α− α[‖Lq‖ν‖Lq

≤ C (1 + ‖α− α[‖Lq) ‖ν‖Lq

which shows that the map is bounded in the variable ν, with α fixed. Next, fix ν and

write

‖dαν − dα[ν‖W−1,q = ‖ [α− α[ ∧ ν] ‖W−1,q

≤ ‖ν‖Lq‖α− α[‖Lq

which shows it is bounded in the α-variable. This shows the first component of (3.25)

is bounded. The other two components are similar.

Proof of Claim 2: The linearization of (3.25) at (α, 0; 0, 0, 0) in the last three vari-

ables is the map

Lq(Ω1)×W 1,q(Ω0)×W 1,q(Ω0) −→ W−1,q(Ω0)⊕W−1,q(Ω2)⊕ Lq(Ω1)

(ν, u, v) 7−→ (d∗αν, dαν, −ν − dαu− d∗αv)
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By Claim 1, this is bounded linear, so by the open mapping theorem, it suffices to show

that it is bijective. Suppose

(d∗αν, dαν; −ν − dαu− d∗αv) = (0, 0, 0). (3.27)

Then by Lemma 3.1.5, we can write ν uniquely as

ν = νH + dαa+ d∗αb

for νH ∈ H1
α = ker dα ∩ ker d∗α, and (a, b) ∈ W 1,q(Ω0) ×W 1,q(Ω2), provided ‖Fα‖Lq is

sufficiently small. This uniqueness, together with the first two components of (3.27),

imply that ν = νH . The third component then reads

νH = −dαu− d∗αv,

which is only possible if νH = dαu = d∗αv = 0. By Lemma 3.1.4, this implies (ν, u, v) =

(0, 0, 0), which proves injectivity.

To prove surjectivity, suppose the contrary. Then by the Hahn-Banach theorem,

there are non-zero dual elements

(f, g, η) ∈
(
W−1,q(Ω0)⊕W−1,q(Ω2)⊕ Lq(Ω1)

)∗

= W 1,q∗(Ω0)⊕W 1,q∗(Ω2)⊕ Lq∗(Ω1)

with

0 = (f, d∗αν), 0 = (g, dαν), 0 = (η, ν + dαu+ d∗αv)

for all (ν, u, v). The first two equations imply

0 = (dαf, ν), 0 = (d∗αg, ν)

for all ν. This implies dαf = 0 and d∗g = 0, and so f = 0 and g = 0 by Lemma 3.1.4.

For the third equation, take (u, v) = (0, 0) and we get 0 = (η, ν) for all ν. But this can

only happen if η = 0, which is a contradiction to the tuple (f, g, η) being non-zero.



95

We end this preparatory section by establishing the analogue of Lemma 3.1.4 for

1-forms.

Lemma 3.1.8. Assume that P → Σ satisfies the conditions of Lemma 3.1.4, and let

1 < q <∞. Then there are constants C > 0 and ε0 > 0 such that

‖µ− projαµ‖W 1,q(Σ) ≤ C
(
‖dαµ‖Lq(Σ) + ‖dα ∗ µ‖Lq(Σ)

)
(3.28)

for all µ ∈W 1,q(T ∗Σ⊗ P (g)) and all α ∈ A1,q(Σ) with ‖Fα‖Lq(Σ) < ε0.

Proof. First note that this is just the standard elliptic regularity result if α = α[

is flat. To prove the lemma, suppose the conclusion does not hold. Then there is

sequence of connections αν , with curvature going to zero in Lq, and a sequence of

1-forms µν ∈ Im dαν ⊕ Im ∗ dαν with ‖µν‖W 1,q = 1 and

‖dανµν‖Lq + ‖dαν ∗ µν‖Lq −→ 0.

By applying suitable gauge transformations to the αν , and by passing to a subsequence,

it follows from Uhlenbeck compactness that the αν converge strongly in L2q to a limiting

flat connection α[. So we have

‖dα[µν‖Lq ≤ ‖dανµν‖Lq + ‖ [αν − α[ ∧ µν ] ‖Lq

≤ ‖dανµν‖Lq + ‖αν − α[‖L2q‖µν‖L2q

≤ ‖dανµν‖Lq + C0‖αν − α[‖L2q‖µν‖W 1,q

−→ 0,

where in the last step we have used the embedding W 1,q ↪→ L2q for q > 1. Similarly

‖dα[ ∗ µν‖Lq −→ 0.

By the elliptic estimate for the flat connection α[, we have
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‖µν − projα[µν‖W 1,q ≤ C1
(
‖dα[µν‖Lq + ‖dα[ ∗ µν‖Lq

)
−→ 0. (3.29)

On the other hand, by Proposition 3.1.7, the projection operator projαν is converging

in the Lq operator norm to projα[ . In particular,

‖projα[(µν)‖W 1,q ≤ C2‖projα[(µν)‖Lq

= C2‖projα[(µν)− projαν (µν)‖Lq

(Proposition 3.1.7) ≤ C2‖α[ − αν‖Lq‖µν‖Lq

−→ 0,

where the first inequality holds because H1
α[

is finite-dimensional (and so all norms

are equivalent) and the convergence to zero holds since ‖µν‖Lq ≤ C3‖µν‖W 1,q = C3 is

bounded. Combining this with (3.29) gives

1 = ‖µν‖W 1,q ≤ ‖µν − projα[µν‖W 1,q + ‖projα[(µν)‖W 1,q −→ 0,

which is a contradiction, proving the lemma.

3.1.2 Analytic properties of NS

The next proposition will be used to obtain C0 estimates for convergence of instantons

to holomorphic curves. It provides a quantitative version of the statement that NS is

approximately the identity map on connections with small curvature.

Proposition 3.1.9. Let NSP be the map (3.1), and 3/2 ≤ q < ∞. Then there are

constants C > 0 and ε0 > 0 such that

‖NSP (α)− α‖W 1,q(Σ) ≤ C‖Fα‖L2q(Σ) (3.30)

for all α ∈ A1,q(P ) with ‖Fα‖Lq(Σ) < ε0.
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Proof. The basic idea is that NSP (α) = exp(iΞ(α))∗α may be expressed as a power

series, with lowest order term given by α. The goal is then to bound the higher order

terms using the curvature. To describe this precisely, we digress to discuss the power

series expansion for the exponential.

As discussed above, the space Lie(G(E)C)2,q can be viewed as the W 2,q-completion

of the vector space Γ(P ×G End(Cn)). Since q > 1, we are in the range in which

pointwise matrix multiplication is well-defined, and this becomes a Banach algebra.

Then for any ξ ∈ Lie(G(E)C)2,q, the power series

∞∑
k=0

ξk

k!
∈ Lie(G(E)C)2,q

converges, where ξk is k-fold matrix multiplication on the values of ξ.

Remark 3.1.10. Note that we may not have ξk ∈ Lie(G(P )C)2,q, even when ξ ∈

Lie(G(P )C)2,q (however, it is always the case that ξk ∈ Lie(G(E)C)2,q). In particular,

the infinitesimal action of ξk on A1,q(P ) need not lie in the tangent space to A1,q(P ),

though it will always lie in the tangent space to A1,q(E).

As with finite-dimensional Lie theory, this power series represents the exponential

map

exp : Lie(G(E)C)2,q −→ G2,q(E)C,

where we are using the inclusion

G2,q(E)C ⊂W 2,q(P ×G End(Cn)).

The power series defining exp continues to hold on the restriction

exp : Lie(G(P )C)2,q −→ G2,q(P )C.

Similarly, the usual power series definitions of sin and cos hold in this setting:

sin, cos : Lie(G(P )C)2,q −→W 2,q(P ×G End(Cn)),
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and we have the familiar relation

exp(iξ) = cos(ξ) + i sin(ξ).

The infinitesimal action of Lie(G(E)C)2,q on A1,q(E) continues to have the form (3.8).

In particular, for any real ξ ∈ Lie(G(E))2,q and α ∈ A1,q(P ), we have

exp(iξ)∗α− α = −{dα(cos(ξ)− 1) + ∗dα(sin(ξ))}

∈ TαA1,q(P ) ⊂W 1,q(T ∗Σ⊗ P ×G End(Cn)),

(3.31)

where the action of dα on each of these power series is defined term by term.

Now we prove the proposition. We will show that that there is some ε0 > 0 and

C > 0 such that, if α ∈ A1,q(P ) satisfies

‖Fα‖Lq(Σ) < ε0 and ‖Ξ(α)‖W 2,q < ε0,

then

‖NSP (α)− α‖W 1,q ≤ C‖Fα‖L2q .

This is exactly the statement of the proposition, except for the condition on Ξ(α).

However, the proof of Theorem 3.1.1 shows that Ξ(α) depends continuously on α ∈

A1,q(P ), and Ξ(α) = 0 whenever α is flat. Hence, the condition on Ξ(α) is superfluous.

Set Ξ = Ξ(α) and η = NSP (α) − α. Using the power series expansion of exp, we

have

η = exp(iΞ)∗α− α = − ∗ dα,ρΞ +
(Ξ(dα,ρΞ) + (dα,ρΞ)Ξ)

2
+ . . .

where the nth term in the sum on the right has the form

−∗
n

n!

n∑
k=0

Ξ . . .Ξ(dα,ρΞ)Ξ . . .Ξ

with k copies of Ξ appearing before dα,ρΞ, and n − k − 1 copies after. By assumption

2q > 2, and so the Sobolev multiplication theorem gives
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∥∥∥∥∥∗nn!

n∑
k=0

Ξ . . .Ξ(dα,ρΞ)Ξ . . .Ξ

∥∥∥∥∥
W 1,2q

≤ ‖dα,ρΞ‖W 1,2q

(
C2n

1

n!

n∑
k=0

‖Ξ‖n−1
W 1,2q

)

≤ ‖Ξ‖W 2,2q

(
C2n

1

(n− 1)!
‖Ξ‖n−1

W 1,2q

)
,

where C1 is the constant from the Sobolev multiplication theorem. This gives

‖η‖W 1,q ≤ C2‖η‖W 1,2q

≤ C2‖Ξ‖W 2,2q

∞∑
n=1

C2n
1

(n− 1)!
‖Ξ‖n−1

W 1,2q

≤ C2‖Ξ‖W 2,2q

∞∑
n=1

C2n
1

(n− 1)!

= C3‖Ξ‖W 2,2q

(3.32)

where the third inequality holds for ‖Ξ‖W 1,2q ≤ 1. It suffices to estimate ‖Ξ‖W 2,2q in

terms of η and Fα.

By (3.31) and the definition of NSP we have

dα,ρη = dα,ρ (exp(iΞ)∗α− α)

= −dα,ρ (∗dα,ρ(sin(Ξ)) + dα,ρ(cos(Ξ)− 1))

= −dα,ρ ∗ dα,ρ(sin(Ξ)) + Fα,ρ(1− cos(Ξ))

(3.33)

Now use the elliptic estimate from Lemma 3.1.4 (ii):

‖ sin(Ξ)‖W 2,2q ≤ C4‖dα,ρ ∗ dα,ρ(sin(Ξ))‖L2q

≤ C5 {‖dα,ρη‖L2q + ‖Fα,ρ(1− cos(Ξ))‖L2q}

≤ C6
{
‖η‖2L4q + ‖Fα,ρ‖L2q (1 + ‖1− cos(Ξ)‖L∞)

}
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where the second inequality is (3.33), and in the last inequality we used

‖dα,ρη‖L2q ≤ C
(
‖Fα,ρ‖L2p + ‖η‖2L4q

)
coming from

0 = FNSP (α),ρ = Fα,ρ + dα,ρη +
1

2
[η ∧ η] .

Note also that the norm of Fα,ρ is controlled by that of Fα, so we can drop the subscript

ρ by picking up another constant:

‖ sin(Ξ)‖W 2,2q ≤ C7

{
‖η‖2L4q + ‖Fα‖L2q (1 + ‖1− cos(Ξ)‖L∞)

}
(3.34)

For ‖Ξ‖W 2,q sufficiently small we have

‖Ξ‖W 2,q ≤ 2‖ sin(Ξ)‖W 2,q , ‖1− cos(Ξ)‖L∞ ≤ 1.

So (3.34) gives

‖Ξ‖W 2,2q ≤ C8

(
‖η‖2L4q + ‖Fα‖L2q

)
.

Returning to (3.32), we conclude

‖η‖W 1,q ≤ C9
(
‖η‖2L4q + ‖Fα‖L2q

)

≤ C10
(
‖η‖2W 1,q + ‖Fα‖L2q

)
where we have used the embedding W 1,q ↪→ L4q, which holds provided q ≥ 3/2. This

gives

‖η‖W 1,q (1− C10‖η‖W 1,q) ≤ C10‖Fα‖L2q ,

which completes the proof since we can ensure that ‖η‖W 1,q ≤ 1/2C10 by requiring

that ‖Ξ‖W 2,q is sufficiently small (when Ξ = 0, it follows that η = 0, and everything is

continuous in these norms).
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Let Π : A1,q
flat(P ) → M(P ) denote the quotient map. Throughout the remainder of

this section we will be interested in the derivative of the composition Π ◦NSP . We will

therefore assume that Σ is closed, connected and orientable, G = PSU(r) and P → Σ

is a bundle for which t2(P ) ∈ Zr is a generator. This ensures that M(P ) and Π are

both smooth.

Recall that any choice of orientation and metric on Σ determines complex structures

on the tangent bundles TA1,q(P ) and TM(P ), which is induced by the Hodge star on

1-forms. Denote by

Dk
α (Π ◦NSP ) : TαA1,q(P )⊗ . . .⊗ TαA1,q(P ) −→ TΠ◦NSP (α)M(P )

the kth derivative of Π ◦ NSP at α, defined with respect to the W 1,q-topology on the

domain. The following lemma will be used to show that holomorphic curves in A1,q(P )

descend to holomorphic curves in M(P ).

Lemma 3.1.11. Suppose G = PSU(r), Σ is a closed connected oriented Riemannian

surface and P → Σ is a principal G-bundle with t2(P ) ∈ Zr a generator. Let 1 < q <∞

and suppose α is in the domain of NSP . Then the linearization Dα(Π◦NSP ) is complex-

linear:

∗Dα(Π ◦NSP ) = Dα(Π ◦NSP ) ∗ .

Proof. The complex gauge group G(P )C acts on C(P ), and hence A(P ), in a way that

preserves the complex structure, and this holds true in the Sobolev completions of these

spaces. Indeed, let u ∈ G2,q(P )C, α ∈ A1,q(P ) and η ∈ W 1,q (T ∗Σ⊗ P (g)). Then by

(3.7) we have

d
dτ

∣∣∣
τ=0

u ◦ ∂α+τ∗η ◦ u−1 = d
dτ

∣∣∣
τ=0

u ◦ ∂α ◦ u−1 + τu ◦
(
∗η0,1

)
◦ u−1

= ∗
(
u ◦ η0,1 ◦ u−1

)

= ∗ d
dτ

∣∣∣
τ=0

u ◦ ∂α+τη ◦ u−1,
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which shows the infinitesimal action of the complex gauge group is complex-linear.

Let G2,q
0 (P )C ⊆ G2,q(P )C denote the identity component. This can be described as

G2,q
0 (P )C =

{
u exp(iξ)

∣∣∣u ∈ G2,q
0 (P ), ξ ∈W 2,q(P (g))

}
.

It follows from (3.8) and Lemma 3.1.4 that GC0 (P )2,q acts freely on the space of connec-

tions. Moreover, by Remark 3.1.3, the map NSP is equivariant under a neighborhood of

G2,q
0 (P ) in G2,q

0 (P )C. These two facts imply that NSP has a unique G2,q
0 (P )C-equivariant

extension to the flow-out

Ass(P ) :=
(
G2,q

0 (P )C
)∗ {

α ∈ A1,q(P )| ‖Fα‖Lq < ε
}

of the domain of NSP . Furthermore, the group G2,q
0 (P )C restricts to a free action on

Ass(P ).

Consider the projection

ΠC : Ass(P ) −→ Ass(P )/G2,q
0 (P )C.

Using NSP , we have an identification

Ass(P )/G2,q
0 (P )C ∼= M(P ),

and hence a commutative diagram

Ass(P )
NSP−−−→ A1,q

flat(P )

ΠC
y yΠ

Ass(P )/G2,q
0 (P )C

∼=−−−→ A1,q
flat(P )/G2,q

0 (P ) = M(P )

As we saw above, the infinitesimal action of G2,q
0 (P ) is complex linear. This implies

that

ΠC : Ass(P ) −→M(P )

is complex-linear, but ΠC = Π ◦NSP , so this finishes the proof.



103

Lemma 3.1.12. Let P → Σ be as in the statement of Lemma 3.1.11 and 1 < q <∞.

Assume α is in the domain of NSP . Then the space Im (dα)⊕ Im (d∗α) lies in the kernel

of Dk
α(Π ◦NSP ) in the sense that

Dk
α(Π ◦NSP ) (dαξ + ∗dαζ, · , . . . , · ) = 0

for all 0-forms ξ, ζ ∈W 2,q(P (g)). Moreover, there is an estimate

|Dk
α(Π ◦NSP ) (µ1, . . . , µk) |M(P ) ≤ C‖µ1‖Lq(Σ) . . . ‖µk‖Lq(Σ) (3.35)

for all tuples µ1, . . . , µk ∈W 1,q(T ∗Σ⊗ P (g)) of 1-forms. Here | · |M(P ) is any norm on

TM(P ).

Proof. We prove the lemma for k = 1. The cases for larger k are similar. By the proof

of Lemma 3.1.11, the map Π◦NSP is invariant under gauge transformations of the form

exp(ξ + iζ) where ξ, ζ ∈W 2,q(P (g)) are real. In particular,

0 =
d

dτ

∣∣∣∣
τ=0

Π ◦NSP (exp(τ(ξ + iζ))∗α) = −Dα(Π ◦NSP )(dαξ + ∗dαζ).

This proves the first assertion.

To prove the estimate (3.35), we note that by Lemma 3.1.5 there is a decomposition

TαA1,q(P ) = H1
α ⊕ (Im dα ⊕ Im d∗α) ,

whenever α has sufficiently small curvature. Moreover, the first summand is L2-

orthogonal. Denote by

projα : TαA1,q(P ) −→ H1
α

the projection to the dα-harmonic space, and note that this is continuous with respect

to the Lq-norm on the domain and codomain (projections are always continuous). We

claim that the operator

Dα (Π ◦NSP ) : TαA1,q −→ HNSP (α)



104

can be written as a composition

TαA1,q −→ Hα
Mα−→ HNSP (α)

for some bounded linear map Mα, where the first map is projα. Indeed, by the first

part of the lemma it follows that

Dα (Π ◦NSP ) (µ) = Dα (Π ◦NSP ) (projαµ)

since the difference µ− projαµ lies in Im dα ⊕ Im ∗ dα. So the claim follows by taking

Mα := Dα (Π ◦NSP ) |Hα

to be the restriction. Since Mα is a linear map between finite-dimensional spaces, it is

bounded with respect to any norm. We take the Lq-norm on these harmonic spaces.

Then Dα (Π ◦NSP ) is the composition of two functions which are continuous with

respect to the Lq norm:

|Dα (Π ◦NSP )µ|M(P ) = C‖Dα (Π ◦NSP )µ‖Lq

= C‖Mα ◦ projαµ‖Lq

≤ Cα‖µ‖Lq .

That this constant can be taken independent of α, for Fα sufficiently small, follows using

an Uhlenbeck compactness argument similar to the one carried out at the beginning of

the proof of Theorem 3.1.1. Here one needs to use the fact that Dα(Π ◦NSP ) = projα

when α is a flat connection, and so this has norm 1 (which is clearly independent of α).

Similarly, one can show that the operator norm

‖Dα (Π ◦NSP ) ‖op,Lq

(defined using the Lq-topology on the domain)
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Corollary 3.1.13. Suppose 1 < q <∞, and let P → Σ be as in the statement of Lemma

3.1.11. Then there is a constant ε0 > 0 and a bounded function f : A0,q(P ) → R≥0

such that for each α ∈ A1,q(P ) with ‖Fα‖L2q(Σ) < ε0, the following estimate holds

‖projαµ−Dα (Π ◦NSP )µ‖Lq(Σ) ≤ f (α) ‖projαµ‖Lq(Σ) (3.36)

for all µ ∈ Lq(T ∗Σ⊗P (g)), where projα is the map (3.22). Furthermore, f can chosen

so that f(α)→ 0 as ‖Fα‖Lq(Σ) → 0.

Proof. Consider the operator

projα −Dα (Π ◦NSP ) .

It is clear from Lemma 3.1.12 that its kernel contains Im(dα) ⊕ Im(∗dα), and so we

have1

‖projαµ−Dα (Π ◦NSP )µ‖Lq ≤ C1‖projαµ−Dα (Π ◦NSP )µ‖L2q

= C1‖ (projα −Dα(Π ◦NSP )) (projαµ) ‖L2q

≤ C1 ‖(projα −Dα (Π ◦NSP ))‖op,L2q ‖projαµ‖L2q

On the finite-dimensional space Hα, the Lq- and L2q-norms are equivalent:

‖projαµ‖L2q ≤ C2‖projαµ‖Lq .

The constant C2 is independent of projαµ ∈ Hα, however it may depend on α. Propo-

sition 3.1.7 tells us that C2 is independent of α provided ‖Fα‖L2q is sufficiently small.

So we have

‖projαµ−Dα (Π ◦NSP )µ‖Lq ≤ f(α)‖projαµ‖Lq ,

1In the first line, we replace the Lq norms by L2q norms to ensure that we are in the range to use
Theorem 3.1.1 (i.e., since p := 2q > 2). If we know that q > 2 then this is not necessary, and the proof
simplifies a little. However, in our applications below we will need the case q = 2.
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where we have set

f(α) := C1C2 ‖(projα −Dα (Π ◦NSP ))‖op,L2q .

By Theorem 3.1.1 and Proposition 3.1.7, the function f(α) depends continuously on

α in the L2q-topology. If α = α[ is flat, then Dα (Π ◦NSP ) equals the projection

projα, and so f(α[) = 0. In particular, f(α) → 0 as α approaches A1,q
flat(P ) in the

L2q-topology. That f(α) → 0 as ‖Fα‖Lq → 0 follows from a contradiction argument

using weak Uhlenbeck compactness (Theorem 2.2.9), just as we did at the beginning of

the proof of Theorem 3.1.1.

3.2 Heat flow on cobordisms

Suppose Q is principal G-bundle over a Riemannian manifold Y of dimension 3. In his

thesis [34], R̊ade studied the Yang-Mills heat flow; that is, the solution τ 7→ aτ ∈

A(Q) to the gradient flow of the Yang-Mills functional

d

dτ
aτ = −d∗aτFaτ , a0 = a, (3.37)

for some fixed initial condition a ∈ A(Q). Specifically, R̊ade proved the following:

Theorem 3.2.1. Suppose G is compact and Y is a closed orientable manifold of

dimension 3. Let a ∈ A1,2(Q). Then the equation (3.37) has a unique solution

{τ 7→ aτ} ∈ C0
loc

(
[0,∞) ,A1,2(Q)

)
, with the further property that

Faτ ∈ C0
loc

(
[0,∞) , L2

)
∩ L2

loc

(
[0,∞) ,W 1,2

)
.

Furthermore, the limit lim
τ→∞

aτ exists, is a critical point of the Yang-Mills functional,

and varies continuously with the initial data a in the W 1,2-topology.

Differentiating YMQ(aτ ) in τ and using (3.37) shows that YMQ(aτ ) decreases

in τ . Moreover, it follows from Uhlenbeck’s Compactness Theorem 2.2.10 together

with, say, [34, Proposition 7.2] that the critical values of the Yang-Mills functional are
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discrete. Combining these two facts, it follows that there is some ε̃Q > 0 such that if

YMQ(a) < ε̃Q, then the associated limiting connection

lim
τ
aτ ∈ A1,2

flat(Q)

is flat, where aτ satisfies (3.37). This therefore defines a continuous gauge equivariant

deformation retract

HeatQ :
{
a ∈ A1,2(Q) | YMQ(a) < ε̃Q

}
−→ A1,2

flat(Q) (3.38)

whenever Y is a closed 3-manifold.

Remark 3.2.2. R̊ade’s theorem continues to hold, exactly as stated, in dimension 2

as well. Given a bundle P → Σ over a closed connected oriented surface, we therefore

have that NSP and HeatP are both maps of the form

{
α ∈ A1,2(P ) | YMP (α) < εP

}
−→ A1,2

flat(P ),

for a suitably small εP > 0. It turns out these are the same map, up to a gauge

transformation. That is,

Π ◦NSP = Π ◦HeatP , (3.39)

where Π : A1,2
flat(P ) → A1,2

flat(P )/G2,2
0 (P ) is the quotient map. Though we will not use

this fact in this thesis, we sketch a proof at the end of this section for completeness.

In the remainder of this section we prove a version of R̊ade’s Theorem 3.2.1, but for

bundles Q over 3-manifolds with boundary. The most natural boundary condition for

our application is of Neumann type. This will allow us to use a reflection principle and

thereby appeal directly to R̊ade’s result for closed 3-manifolds.

R̊ade’s result holds with the W 1,2-topology. However, on 3-manifolds W 1,2-functions

(forms, connections, etc.) are not all continuous, which makes the issue of boundary

conditions rather tricky. One way to get around this is to observe that, in dimension 3,

restricting W 1,2-functions to codimension-1 subspaces is in fact well-defined. We take
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an equivalent approach by considering the space A1,2(Q, ∂Q), which we define to be

the W 1,2-closure of the set of smooth a ∈ A(Q) which satisfy

ι∂na|U = 0 (3.40)

on some neighborhood U of ∂Q (U may depend on a). Here we have fixed an extension

∂n of the outward pointing unit normal to ∂Q, and we may assume that the set U is

always contained in the region in which ∂n is non-zero. This can be described more

explicitly as follows: Use the normalized gradient flow of ∂n to write U = [0, ε) × ∂Y .

Let t denote the coordinate on [0, ε). Then in these coordinates we can write a|{t}×∂Y =

α(t) + ψ(t) dt. The condition (3.40) is equivalent to requiring ψ(t) = 0.

Set

A1,2
flat(Q, ∂Q) := A1,2(Q, ∂Q) ∩ A1,2

flat(Q).

Both of the spaces A1,2(Q, ∂Q) and A1,2
flat(Q, ∂Q) admit the action of the subgroup

G(Q, ∂Q) ⊂ G(Q) consisting of gauge transformations that restrict to the identity in

a neighborhood of ∂Q. (We are purposefully only working with the smooth gauge

transformations here.)

Theorem 3.2.3. Let G be a compact connected Lie group, and Q → Y be a principal

G-bundle over a compact connected oriented Riemannian 3-dimensional manifold Y

with boundary.

1. There is some εQ > 0 and a continuous strong deformation retract

HeatQ :
{
a ∈ A1,2(Q, ∂Q) | YMQ(a) < εQ

}
−→ A1,2

flat(Q, ∂Q).

Furthermore, HeatQ intertwines the action of G(Q, ∂Q).

2. Suppose Σ ⊂ Y is an embedded surface which is closed and oriented. Suppose

further that either Σ ⊂ int Y , or Σ ⊂ ∂Y . Then for every ε > 0, there is some δ > 0

such that if a ∈ A1,2(Q, ∂Q) satisfies ‖Fa‖L2(Y ) < δ, then
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‖(HeatQ(a)− a) |Σ‖Lq(Σ) < ε

for any 1 ≤ q ≤ 4.

Remark 3.2.4. Recently, Charalambous [6] has proven similar results for manifolds

with boundary.

Proof. Consider the double of Y

Y (2) := Y ∪∂Y Y,

which is a closed 3-manifold, and denote by ιY : Y ↪→ Y (2) the inclusion to the second

factor. We will identify Y with its image under ιY . There is a natural involution

σ : Y (2) → Y (2) defined by switching the factors in the obvious way. Then Y (2) has a

natural smooth structure making ιY smooth and σ a diffeomorphism (this is just the

smooth structure obtained by choosing the same collar on each side of ∂Y ). Clearly

the map σ is orientation reversing, satisfies σ2 = Id and has fixed point set equal to

∂Y . Similarly, we can form Q(2) := Q ∪∂Q Q and an involution σ̃ : Q(2) → Q(2). Then

Q(2) is naturally a principal G-bundle over Y (2) and σ̃ is a bundle map covering σ.

Furthermore, σ̃ commutes with the G-action on Q(2).

Though σ̃ is not a gauge transformation (it does not cover the identity), it behaves

as one in many ways. For example, since it σ̃ a bundle map, the space of connections

A(Q(2)) is invariant under pullback by σ̃. The action on covariant derivatives takes the

form

dσ̃∗a = σ∗ ◦ da ◦ σ∗, (3.41)

where σ∗ : Ω(Y (2), Q(2)(g)) → Ω(Y (2), Q(2)(g)) is pullback by σ, and this symbol ◦

denotes composition of operators. The induced action on the tangent space TaA(Q(2)) =

Ω1(Y (2), Q(2)(g)) is just given by pullback by σ. Likewise, the curvature satisfies

Fσ̃∗a = σ∗Fa. (3.42)
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In particular, the flow equation (3.37) on the double Y (2) is invariant under the action

of σ̃. We set εQ := ε̃Q(2)/2, where ε̃Q(2) > 0 is as in (3.38).

Now suppose a ∈ A1,2(Q, ∂Q) has YMQ(a) < εQ. Then a has a unique extension

a(2) to all of Q(2), satisfying σ̃∗a(2) = a(2). We claim that a(2) ∈ A1,2(Q(2)). To see this,

first suppose that a is smooth. Then the boundary condition on a implies that a(2)

is continuous on all of Q(2) and smooth on the complement of ∂Q. In particular, a(2)

is W 1,2. (Note that in general a(2) will not be smooth, even if a is. For example, the

normal derivatives on each side of the boundary do not agree: lim
y→∂Y

∂na = − lim
y→Y

∂nσ̃
∗a,

unless they are both zero, and this latter condition is not imposed by our boundary

conditions.) More generally, every a ∈ A1,2(Q, ∂Q) is the W 1,2 limit of smooth functions

aj whose normal component vanishes in a neighborhood of the boundary. But then by

the linearity of the integral it is immediate that the a
(2)
j approach a(2) in W 1,2, which

proves the claim.

By assumption, we have

YMQ(2)(a(2)) = 2YMQ(a) < 2εQ = ε̃Q(2) ,

so by the discussion at the beginning of this section, there is a unique solution a
(2)
τ to the

flow equation (3.37) on the closed 2-manifold Y (2), with initial condition a
(2)
0 = a(2).

Furthermore, the limit HeatQ(2)(a(2)) := limτ→∞ a
(2)
τ exists and is flat. Since (3.37)

is σ̃-invariant, the uniqueness assertion guarantees that σ̃∗a
(2)
τ = a

(2)
τ for all τ . In

particular,

σ̃∗HeatQ(2)(a(2)) = HeatQ(2)(a(2)). (3.43)

Define

HeatQ(a) := HeatQ(2)(a(2))
∣∣∣
Q
.

Then (3.43) shows that ι∂n HeatQ(a)|∂Y = 0, so HeatQ does map into A1,2
flat(Q, ∂Q).

We already know that HeatQ(2)(a(2)) is G(Q(2))-equivariant. Each element g ∈

G(Q, ∂Q) has a unique extension to a σ̃-invariant gauge transformation g(2) ∈ G(Q(2)).
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This shows

HeatQ(g∗a) = HeatQ(2)(g(2),∗a(2))
∣∣∣
Q

= g(2),∗HeatQ(2)(a(2))
∣∣∣
Q

= g∗HeatQ(a)

which finishes the proof of 1.

To prove 2, we will assume Σ ⊂ int Y . This is a local problem bounded away from

∂Y , so the boundary will not effect our analysis. The remaining case Σ ⊂ ∂Y follows

by replacing Y with its double, for then we have Σ ⊂ int Y (2) and the analysis carries

over directly.

For sake of contradiction, suppose there is some sequence aν ∈ A1,2(Q) with

‖Faν‖L2 −→ 0,

but

c0 ≤ ‖(HeatQ(aν)− aν) |Σ‖Lq(Σ) (3.44)

for some fixed c0 > 0. By Uhlenbeck’s Weak Compactness Theorem 2.2.9, there is a

sequence of gauge transformations uν ∈ G2,2 such that u∗νaν converges weakly in W 1,2

(hence strongly in L4) to a limiting connection a∞ ∈ A1,2(Q), after possibly passing

to a subsequence. Then a∞ is necessarily flat. Be redefining uν , if necessary, we may

assume that each u∗νaν is in Coulomb gauge with respect to a∞, and still retain the fact

that u∗νaν converges to a∞ strongly in L4. Then

‖u∗νaν − a∞‖2W 1,2 = ‖u∗νaν − a∞‖2L2 + ‖da∞(u∗νaν − a∞)‖2L2

≤ C1
(
‖u∗νaν − a∞‖2L2 + ‖Faν‖2L2 + ‖u∗νaν − a∞‖4L4

)
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for some constant C1. Observe that the right-hand side is going to zero, so aν is

converging in W 1,2 to the space of flat connections:

‖aν − (u−1
ν )∗a∞‖W 1,2 −→ 0. (3.45)

On the other hand, by the trace theorem [51, Theorem B.10], we have

c0 ≤ ‖HeatQ(aν)− aν |Σ‖Lq(Σ) ≤ C2 ‖HeatQ(aν)− aν‖W 1,2(Y )
(3.46)

for some C2 depending only on Y and 1 ≤ q ≤ 4 (the inequality on the left is (3.44)).

Since HeatQ is continuous in the W 1,2-topology, and restricts to the identity on the

space of flat connections, there is some ε′ > 0 such that if aν is within ε′ of the space

of flat connections, then

C2 ‖HeatQ(aν)− aν‖W 1,2(Y ) ≤
c0

2
.

By (3.45) this condition is satisfied, and so we have a contradiction to (3.46).

The next lemma states that we can always put a connection a ∈ A(Q) in a gauge so

that it is an element of A(Q, ∂Q). We state a version with an additional R parameter,

since this is the context in which the lemma will be used.

Lemma 3.2.5. Let Y be an oriented compact 3-manifold, possibly with boundary, and

Q → Y a principal G-bundle. Suppose Σ is a closed orientable surface with an em-

bedding ι : Σ → Y . Furthermore, we suppose that ι(Σ) lies entirely in the interior of

Y (resp. is a boundary component of Y ). Fix a bicollar (resp. collar) neighborhood

I × Σ ↪→ U ⊂ Y of Σ, and let t denote the I-coordinate induced by this embedding.

Then for every A ∈ A1,2(R×Q), there is a gauge transformation u ∈ G2,2
0 (R×Q) such

that, in R × U , the dt component of u∗A vanishes. Furthermore, if A is smooth, then

u∗A is smooth as well.

Proof. Fix A ∈ A1,2(R × Q). We may suppose ι(Σ) ⊂ int Y , by replacing Y with its

double. Fix a bump function b with support in a small neighborhood of U and equal
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to 1 on U . Just as in the temporal gauge construction (section 2.2.2), there is a gauge

transformation u ∈ G2,2
0 (R×Q) such that ιbV u

∗A = 0.

In particular, we immediately have the following corollary.

Corollary 3.2.6. Let Q→ Y be as in Remark 2.2.7. Then for every A ∈ A1,2(R×Q)

there is a gauge transformation u ∈ G2,2
0 (R×Q) with

u∗A|{s}×Yi(i+1)
∈ A1,2(Qi(i+1), ∂Qi(i+1)), ∀i.

Furthermore, if A is smooth then u∗A is smooth as well.

Proof of Remark 3.2.2. We suppress the Sobolev exponents, for simplicity, indicating

when and how they become relevant. By definition, NSP (α) lies in the complex gauge

orbit of α. The key observation to the proof of (3.39) is that the Yang-Mills heat

flow, and hence HeatP (α), always lies in the complexified gauge orbit of the initial

condition α. Indeed, in [7] Donaldson shows that for any α ∈ A(P ) there is some path

µ(τ) ∈ Ω0(Σ, P (g)) for which the equation

d

dτ
α̃τ = −d∗

α̃τ
Fα̃τ + dα̃τµ(τ), α̃0 = α (3.47)

has a unique solution τ 7→ α̃τ for all 0 ≤ τ <∞. The solution has the further property

that it takes the form

α̃τ = u∗τα

for some path of complex gauge transformations uτ ∈ G(P )C starting at the identity.

It is then immediate that ατ := exp (
∫ τ

0 µ)∗ α̃τ solves (3.37), and so

HeatP (α) = lim
τ→∞

exp

(∫ τ

0
µ

)∗
u∗τα.

Clearly exp (
∫ τ

0 µ)∗ u∗τα lies in the complex gauge orbit of α for all τ , and so HeatP (α)

must as well. Now NSP (α) lies in the complex gauge orbit by definition, so there
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is some complex gauge transformation ũ ∈ G(P )C (possibly depending on α) with

ũ∗NS(α) = Heat(α).

We will be done if we can show that ũ is a real gauge transformation which lies in

the identity component. The former statement is equivalent to showing h̃ := ũ†ũ = Id.

By (3.10) we must have that h̃ is a solution to

F̃(h) := i∂Heat(α)

(
h−1∂Heat(α)h

)
= 0.

Clearly the identity, Id, is a solution as well. It suffices to show that this equation has

a unique solution, at least for α close to the space of flat connections. The map F̃ is

defined on (the W 2,2-completion of) G(P )C, we can take its codomain to be (the L2

completion of) Ω0
(
Σ, P (g)C

)
. Similarly to our analysis of F in the proof of Theorem

3.1.1, the derivative of F̃ at the identity is

W 2,2
(
P (g)C

)
−→ L2

(
P (g)C

)

ξ 7−→ 1
2∆Heat(α),ρξ,

which is invertible. So by the inverse function theorem F̃ is a diffeomorphism in a

neighborhood of the identity, which is the uniqueness we are looking for, provided we

can arrange so that h̃ lies in a suitably small neighborhood of the identity. However,

this is immediate since the gauge transformation h̃ depends continuously on α in the

W 1,2-topology, and h̃ = Id if α is flat.

To finish the proof of (3.39), we need to show that ũ ∈ G(P ) is actually in the identity

component G0(P ). However, this is also immediate from the continuous dependence of ũ

on α. Indeed, path from α to Aflat(P ) that never leaves a suitably small neighborhood of

Aflat(P ) provides (via this construction applied to the values of this path of connections)

a path of real gauge transformations from ũ to the identity.
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Chapter 4

Neck-stretching limit of instantons

In this section we carry out the proof of the Main Theorem, which we split up into three

parts. The first part establishes some uniform elliptic estimates which are at the heart

of proving the type of convergence we seek. The second is Theorem 4.2.1, which says

that the conclusions of the Main Theorem hold if we assume several hypotheses on the

sequence of connections. In the third part (section 4.3) we prove that these hypotheses

must hold due to energy considerations.

4.1 Uniform elliptic regularity

We establish an elliptic estimate that will be used in the proof of Theorem 4.2.1, below.

To state it, we introduce the ε-dependent norm

‖η‖2L2(U),ε :=

∫
U
〈η ∧ ∗εη〉,

for subsets U ⊆ R× Y , where ∗ε is the Hodge star on R× Y determined by the metric

ds2 + gε from section 2.1.

Proposition 4.1.1. Let Q → Y be the bundle from Remark 2.2.7. Then for any

compact K ⊂ R × Y and R > 0 with K ⊂ (−R,R) × Y , there is some constant

C = C(K,R) with

‖∇sFA‖L2(K),ε + ‖∇2
sFA‖L2(K),ε ≤ C‖FA‖L2((−R,R)×Y ),ε

for all ε > 0 and all ε-ASD connections A. Here ∇s = ∂s + [p, ·], where p is the

ds-component of A.
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Remark 4.1.2. Write Y = Y•∪ I×Σ•, and let t denote the I-variable on I×Σ•. The

proof we give here proves the proposition with ∇t replacing ∇s, but only for compact

sets lying in the open set R × (0, 1) × Σ•. It fails to provide an ε-independent bound

for compact sets K which intersect R × Y•, since ∇t is not canonically defined on Y•,

and any open set containing K must overlap into the interior of R × Y•. However, if

K ⊂ R× [0, 1]× Σ• intersects the seams, then the proof we give here shows

ε1/2‖∇tFA‖L2(K),ε + ε1/2‖∇s∇tFA‖L2(K),ε + ε‖∇2
tFA‖L2(K),ε ≤ C‖FA‖L2((−R,R)×Y ),ε.

To see this, multiply ∇t by a bump function h supported in a small neighborhood of K.

Then the only modification to the proof is that the estimate (4.3) needs to be replaced

by

ε|∂th|+ ε|∂s∂th|+ ε2|∂2
t h| ≤ C0h.

We will use Proposition 4.1.1 in the following capacity.

Corollary 4.1.3. Let Q → Y be the bundle from Remark 2.2.7, and write Y = Y• ∪

I ×Σ•, as above. Then for any compact K ⊂ R× I ×Σ•, there is some C = C(K) > 0

such that

‖∇sβs‖2L2(K) + ‖∇2
sβs‖2L2(K) ≤ C

(
CSa0(a−)− CSa0(a+)

)
(4.1)

for any ε > 0 and any ε-ASD connection A with limits

lim
s→±∞

A|{s}×Y = a± ∈ Aflat(Q).

Here a0 is any fixed reference connection, and −βs is the ds-component of the curvature

FA over R× I × Σ•:

FA = Fα − βs ∧ ds− βt ∧ dt+ γ ds ∧ dt.



117

Proof of Corollary 4.1.3. Over I×Σ• ⊂ Y , the metric gε has the form dt2 +ε2gΣ, where

gΣ is a fixed metric on Σ•. Let µ be a 1-form on Σ•. Then by the scaling relation (2.8)

it follows that the norm

‖µ ∧ ds‖L2(K),ε = ‖µ ∧ ds‖L2(K) = ‖µ‖L2(K)

is independent of ε.

Let A be as in the statement of the corollary. Then ∇sβs ∧ ds is a component of

∇sFA, so we have

‖∇sβs‖2L2(K) = ‖∇sβs ∧ ds‖2L2(K),ε

≤ ‖∇sFA‖2L2(K),ε

(Proposition 4.1.1) ≤ CYM(A)

(Equation (2.30)) = C (CSa0(a−)− CSa0(a+)) .

The same computation holds with ∇s replaced by ∇2
s.

Proof of Proposition 4.1.1. We first prove

‖∇sFA‖L2(K),ε ≤ C‖FA‖L2(Ω),ε. (4.2)

Fix a smooth bump function h : R → R≥0, which we view as being a Y -independent

function defined on R × Y . Assume h|K = 1 and that h has compact support in

(−R,R)× Y . There is a constant C0, depending only on h (and consequently only on

R and K), with

|∂sh|+ |∂2
sh| ≤ C0h. (4.3)

Set Ω := (−R,R)× Y . Then we have
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‖∇sFA‖2L2(K),ε ≤ ‖h∇sFA‖2L2(Ω),ε

=

∫
Ω
h2〈∇sFA ∧ ∗ε∇sFA〉

= −
∫

Ω
h2〈∇sFA ∧∇sFA〉,

where we have used the ε-ASD condition and the commutativity relation

∇s∗ε = ∗ε∇s.

Write A = a(s) + p(s) ds. Then we have

FA = Fa(s) − bs ∧ ds,

where

bs := ∂sa− dap.

Then

∇sFA = ∂sFA + [p, FA]

= dA∂sA− dA(dAp)

= dA (∂sA− dAp) .

where dA is the covariant derivative on the 4-manifold R× Y . We also have

∂sA− dAp = ∂sa− dap+ (∂sp−∇sp) ds = bs,

since the ds terms cancel, and so we can write

∇sFA = dAbs, (4.4)
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where we are viewing bs as a 1-form on the 4-manifold R× Y . Using (4.4) and Stokes’

theorem, we obtain

‖∇sFA‖2L2(K),ε ≤ ‖h∇sFA‖2L2(Ω),ε

= −
∫

Ω
h2〈dAbs ∧ dAbs〉

=

∫
Ω

2h ∂sh ds ∧ 〈bs ∧ dAbs〉 −
∫

Ω
h2〈bs ∧ [FA ∧ bs]〉

=

∫
Ω

2h ∂sh ds ∧ 〈bs ∧ dAbs〉 −
∫

Ω
h2〈bs ∧ [bs ∧ bs]〉 ∧ ds

where, in the last step, we used FA = Fa − bs ∧ ds and the fact that Y does not admit

non-zero 4-forms (it’s a 3-manifold!). Next, use the inequality

2ab ≤ 2a2 +
1

2
b2 (4.5)

with (4.3) and the identity (4.4) on the first term on the right to get

{
‖∇sFA‖2L2(K),ε ≤

}
‖h∇sFA‖2L2(Ω),ε ≤ 2C0‖hbs‖2L2(Ω),ε + 1

2‖h∇sFA‖
2
L2(Ω),ε

−
∫

Ω
h2〈bs ∧ [bs ∧ bs]〉 ∧ ds

Subtract the term 1
2‖h∇sFA‖

2
L2(Ω),ε from both sides to get

1
2‖∇sFA‖

2
L2(K),ε ≤

1
2‖h∇sFA‖

2
L2(Ω),ε ≤ 2C0‖hbs‖2L2(Ω),ε −

∫
Ω
h2〈bs ∧ [bs ∧ bs]〉 ∧ ds

(4.6)

In particular, we record the following:

0 ≤ 2C0‖hbs‖2L2(Ω),ε −
∫

Ω
h2〈bs ∧ [bs ∧ bs]〉 ∧ ds. (4.7)

We want to estimate the right-hand side of (4.6) in terms of ‖FA‖L2(Ω),ε = 2‖bs‖L2(Ω),ε.

Set
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g(s) := 2C0‖hbs‖2L2(Y ),ε −
∫
Y
h2〈bs ∧ [bs ∧ bs]〉

(so if we integrate over (−R,R) then we recover the right-hand side of (4.7), since

Ω = (−R,R)× Y ). Then (4.7), and the fact that h vanishes outside of (−R,R), gives

∫ R

−R
g(s) ds ≥ 0, and g(s) = 0 for s /∈ [−R,R] . (4.8)

Next, set

e(s) :=
1

2
‖hbs‖2L2(Y ),ε

(again, only integrating over Y ).

Claim: There are constants D0, D1 > 0, depending only on K,R, with

e′′(s) +D0e(s) ≥ D1g(s)

The bound (4.2) follows immediately from the claim and Lemma 4.1.4 below (the

latter uses (4.8)):

‖∇sFA‖2L2(K),ε ≤ 2g(s)

≤ C

∫
[−R−1,R+1]×Y

e(s)

(h = 0 outside [−R,R]) = C

∫
[−R,R]×Y

e(s)

≤ 1
2C‖bs‖

2
L2(Ω),ε

= C‖FA‖2L2(Ω),ε

where the first inequality is (4.6), the second is the assertion of Lemma 4.1.4. The last

two lines are just definitions.

To prove the claim, we have
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e′′(s) = ‖∇s(hbs)‖2L2(Y ),ε +

∫
Y
〈∇s∇s(hbs) ∧ ∗εhbs〉

Next, we have

∇2
s(hbs) =

(
∂2
sh
)
bs + 2 (∂sh)∇sbs + h d∗εa dabs − h ∗ε [bs ∧ bs] ,

where d∗εa = ∗εda∗ε on 1- and 2-forms on Y . Then

e′′(s) = ‖∇s(hbs)‖2L2(Y ),ε +

∫
Y
〈
(
∂2
sh
)
bs ∧ ∗εh bs〉

+2

∫
Y
〈(∂sh)∇sbs ∧ ∗εh bs〉+

∫
Y
h2〈d∗εa dabs ∧ ∗εbs〉

−
∫
Y
h2〈∗ε [bs ∧ bs] ∧ ∗εbs〉

(4.9)

The first term on the right-hand side of (4.9) is fine, but we need to estimate the

remaining terms. We begin with the second term by applying (4.3):

∫
Y
〈
(
∂2
sh
)
bs ∧ ∗εh bs〉 ≥ −C1e.

For the third term in (4.9) do the same, except also use (4.5):

2

∫
Y
〈(∂sh)∇sbs ∧ ∗εh bs〉 ≥ −2e− 1

2
‖h∇sbs‖2L2(Y ),ε

For the fourth term in (4.9) we integrate by parts and use (4.5):

∫
Y
h2〈d∗εa dabs ∧ ∗εbs〉 =

∫
Y
h2〈da ∗ε dabs ∧ bs〉

= −
∫
Y

2h dh ∧ 〈∗εdabs ∧ bs〉+ ‖h dabs‖2L2(Y ),ε

≥ −2e− 1
2‖h dabs‖

2
L2(Y ),ε + ‖h dabs‖2L2(Y ),ε

= −2e+ 1
2‖h dabs‖

2
L2(Y ),ε.

Putting this all together, and using dabs = − ∗ε ∇sbs, we get
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e′′ ≥ ‖∇s(hbs)‖2L2(Y ),ε − C2e−
∫
Y
h2〈∗ε [bs ∧ bs] ∧ ∗εbs〉

≥ −C2e−
∫
Y
h2〈∗ε [bs ∧ bs] ∧ ∗εbs〉

By adding (C2 + 2C0)e to both sides we recover the claim and this finishes the proof of

the first derivative bound (4.2).

To finish the proof of the proposition, we need to prove the following bound on the

second derivative:

‖∇2
sFA‖L2(K),ε ≤ C‖FA‖L2(Ω),ε

This is very similar to the proof of (4.2), so we only sketch the main points. The

analogue of (4.6) for this case is

0 ≤ 1

2
‖∇2

sFA‖2L2(K),ε ≤ 2C0‖h∇sbs‖2L2(Ω),ε +

∫ R

−R
g̃(s) ds,

where we have set

g1(s) := −3

∫
Y
h2〈∇sbs ∧ [∇sbs ∧ bs]〉+

∫
Y
h2〈[bs ∧ bs] ∧∇2

sbs〉.

Then (4.8) continues to hold with g replaced by g1. Set

e1(s) :=
1

2
‖h∇sbs‖2L2(Y ),ε

and, just as before, one can show

e′′1(s) +D0e1(s) ≥ D1g1(s)

and the result follows from Lemma 4.1.4.

Lemma 4.1.4. Consider functions e, f, g : BR+r → R, where Bρ := (−ρ, ρ) ⊂ R, and

assume these satisfy

• e ≥ 0 is C2;
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• f ≥ 0 is C0;

• g is C0 and satisfies

∫
BR

g ≥ 0, andg(s) ≥ 0for s ∈ BR+r\BR.

Suppose

g(s) ≤ f(s) + e′′(s), s ∈ BR+r.

Then

∫
BR

g ≤
∫
BR+r

f +
4

r2

∫
BR+r\BR

e.

Proof. This is a variation of [24, Lemma 9.2], and is proved in essentially the same way.

However, we recall the proof for convenience.

By considering the rescaled functions

ẽ(s) := e(rs), f̃(s) := r2f(rs), g̃(s) := r2g(rs),

(which satisfy g̃ ≤ f̃ + ẽ′′), it suffices to assume r = 1. The positivity conditions on f

and g give

∫ R

−R
g −

∫ R+1

−R−1
f ≤

∫ R+s

−R−s
g − f

=

∫ R+s

−R−s

d2

ds2
e = e′(R+ s)− e′(−R− s),

for all s ∈ [0, 1].1 Note also that we have

d

ds
(e(R+ s) + e(−R− s)) = e′(R+ s)− e′(−R− s)

In particular, integrating in s from 1/2 to t gives

1If we know that e′ = 0 on BR+1\BR, as we do in the proof of Proposition 4.1.1, then this proves
the result of the Lemma.
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1

2

(∫ R

−R
g −

∫ R+1

−R−1
f

)
≤ e(R+ t) + e(−R− t)− e(R+ 1/2)− e(−R− 1/2)

≤ e(R+ t) + e(−R− t)

by the positivity of e. Now integrate in t from 1/2 to 1:

1

4

(∫ R

−R
g −

∫ R+1

−R−1
f

)
≤
∫ 1

−1/2
e(R+ t) + e(−R− t) =

∫
BR+1\BR+1/2

e.

4.2 Convergence to holomorphic strips

This section establishes a convergence result which will be used in the proof of the Main

Theorem. It provides sufficient conditions for a sequence of instantons to converge, in

C0 on compact subsets of R×I×Σ•, to a holomorphic strip with Lagrangian boundary

conditions.

The simplest version of the theorem holds for connections on R× Y . However, for

applications we will need to consider slightly more general domains. These will be of

the form (R× Y ) \ ∪Kk=1 Sk, where each Sk ⊂ R× Y is either a point or a slice:

{(sk, yk)} ⊂ R× Y• point

{(sk, tk, σk)} ⊂ R× (0, 1)× Σ• point

{sk} × Y• ⊂ R× Y• slice

{(sk, tk)} × Σ• ⊂ R× (0, 1)× Σ• slice

Each Sk induces a shadow, Ŝk, in R × I defined as the projection to R × I of the

intersection Sk ∩ R× I × Σ•:
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Ŝk =



{(sk, 0), (sk, 1)} if Sk = {(sk, yk)}

{(sk, tk)} if Sk = {(sk, tk, σk)}

{(sk, 0), (sk, 1)} if Sk = {sk} × Y•

{(sk, tk)} if Sk = {(sk, tk)} × Σ•.

(4.10)

The key point is that ∪kŜk is always a finite set of points.

To state the theorem, we also recall from Lemma 3.1.5 that the L2-orthogonal

projection

projα : W 1,q (T ∗Σ⊗ P (g)) −→ (Im dα ⊕ Im d∗α)⊥ = ker dα ∩ ker d∗α,

is well-defined whenever q > 1 and ‖Fα‖Lq(Σ) is sufficiently small. Let τs0 : R × Y →

R× Y be the map given by translating by s0 ∈ R, as described in section 2.4.

Theorem 4.2.1. Fix 2 < q <∞. Let Q be as in Remark 2.2.7, and suppose {Sk}k is

a finite collection of points or slices Sk ⊂ R× Y as above. Write Ŝk for the shadow of

Sk as in (4.10), and set

X := (R× Y ) \ ∪k Sk,

X̂ := (R× I) \ ∪k Ŝk.

Assume that all flat connections on Q are non-degenerate, and fix a± ∈ Aflat(Q).

Suppose (εν)ν∈N is a sequence of positive numbers converging to 0. In addition,

suppose that for each ν there is an εν-ASD connection

Aν =

 αν(s, t) + φν(s, t) ds+ ψν(s, t) dt on {(s, t)} × Σ•

aν(s) + pν(s) ds on {s} × Y•

in A1,q
loc(R×Q), which satisfies the following conditions:

• each Aν limits to a± at ±∞
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lim
s→±∞

(
u±ν
)∗
Aν |{s}×Y = a±, for some u±ν ∈ G

2,q
0 (Q),

• for each compact subset K ⊂ X, the slice-wise curvature terms decay to zero

‖Fαν‖L∞(K) + ‖Faν‖L∞(K)
ν−→ 0.

• for each compact K̂ ⊂ X̂, there is some constant C = C(K̂) with

sup
K̂

‖projαν (∂sαν − dανφν) ‖L2(Σ•) ≤ C.

Then there exist a finite sequence of flat connections

{
a− = a0, a1, . . . , aJ−1, aJ = a+

}
⊆ Aflat(Q)

and, for each j ∈ {1, . . . , J}, a continuous connection

Aj =

 αj(s, t) + φj(s, t) ds+ ψj(s, t) dt on {(s, t)} × Σ•

aj(s) + pj(s) ds on {s} × Y•

in A1,q
loc(R×Q), which

(i) is holomorphic:

∂sα
j − dαjφj + ∗

(
∂tα

j − dαjψj
)

= 0, Fαj = 0,

(ii) has Lagrangian boundary conditions:

Faj = 0,

(iii) and limits to the flat connections aj−1, aj at ±∞:

lim
s→+∞

(
uj+

)∗
Aj |{s}×Y = aj , for some uj+ ∈ G

2,q
0 (Q),
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lim
s→−∞

(
uj−

)∗
Aj |{s}×Y = aj−1, for some uj− ∈ G

2,q
0 (Q).

Moreover, after possibly passing to a subsequence, the Aν converge to Aj in the following

sense: There is a sequence of gauge transformations uν ∈ G2,q
loc (R×Q), and, for each j,

a sequence sjν ∈ R such that

(iv)
∥∥∥αj − u∗ντ∗sjναν

∥∥∥
C0(K)

ν−→ 0

(v) supK̂

∥∥∥(∂sαj − dαjφj)−Ad(uν)τ∗
sjν

projαν (∂sαν − dανφν)
∥∥∥
L2(Σ•)

ν−→ 0

for all compact subsets K ⊂ X and K̂ ⊂ X̂. In item (iv) above, the gauge action

is the (s, t)-pointwise action of uν(s, t) ∈ G2,q(P•) on connections over the surface

Σ•. Furthermore, the energy of this limit is bounded by the energy of the sequence of

instantons:

J∑
j=1

E(Aj) ≤ sup
K

lim sup
ν→∞

1

2
‖FAν‖2L2(K),εν

(4.11)

where supK is the supremum over all compact K ⊂ X, and

E(Aj) :=
1

2

∫
R×I×Σ•

|∂sαj − dαjφj |2

is the energy of the holomorphic curve Aj.

Remark 4.2.2. (a) The same proof we give here carries over with only minor nota-

tional changes to the following situation. Set

X := R× {Y ∪∂Y ([0,∞)× ∂Y )}

or

X := C× Σ
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for some compact connected oriented elementary cobordism Y , or closed connected ori-

ented surface Σ. Suppose, for each ν, we have an open set Uν ⊆ X which is a de-

formation retract of X, and with the further property that the Uν are increasing and

exhausting: Uν ⊂ Uν+1 and X = ∪νUν . Then the statement of Theorem 4.2.1 contin-

ues to hold if we assume that Aν is defined on Uν . In this case we cannot assume that

the connections Aν have fixed limits at ∞, so there is no analogue of item (iii) from

Theorem 4.2.1 for these domains, and it is sufficient to take sν = 0 for all ν. We also

do not need to have any non-degeneracy assumptions on the flat connections on the

bundle Q, since these assumptions are only used to prove item (iii).

(b) The projection operator appearing in conclusion (v) of Theorem 4.2.1 is a little

awkward. However, it can be removed at the cost of weakening the sup norm to an Lp

norm. Indeed, we have

∫
K̂

∥∥∥(∂sαj − dαjφj)−Ad(uν)τ∗
sjν

(∂sαν − dανφν)
∥∥∥p
L2(Σ•)

ν−→ 0

for any 1 < p <∞, after possibly passing to a further subsequence. To see this, set

βs,ν := ∂sαν − dανφν .

It suffices to show

∫
K̂
‖βs,ν − projανβs,ν‖

p
L2(Σ•)

−→ 0.

By (3.28), we have the following s, t-pointwise estimate:

‖βs,ν − projανβs,ν‖L2(Σ•) ≤ C
(
‖dανβs,ν‖L2(Σ•) + ‖dαν ∗ βs,ν‖L2(Σ•)

)

= C
(
‖∇s,νFαν‖L2(Σ•) + ‖∇t,νFαν‖L2(Σ•)

)
.

Consider the sequence of maps

R× I −→ L2(P (g))

(s, t) −→ ∗∇sFαν
(4.12)
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By Remark 4.1.2 there is a uniform bound

‖∇s∇sFαν‖L2(K×Σ•) + ‖∇t∇sFαν‖L2(K) ≤ C
(
CS(a−)− CS(a+)

)
for each compact set K ⊂ R × I. In particular, by Sobolev embedding in dimension 2,

we have that the sequence (4.12) is bounded in W 1,2 and so a subsequence converges

strongly in Lp on compact sets, for any 1 < p < ∞. The same argument holds for

∗∇ν,tFαν and so we have

∫
K
‖βs,ν − projανβs,ν‖

p
L2(Σ•)

≤ C
∫
K
‖∇s,νFαν‖

p
L2(Σ•)

+ ‖∇t,νFαν‖
p
L2(Σ•)

−→ 0,

as desired.

Proof of Theorem 4.2.1. We will begin by proving the theorem but ignoring the R-

translations. We will show that the sequence converges, in the sense of items (iv) and

(v), to a single limiting connection A∞ satisfying (i) and (ii). (This will, for example,

take care of the proof of the types of domains described in Remark 4.2.2 (a).) Once we

have proven this, then we will describe how to incorporate R-translations to obtain the

broken holomorphic trajectory (A1, . . . , AJ) with the limits specified in (iii).

We use the notation

βs,ν := ∂sαν − dανφν , βs,∞ = ∂sα∞ − dα∞φ∞.

By the assumption on the curvature of the αν , it follows that Theorem 3.1.1 applies

to αν(s, t) for each s, t and ν sufficiently large. Let NSPi be the map constructed in

Theorem 3.1.1 for the bundle Pi → Σi. Define a map

vν : R× I −→M := M(P1)× . . .×M(PN )

in terms of its coordinates by using Π ◦NSPi to project αν :

vν(s, t) := (Π ◦NSP1 (αν(s, t)|Σ1) , . . . ,Π ◦NSPN (αν(s, t)|ΣN )).
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Then Lemmas 3.1.11 and 3.1.12 imply that vν is holomorphic.

Claim 1: The vν have uniformly bounded energy:

sup
ν

sup
K̂

|∂svν |2M <∞ (4.13)

for each compact set K̂ ⊂ X̂ = (R× I)\ ∪k Ŝk.

At each (s, t) ∈ K̂, we have

|∂svν(s, t)|2M = |∂svν |2M =
∑
i

‖∂s (Π ◦NSPi(αν))‖2L2(Σi)

=
∑
i

‖Dαν (Π ◦NSPi)(∂sαν)‖2L2(Σi)

=
∑
i

‖Dαν (Π ◦NSPi)(βs,ν)‖2L2(Σi)

where the last equality holds by Lemma 3.1.12, since ∂sαν and βs,ν differ by an exact 1-

form. Similarly, by definition of the projection, the 1-form βs,ν differs from projανβs,ν by

an element of Imdαν⊕Im ∗dαν , and this difference is also in the kernel of Dαν (Π◦NSPi)

by Lemma 3.1.12. Hence

|∂svν |2M =
∑
i

‖Dαν (Π ◦NSPi)(projανβs,ν)‖2L2(Σi)

Lemma 3.1.12 ≤ C0

∑
i

‖projανβs,ν‖
2
L2(Σi)

= C0‖projανβs,ν‖
2
L2(Σ•)

≤ C1,

where the last equality holds because Σ• = tiΣi (by definition), and the last inequality

holds with C1 = C0C (C is as in the statement of the theorem we are proving). The

constant C1 = C1(K̂) is independent of s, t, ν and so this proves Claim 1.
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By the holomorphic condition, we have that ∂tvν is uniformly bounded on compact

subsets of X̂ as well. In particular, {vν} is a C1-bounded sequence of maps for each

compact K̂ ⊂ X̂. By the compactness of the embedding C1 ↪→ C0 for compact sets,

there is a subsequence, still denoted by {vν}, which converges weakly in C1, and strongly

in C0, on compact subsets of X̂, including the boundary:

vν
w−→ v∞, weakly in C1 on compact subsets of (R× I)\ ∪k Ŝk

for some v∞ ∈ C1(X̂,M). By the weak C1-convergence, it follows that v∞ is holomor-

phic as well

∂sv∞ + ∗∂tv∞ = 0.

By the removal of singularities theorem for holomorphic maps [30, Theorem 4.1.2 (ii)],

v∞ extends to a holomorphic map on the interior R× (0, 1) (this uses the fact that the

shadows ∪kŜk form a finite set). It also follows that v∞ is C∞ in the interior R× (0, 1)

[30, Theorem B.4.1].

Remark 4.2.3. We can actually say quite a bit more: The uniform energy bound

given in Claim 1 implies that, after possibly passing to a further subsequence, we have

that the vν : R × I → M converge to v∞ in C∞ on compact subsets of the interior,

X̂ ∩ R× (0, 1) (see [30, Theorem 4.1.1]). In particular, this automatically proves item

(v) for K̂ ⊂ X̂ ∩ R × (0, 1). However, for applications we will need to prove (v) for

K̂ ⊂ X̂ (all the way up to the boundary ∂X̂ ⊂ {0, 1} × Σ•), which requires a more

careful analysis. (See Claim 4.)

Claim 2 below states that v∞ has Lagrangian boundary conditions at X̂∩R×{0, 1}.

This will follow because the vν have approximate Lagrangian boundary conditions. To

state this precisely, consider the product M(Q12)×M(Q23)× . . .×M(QN1) of moduli

spaces of flat connections on the Qi(i+1). For each Qi(i+1), the restriction to each of the

two boundary components provides two maps

∂i,0 : M(Qi(i+1)) ↪→M(Pi), ∂i,1 : M(Qi(i+1)) ↪→M(Pi+1).
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Fix j = 0 or 1. Then the {∂i,j}i piece together to form an embedding

∂j := M(Q12)×M(Q23)× . . .×M(QN1) ↪→M

and the image, which we denote by L(j), is Lagrangian by Theorem 2.2.16. (See section

(2.3) for more details on this restriction.)

Claim 2: For each s ∈ X̂ ∩R×{0}, the sequence {vν(s, j)}ν converges (in the standard

metric on M) to a point in L(j), for j ∈ {0, 1}. In particular, v∞ has Lagrangian

boundary conditions

v∞(·, j) : R→ L(j).

The hypothesis that the norms ‖Faν‖C0 decay to zero on compact sets away from

the Sk implies that Theorem 3.2.3 applies to each aν(s) for all ν sufficiently large and all

s ∈ X̂ ∩R×{0} (after applying suitable gauge transformations as in Corollary 3.2.6).2

For each i, let Π ◦HeatQi(i+1)
be the map constructed in Theorem 3.2.3. Define

`ν : X̂ ∩ R× {0} −→M(Q12)×M(Q23)× . . .×M(QN1)

by

`ν(s) := (Π ◦HeatQ12 (aν(s)|Y12) , . . . ,Π ◦HeatQN1
(aν(s)|YN1

)) .

Composing with ∂j , for j = 0, 1, gives a path in the Lagrangian L(j):

`ν,j := ∂j ◦ `ν : X̂ ∩ R× {0} −→ L(j) ⊂M, j = 0, 1.

To prove the claim, we will show

2One may be concerned that since Aν is only assumed to be W 1,q with q > 2 possibly small, it may
not be the case that the codimension-1 restrictions aν(s) are in W 1,2 on Y•, and so Theorem 3.2.3 does
not apply. We can get around this as follows: Since Aν is an εν-ASD connection on a 4-manifold, it is
gauge equivalent to an εν-smooth connection A′ν [51, Theorem 9.4]. The restriction A′ν |Y• is smooth
(so W 1,2), and A′ν enjoys all of the same properties we assumed of Aν . So replacing Aν by A′ν does the
trick.
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sup
s∈K̂∩R×{0}

distM (`ν,j(s), vν(s, j))
ν−→ 0, (4.14)

for every compact K̂ ⊂ X̂, where distM is the distance on M given by the symplectic

form and the holomorphic structure determined by the Hodge star. Similarly, distM(Pi)

is the distance on the symplectic manifold M(Pi), and these determine distM in the

usual way. The proof of (4.14) is just a computation (for clarity, we use ΠP to denote

the projection Aflat(P )→M(P )):

sups distM (`ν,j(s), vν(s, j))2

= sups
∑
i

distM(Pi+j)

({
ΠQi(i+1)

◦HeatQi(i+1)

(
aν (s) |Yi(i+1)

)}
|Σi+j ,

ΠPi+j ◦NSPi+j

(
αν (s, j) |Σi+j

))2

= sups
∑
i

distM(Pi+j)

(
ΠPi+j

{(
HeatQi(i+1)

aν(s)|Yi(i+1)

)
|Σi+j

}
,

ΠPi+j

{
NSPi+j

(
αν (s, j) |Σi+j

)})2

≤ sups
∑
i

∥∥∥(HeatQi(i+1)
aν(s)|Yi(i+1)

)
|Σi+j −NSPi+j

(
αν (s, j) |Σi+j

)∥∥∥2

L2(Σi+j)
.

The last equality holds because restricting a flat connection on Qi(i+1) to the boundary

commutes with harmonic projections ΠQi(i+1)
and ΠPi+j . The inequality holds by the

definition of the distance on the M(Pi), and because Πi+j has operator norm equal to

one. By the triangle inequality, we can continue this to get
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sups distM (`ν,j(s), vν(s, j))2

≤ sups
∑
i

{∥∥∥(HeatQi(i+1)
aν(s)|Yi(i+1)

)
|Σi+j −

(
aν(s)|Yi(i+1)

)
|Σi+j

∥∥∥2

L2(Σi+j)

+
∥∥∥(aν(s)|Yi(i+1)

)
|Σi+j −NSPi+j

(
αν (s, j) |Σi+j

)∥∥∥2

L2(Σi+j)

}

≤ sups
∑
i

{∥∥∥(HeatQi(i+1)
aν(s)|Yi(i+1)

)
|Σi+j −

(
aν(s)|Yi(i+1)

)
|Σi+j

∥∥∥2

L2(Σi+j)

+
∥∥∥αν (s, j) |Σi+j −NSPi+j

(
αν (s, j) |Σi+j

)∥∥∥2

L2(Σi+j)

}
.

The second part of Theorem 3.2.3 shows that the first term in the summand goes to

zero as ν → ∞, since Faν converges to zero in C0 (uniformly in s). Similarly, the

second term in the summand goes to zero by Proposition 3.1.9. This verifies (4.14) and

proves that v∞ has Lagrangian boundary conditions away from the boundary shadows

Ŝk ∩ R × {0, 1}. Since this set is finite and away from it the map v∞ is holomorphic

with Lagrangian boundary conditions, we can apply the removal of singularities theorem

again to deduce that v∞ has Lagrangian boundary conditions on all of R×{0, 1}. This

proves Claim 2.

Claim 3: There exists a smooth lift α∞ : R× I → A1,q
flat(P•) of v∞ : R× I →M .

Write v∞ = (v1
∞, . . . , v

N
∞) ∈ M(P1) × . . . × M(PN ). For each i, the map Π :

A1,q
flat(Pi)→M(Pi) is a principal G2,q

0 (Pi)-bundle, and pullback by vi∞ provides a bundle

over R× I:

(
vi∞

)∗
A1,q

flat(Pi) −→ R× I.

Sections of this bundle are exactly lifts of vi∞. Since the base is contractible, the space

of smooth sections of
(
vi∞
)∗A1,q

flat(Pi) is homotopic to the space of smooth sections of

the G2,q
0 (Pi)-bundle over a point. The latter is clearly non-empty, and so the former is

non-empty as well. This proves Claim 3.

By exactly the same type of argument, the boundary conditions of v∞, together with

the injectivity of the embeddings M(Qi(i+1)) ↪→M(Pi)×M(Pi+1) (see Theorem 2.2.16)
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provide the data for a smooth lift a∞ : R → A1,q
flat(Q•). Then α∞ and a∞ are unique

up to G2,q
0 -gauge transformation, and it is possible to choose them so that they match

up along the seam. Then by Lemma 2.3.11, the 0-forms φ∞, ψ∞ : R× I →W 1,q(P•(g))

and p∞ : R → W 1,q(Q•(g)) are all uniquely determined by α∞, a∞ via items (i) and

(ii) in the conclusion of the proposition. These patch together to form a continuous

connection A∞ ∈ A1,q
loc(R × Q). It remains to prove items (iii), (iv) and (v). We save

(iii) for the end.

Item (iv) follows by transferring the C0 convergence of the vν to a statement about

the αν . To spell this out, first note that, because M is finite-dimensional, we can choose

any metric we want. To prove (iv), it is convenient to choose the metric induced from

the C0 norm on the harmonic spaces (recall that the tangent space to M at [α] ∈ M

can be identified with the harmonic space H1
α). In particular, the C0 convergence of

the vν to v∞ immediately implies that, for each (s, t), there are gauge transformations

uν(s, t) ∈ G2,q
0 (P•) such that

sup
K

∑
i

‖u∗νNSPi(αν)− α∞‖2C0(Σi)
−→ 0, (4.15)

for all compact K ⊂ R× I (here the gauge action is the point-wise action of uν(s, t)).

By perturbing the gauge transformations, we may suppose that each uν is smooth as a

map into G2,q
0 (P•). This gives

‖u∗ναν − α∞‖
2
C0(K×Σ•)

≤ 4 supK
∑
i

{
‖u∗ναν − u∗νNSPi(αν)‖2C0(Σi)

+ ‖u∗νNSPi(αν)− α∞‖2C0(Σi)

}

≤ C supK
∑
i

{
‖Fαν‖

2
C0(Σi)

+ ‖u∗νNSPi(αν)− α∞‖2C0(Σi)

}

(By (4.15)) −→ 0,

where the last inequality follows from Proposition 3.1.9. This proves (iv).
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Claim 4: For each compact K̂ ⊂ X̂, there is a uniform W 3,2-bound

sup
ν
‖vν‖W 3,2(K̂) ≤ C.

Before proving Claim 4, we show how it is used to prove item (v) in the proposition.

First of all, by the compact Sobolev embedding W 3,2 ↪→ C1, Claim 4 implies that, after

passing to a subsequence, the vν converge to v∞ in C1 on compact subsets of X̂. In

particular ∂svν converges to ∂sv∞ in C0 on compact subsets. At this point, the proof

is formally much like the proof of item (iv), except we use Corollary 3.1.13 instead of

Proposition 3.1.9. Explicitly, this is done as follows: The appropriate lift of ∂sv∞ to

Tα∞A1,q(P•) is βs,∞, since it is the harmonic projection of ∂sα∞ (see Lemma 2.3.11).

Similarly, the appropriate lift of ∂svν is the harmonic projection of Dαν (NSPi) (∂sαν).

This harmonic projection is exactly

Dαν (Π ◦NSPi) (∂sαν).

since DαΠ = projα whenever α is flat. Moreover, the image of dαν is in the kernel of

Dαν (Π ◦NSPi), so we may equally well use

Dαν (Π ◦NSPi) (βs,ν)

as the harmonic lift of ∂svν . Then the C0 convergence ∂svν → ∂sv∞ implies that

sup
K̂

∑
i

‖βs,∞ −Ad(uν)Dαν (Π ◦NSPi) (βs,ν)‖2L2(Σi)
ν−→ 0, (4.16)

for any fixed compact K̂ ⊂ X̂ (we have chosen to use the metric given by the L2 norm

on Σ, though any Lp norm with 2 ≤ p < ∞ would work just as well). The gauge

transformations that appear here are exactly the ones from the proof of item (iv), and

arise from the fact, since u∗ναν converge to α∞, the harmonic spaces Ad(uν(s, t))Hαν(s,t)

converge to Hα∞(s,t). For each (s, t) ∈ K̂ and i, the triangle inequality gives
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∥∥βs,∞ −Ad(uν)projανβs,ν
∥∥
L2(Σi)

≤ ‖βs,∞ −Ad(uν)Dαν (Π ◦NSPi) (βs,ν)‖L2(Σ•)

+
∥∥Dαν (Π ◦NSPi) (βs,ν)− projαν (βs,ν)

∥∥
L2(Σ•)

≤ ‖βs,∞ −Ad(uν)Dαν (Π ◦NSPi) (βs,ν)‖L2(Σ•)

+f(αν)‖projαν (βs,ν) ‖L2(Σ)

where the last inequality is Corollary 3.1.13. That corollary states that f(αν) → 0

uniformly in s, t, as ν → 0. Recall that we have assumed in the hypotheses that

‖projαν (βs,ν) ‖L2(Σ) is uniformly bounded by some constant C, so summing over i and

taking the supremum over (s, t) ∈ K̂ gives

supK̂
∑
i

∥∥βs,∞ −Ad(uν)projανβs,ν
∥∥2
L2(Σi)

≤ supK̂
∑
i ‖βs,∞ −Ad(uν)Dαν (Π ◦NSPi) (βs,ν)‖2L2(Σ•)

+ f(αν)2C.

This goes to zero by (4.16), and proves (v).

To prove Claim 4, and thereby complete the proof of item (v), we need to bound all

mixed partial derivatives of vν up to degree 3. Since vν is holomorphic, this reduces to

finding uniform bounds for the first, second and third s-derivatives of vν . Writing vν =

Π ◦NSP (αν), we want to translate derivatives on vν into derivatives on αν ∈ A1,q(P•).

Note that we have the freedom to choose a convenient representative in the gauge

equivalence class of Aν . The components of ∂svν in M(P•) = M(P1) × . . . ×M(PN )

are given by

Dαν (Π ◦NSPi) (∂sαν) = Dαν (Π ◦NSPi) (βs,ν) ,

where the equality holds because ∂sαν−βs,ν is an exact 1-form and so lies in the kernel

of the linearization Dαν (Π ◦NSPi). By Theorem 3.1.1 (iii), the L2-operator norms of

the operators Dαν (Π ◦NSPi) are uniformly bounded, so to bound |∂svν |M it suffices to
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bound ‖βs,ν‖L2 . However, this is a component of the energy of Aν and so is uniformly

bounded a priori:

‖βs,ν‖2L2(K̂×Σ•)
= ‖βs,ν‖2L2(K̂×Σ•),εν

≤ ‖FAν‖2L2(K̂×Σ•),εν

≤ ‖FAν‖2L2(R×Y ),εν

= 2 (CSa0(a−)− CSa0(a+)) .

(4.17)

(For more details, see the proof of Corollary 4.1.3.) This provides uniform bounds on

the first derivatives of the vν .

The second derivatives are similar: By the product rule, the second s-derivative of

the components of vν are controlled by the following term:

D2
αν (Π ◦NSPi) (βs,ν , ∂sαν) +Dαν (Π ◦NSPi) (∂sβs,ν)

= D2
αν (Π ◦NSPi) (βs,ν , βs,ν) +Dαν (Π ◦NSPi) (∂sβs,ν)

(4.18)

where the equality holds because Π ◦ NSPi is gauge-equivariant, and so Im(dα) lies in

the kernel of the Hessian D2
α(Π ◦ NSPi). Consider the Hessian term in (4.18). Lemma

3.1.12 says that the L2-operator norms of the operators D2
αν (Π ◦NSPi) are uniformly

bounded, and so bounding the Hessian terms reduces to bounding

‖βs,ν‖L2(K̂×Σ•)
,

which we have already done in (4.17). To prove Claim 4, it therefore suffices to bound

the other term in (4.18):

Dαν (Π ◦NSPi) (∂sβs,ν).

As before, since Dαν (Π ◦NSPi) is uniformly L2-bounded as an operator, it suffices to

bound ‖∂sβs,ν‖L2 . For this, we exploit the gauge freedom and assume that φν = 0 (i.e.,
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Aν is in temporal gauge). Then ∂s = ∇s, and it suffices to bound

‖∂sβs‖L2(K̂×Σi)
= ‖∇sβs‖L2(K̂×Σi)

That this is uniformly bounded is exactly the content of Corollary 4.1.3. So we have

bounded the second s-derivatives of the vν . The bound for the third s-derivatives is

similar. This completes the proof of Claim 4, and so also the proof of item (v) in

Theorem 4.2.1.

It remains to prove item (iii) and the energy bound (4.11). Note that all of the

analysis we have done so far remains valid. The only catch is that it may be the case

that the limiting connection A∞ is constant (so all of the energy in the sequence escapes

to ±∞). To get around this, we need to translate by just the right values to make sure

that the energy does not escape. This type of result is standard, and we include a sketch

for completeness. See [38, Proposition 4.2] for more details. Before defining appropriate

real numbers sν used for this translation, we make a few preliminary remarks.

First of all, the hypotheses on the Aν are translation invariant. That is, we may

replace Aν by τ∗sνAν , for any real number sν ∈ R, and the proof up until this point goes

through without a problem.

Second, since we have assumed that all flat connections on Q are non-degenerate,

it follows from Theorem 2.3.1 that M(Q), the moduli space of flat connections on

Q → Y , is a finite set of points. By Proposition 2.4.3, this moduli space maps onto

the set of Lagrangian intersection points L(0) ∩ L(1) ⊂ M(P•) (see also Remark 2.3.9

(a)). In particular, the set L(0) ∩ L(1) is finite. Let ε0 > 0 be small enough so that

the ε0-balls centered at the pi are mutually disjoint: Bε0(p) ∩ Bε0(p′) = ∅, for distinct

p, p′ ∈ L(0) ∩ L(1).

Lastly, note that for any sν ∈ R, the map NSPi commutes with translation:

NSPi(τ
∗
sναν) = τ∗sνNSPi(αν) = τ∗sνvν .

By assumption, each Aν converges at ±∞, modulo gauge transformation, to the flat

connection a±. Since the maps NSPi preserve flat connections, it follows that each vν
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converges, as s→ ±∞, to the intersection point

p± := Ψ(
[
a±
]
) ∈ L(0) ∩ L(1)

associated to a±, where Ψ : M(Q)/Hη → L(0) ∩L(1) is the map from Proposition 2.4.3

which identifies the generators of the Floer groups. The same holds true if we replace

Aν by τ∗sνAν for any sν ∈ R. That is, τ∗sνvν converges to p± as s→ ±∞, for any sν ∈ R.

With these remarks out of the way, define sν as follows:

sν := sup
{
s ∈ R

∣∣∣ distM(P•)

(
p−, vν(s, t)

)
> ε0, for some t ∈ I

}
.

Then for each ν we have

distM(P•)

(
p−,

(
τ∗sνvν

)
(s, t)

)
= ε0 ∀t ∈ I, ∀s ≤ 0, (4.19)

and

distM(P•)

((
τ∗sνvν

)
(0, t), p+) = ε0 ∀t ∈ I. (4.20)

Then the discussion above shows that, after passing to a subsequence, the translates

τ∗sνvν converge to a limiting holomorphic strip v1, and this must satisfy

lim
s→−∞

v1(s, t) = p− =: p0

for all t, by (4.19). The equalities expressed in (4.20) and the definition of ε0, show

that v1(0, t) is not at a Lagrangian intersection point. In particular, v1 is non-constant.

Since v1 is a holomorphic strip, there is some intersection point p1 ∈ L(0) ∩ L(1) with

lim
s→∞

v1(s, t) = p1,

(see section 2.3). This also means that the vν become arbitrarily close to p1.

Next, repeat this procedure with p1 replacing p0. It follows that a suitable transla-

tion of the vν converge (after passing to yet another subsequence) to holomorphic strip
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v2 which limits to p1 at −∞. It must also limit to some other intersection point p2 at

+∞. Moreover, due to the C1 convergence, it follows that we have an energy bound

E(v2; K̂) ≤ lim sup
ν

E(vν ; K̂)− E(v1; K̂)

for every compact K̂ ⊂ X̂ (see [37, Corollary 3.4]). Here we are using E(v, K̂) :=

1
2

∫
K̂
|∂sv|2M to denote the energy on the set K̂.

Continuing inductively, we obtain a sequence of intersection points pj and non-

constant holomorphic strips vj with

lim
s→−∞

vj(s, t) = pj−1, lim
s→∞

vj(s, t) = pj .

and

∑
j

E(vj ; K̂) ≤ lim sup
ν

E(vν ; K̂) (4.21)

for all compact K̂ ⊂ X̂. This shows that there can only be a finite number of strips vj :

Each non-constant holomorphic strip carries a minimum allowable energy ~ > 0.3 The

right-hand side of (4.21) is bounded by CSa0(a−) − CSa0(a+), the total energy of the

instantons, so there can only be finitely many terms on the left-hand side.

Finally, lift each intersection point pj to a flat connection aj ∈ Aflat(Q), and lift

each holomorphic strip vj to a connection Aj as we did when we defined A∞ above.

The energy bound (4.11) follows immediately from (4.21).

4.3 Proof of the Main Theorem

In this section we carry out the proof of the Main Theorem 2.4.1. Our overall strategy

is to show that the hypotheses of Theorem 4.2.1 are satisfied with each Sk = ∅ empty,

at which point the Main Theorem essentially follows immediately. This will be carried

3By reflecting each strip one can compute that this is one-half the minimal amount for holomorphic
disks and one-quarter the amount for holomorphic spheres; see [30, Proposition 4.1.4] and the proof of
[30, Lemma 4.3.1 (ii)].
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out in two stages. The first is to show that if the hypotheses of Theorem 4.2.1 are not

satisfied, then we have energy quantization (defined below). The second is to show that

any energy quantization is excluded a priori by the hypotheses of the Main Theorem.

Throughout this discussion, we fix the following notation: Let Q → Y be as in

Remark 2.2.7, and we decompose Y = Y•∪(I×Σ•) as a union of cylindrical cobordisms

I × Σ• = I × ∪iΣi

and non-trivial cobordisms

Y• = ∪iYi(i+1).

We write Q• := Q|Y• and P• := Q|{0}×Σ• .

For a connection A on R×Q we will use the notation

A =

 α+ φ ds+ ψ dt on R× I × Σ•

a+ p ds on R× Y•
(4.22)

and

βs = ∂sα− dαφ, βt = ∂tα− dαψ, γ = ∂sψ − ∂tφ− [ψ, φ]

bs = ∂sa− dap.

We use analogous notation for the components of Aν , Ãν , Aν , and Âν , which will appear

later on in our analysis. See Remark 2.3.6. It will be notationally convenient to consider

φ, ψ, p as being defined on the whole manifold R × Y by extending them by zero.

Likewise, we consider Fα and Fa as being defined on all of R× Y as being extended by

zero. Note, however, that these extensions are typically not continuous.4

4Though we will not be using this perspective, perhaps it is worth pointing out that we can think of
these extension of Fα (resp. Fa) as being the curvature of some α′ (resp. a) where α′|{(s,t)}×Σ•

= α(s, t)

(resp. α′|{s}×Y•
= a(s)) and is a flat connection on each {s} × Y• (resp. {(s, t)} × Σ•).
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4.3.1 Energy quantization (bubbling analysis)

As described above, our goal is to show that the hypotheses of Theorem 4.2.1 are

satisfied. In the current section, we show that if these hypotheses do not hold, then

this implies energy quantization: there is a subset S ⊂ R×Y and a positive constant

~ > 0, depending only on the group PSU(r), such that for every neighborhood U of S,

the energy

1

2

∫
U
〈FA ∧ ∗εFA〉 ≥ ~

is bounded from below. Here ∗ε is the Hodge star defined with respect to the ε-

dependent metric. In our cases, the set S will either be a point or a slice {s0}× Yi(i+1)

or {(s0, t0)} × Σi, as described in the beginning of section 4.2.

Fix limiting flat connections a± and a real number q > 2. For sake of contradiction,

suppose the existence statement in the Main Theorem 2.4.1 does not hold. Then there is

a positive number δ0 > 0, a sequence of positive numbers εν → 0, and, for each ν, an εν-

ASD connection Aν descending to the zero-dimensional moduli space M̂Qεν ,0([a−] , [a+]),

and such that

‖αν − α∞‖C0(K×Σ•) ≥ δ0

for all A∞ ∈ A1,q(R × Q) satisfying (i) and (ii) from the Main Theorem 2.4.1 and for

some compact K ⊂ R× I. Since q > 2, by applying a suitable gauge transformation in

G2,q
loc (R×Qεν ), we may suppose that Aν is εν-smooth [51, Theorem 9.4]. (Equivalently,

we may assume that (F εν )∗Aν is smooth with the standard smooth structure on R×Y ,

where F ε is the map (2.5).)

Let projαν be as in Lemma 3.1.5. Observe that if the curvatures

‖Fαν‖L∞(R×Y ) + ‖Faν‖L∞(R×Y ) −→ 0

converge to zero, and if the term
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sup
R×I
‖projανβs,ν‖L2(Σ•) ≤ C

is uniformly bounded, then Theorem 4.2.1 applies (with the Sk all empty), and provides

us with a contradiction. It therefore suffices to rule out each of the following cases:

Case 1 ‖Fαν‖L∞(R×Y ) + ‖Faν‖L∞(R×Y ) →∞;

Case 2 ‖Fαν‖L∞(R×Y ) + ‖Faν‖L∞(R×Y ) → ∆ > 0;

Case 3 ‖Fαν‖L∞(R×Y ) + ‖Faν‖L∞(R×Y ) → 0,

but supR×I ‖projανβs,ν‖L2(Σ•) →∞.

We rule these out by showing that each leads to energy quantization. In section 4.3.2,

below, we will show that any energy quantization leads to a contradiction.

Case 1: Instantons on S4.

In this case we identify a point in R × Y where the curvature diverges (a blow-up

point). We will then conformally rescale in a small neighborhood of this point to show

that a non-trivial instanton on S4 bubbles off. The energy of such instantons cannot be

arbitrarily small, so this implies energy quantization for this case. Here are the details:

By passing to a subsequence, we may assume the L∞-norm of each curvature is

always achieved on Σi or Yi(i+1) for some i (same i for all ν):

‖Fαν‖L∞(R×I×Σi+1) + ‖Faν‖L∞(R×Yi(i+1)) = ‖Fαν‖L∞(R×Y ) + ‖Faν‖L∞(R×Y ).

Find points (sν , tν) ∈ R× I with

‖Fαν(sν ,tν)‖L∞(Σi+1) + ‖Faν(sν)‖L∞(Yi(i+1)) = ‖Fαν‖L∞(R×Y ) + ‖Faν‖L∞(R×Y ).
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This discussion is translation invariant, so we may suppose sν = 0. Also, by passing

to a subsequence we may suppose tν → t∞ ∈ I converges. We need to distinguish the

sub-cases when the blow-up point occurs in the cylindrical part I × Σi, and when it

occurs on the non-trivial part Yi(i+1):

Sub-case 1 For all but finitely many ν we have

‖Fαν(sν ,tν)‖L∞(Σi+1) ≥ ‖Faν(sν)‖L∞(Yi(i+1)) (4.23)

and t∞ 6= 0, 1;

Sub-case 2 For all but finitely many ν we have

‖Fαν(sν ,tν)‖L∞(Σi+1) ≤ ‖Faν(sν)‖L∞(Yi(i+1)) (4.24)

or (4.23) holds and t∞ = 0, 1.

Without loss of generality, we may suppose i = 1 and t∞ ∈ [0, 1).

In Sub-case 1, define rescaled connections Ãν in terms of its components as follows:

α̃ν(s, t) := α(ενs, ενt+ tν)|Σ2

φ̃ν(s, t) := ενφ(ενs, ενt+ tν)|Σ2

ψ̃ν(s, t) := ενψ(ενs, ενt+ tν)|Σ2

(4.25)

which we view as a connection defined onBε−1
ν η×Σ2 ⊆ C×Σ2, where η = 1

2 min {t∞, 1− t∞},

Br ⊂ C is the ball of radius r centered at zero, and we assume ν is large enough so

tν ≤ η.

In Sub-case 2 we take
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ãν(s) := aν(ενs)|Y12

p̃ν(s) := ενpν(ενs)|Y12

α̃ν(s, t) :=

 α(ενs,−ενt+ 1)|Σ1
on Σ1

α(ενs, ενt)|Σ2
on Σ2

φ̃ν(s, t) :=

 ενφ(ενs,−ενt+ 1)|Σ1
on Σ1

ενφ(ενs, ενt)|Σ2
on Σ2

ψ̃ν(s, t) :=

 ενψ(ενs,−ενt+ 1)|Σ1
on Σ1

ενψ(ενs, ενt)|Σ2
on Σ2

(4.26)

which we view as a connection defined on R×Y12(ε−1
ν ), where we are using the following

notation:5

X(r) := X ∪∂X [0, r)× ∂X, X∞ := X ∪∂X [0,∞)× ∂X. (4.27)

for a smooth manifold X with boundary ∂X and for r > 0.

Remark 4.3.1. There exists smooth structures on these spaces which are compatible

in the sense that the inclusions

X(r) ⊆ X(r′) ⊆ X∞ (4.28)

are smooth embeddings for r ≤ r′. If X has a metric g, then we will consider the metric

on X(r) and X∞ which is given by g on X and dt2 + g|∂X on the end. In particular,

the embeddings (4.28) become metric embeddings. This will be called the fixed metric

on the given manifold, and we denote its various norms by | · |, ‖ · ‖Lp, etc. If X is

5Strictly speaking, for this case we need to only consider these connections as being defined on
R×

(
Y12 ∪Σ2

[
0, ε−1

ν

)
× Σ2

)
. However, the next case requires that we consider them on the larger space

R× Y12(ε−1
ν ), so we do so here in an attempt to better streamline the discussion.
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equipped with a bundle B → X then we define bundles B(r) → X(r) and B∞ → X∞

in the obvious way. Note also that we have the following decomposition

R×X∞ = (R×X) ∪ (H× ∂X) . (4.29)

In both Sub-cases, by construction, the connections Ãν are ASD with respect to the

fixed metric, and have uniformly bounded energy

1

2

∥∥∥F
Ãν

∥∥∥2

L2
≤ CS(a−)− CS(a+).

Here the norm should be taken on the domain on which the connection is defined.

Furthermore, the energy densities are bounded from below:

‖F
Ãν
‖L∞ ≥ ‖Fα̃ν‖L∞ + ‖Fãν‖L∞

= ‖Fαν‖L∞ + ‖Faν‖L∞ .

(4.30)

In particular, the condition of Case 1 implies that

‖F
Ãν
‖L∞ −→∞.

Following the usual rescaling argument [41] [12, Section 9] (see also [30, Theorem 4.6.1]

for the closely-related case of J-holomorphic curves) we can conformally rescale in a

small neighborhood U of the blow-up point to obtain a sequence of finite energy instan-

tons with energy density bounded by 1 and defined on increasing balls in R4. By Uh-

lenbeck’s Strong Compactness Theorem 2.2.10, there is a subsequence that converges,

modulo gauge, in C∞ in all derivatives to a finite energy non-constant instanton Ã∞

on R4. By Uhlenbeck’s removable singularities theorem this extends to non-constant

instanton, also denoted by Ã∞, on a PSU(r)-bundle R → S4. Since Ã∞ is ASD and

non-constant we have
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0 <
1

2

∫
S4
|F
Ã∞
|2 =

1

2

∫
S4
〈F

Ã∞
∧ ∗F

Ã∞
〉

= −1

2

∫
S4
〈F

Ã∞
∧ F

Ã∞
〉

= q4(R) ∈ Z

is the PSU(r)-characteristic class. So 1 ≤ ‖F
Ã∞
‖2L2(S4) = lim

ν→∞
‖FAν‖2L2(U),εν

for every

neighborhood U of the blow-up point. In particular, we have energy quantization for

this case with ~ = 1.

Case 2: Instantons on non-compact domains.

This case is much the same as the previous, in that instantons near the blow-up

point bubble off. However, this time the geometry of the underlying spaces on which

these bubbles form can be more exotic. The key ingredient used to show that we have

energy quantization for these domains is Proposition 4.3.4, below.

Define Ãν exactly as in Case 1 above. Everything up to and including equation

(4.30) continues to hold. In particular,

lim inf ‖F
Ãν
‖L∞ ≥ ∆ > 0.

After possibly passing to a subsequence, the energy densities converge to some ∆′ ∈

[∆,∞]:

‖F
Ãν
‖L∞ −→ ∆′.

If ∆′ = ∞ then we are done by precisely the same analysis as in Case 1. So we may

suppose 0 < ∆′ < ∞, in which case we can apply Uhlenbeck’s Strong Compactness

Theorem 2.2.10 directly to the sequence Ãν , which therefore converges to a non-flat

finite-energy instanton Ã∞ on a bundle over one of the spaces R × Y∞12 or C × Σ2,

depending on where they blow-up occurs (see the discussion above Remark 4.3.1 for a

definition of Y∞12 ). We need to show that there is a minimum allowable energy
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∫
R×Y∞12

|FA|2 ≥ ~ > 0

for all non-flat instantons A on bundles over the domains C× Σ2 and R× Y∞12 .6

We begin by briefly recalling from [12] the case C × Σ2. This motivates the basic

approach for the (notationally more cumbersome) case R × Y∞12 . Fix a non-flat finite

energy instanton A on a bundle over C × Σ2. The basic idea is to introduce polar

coordinates on the C component in C× Σ2. This allows us to view A as being defined

on the cylinder R × S1 × Σ2
∼= C\ {0} × Σ2. By the usual argument (see section2.3),

the finite energy instanton A limits to flat connections on the cylindrical ends S1×Σ2,

at ±∞, and the energy of A is given by the difference of the Chern-Simons functional

applied to each of these limiting flat connections. To show the energy of non-flat

instantons is bounded from zero, it suffices to show that the Chern-Simons functional

only obtains discrete values. We prove this in Proposition 4.3.4, below. Also see Remark

4.3.5.

H× Σ2H× Σ2

�?

H× Σ2

R× Y12

H× Σ1

(a) Polar coordinates on C× Σ2. (b) Polar coordinates on R× Y∞12

In the case of instantons on R × Y∞12 , we want to do a similar thing by identifying

“polar coordinates” on R×Y∞12 , which will allow us to view this manifold as a cylinder

6There is nothing special about the particular subscripts in Σ2 and Y12 here. Indeed, these can
be replaced by any compact oriented surface-without-boundary Σ or 3-manifold-with-boundary Y ,
respectively.
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R×X for some closed oriented 3-manifoldX (to do this we will need to “cut” R×Y∞12 in a

way analogous to removing the origin when we make the identification C\ {0} ∼= R×S1).

These “polar coordinates” arise by exploiting the decomposition (4.29). In particular,

since ∂Y12 = Σ1 t Σ2 is disconnected, we can write

R× Y∞12 =
(
H× Σ1

)
∪ (R× Y12) ∪ (H× Σ2) .

The middle slice R× Y12 plays the same role here as {y-axis} ×Σ2 did in the previous

case.

Example 4.3.2. Suppose Y12 = I ×Σ2 is a cylinder. If we imagine letting the volume

on I go to zero, then we recover exactly the case C× Σ2 described above.

The “polar coordinates” we use will restrict to the usual polar coordinates on each

copy of H, patched together along the middle strip R × Y12. Explicitly, we define

these coordinates as follows: Begin by writing a connection A in the usual Cartesian

coordinates as

A =

 a+ p ds, R× Y12

α+ φ ds+ ψ dt H× Σ1 ∪ Σ2

On H the polar coordinates are (s, t) = (eτ cos(θ), eτ sin(θ)), with τ ∈ R and θ ∈ [0, π].

In these coordinates the connection A takes the form

A|H×Σ1∪Σ2
= α(τ, θ) + φ(τ, θ) dτ + ψ(τ, θ) dθ.

The relationship between the two coordinate expressions can be written in matrix no-

tation as


α(τ, θ)

φ(τ, θ)

ψ(τ, θ)

 =


1 0 0

0 eτ cos(θ) eτ sin(θ)

0 −eτ sin(θ) eτ cos(θ)




α(eτ cos(θ), eτ sin(θ))

φ(eτ cos(θ), eτ sin(θ))

ψ(eτ cos(θ), eτ sin(θ))

 (4.31)

The ASD relations in polar coordinates become
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∂τα− dαφ+ ∗
(
∂θα− dαψ

)
= 0

∂τψ − ∂θφ−
[
ψ, φ

]
+ e2τ ∗ Fα = 0. (4.32)

The energy takes the form

1

2
‖FA‖2L2(R×Y∞12 ) =

∫ ∞
−∞

∫ π

0

{
‖∂τα− dαφ‖2L2(Σ1tΣ2)

+ 1
2

(
1 + e2τ

)
‖Fα‖2L2(Σ1tΣ2)

}
dθ dτ

+

∫ ∞
−∞
‖Fa‖2L2(Y12) ds

We then view R × Y∞12 \ {0} × Y12 as a cylinder in the following way: The domain

R× Y∞12 \ {0} × Y12, is foliated by a family of closed connected 3-manifolds, where each

leaf of this foliation is diffeomorphic to7

X := Y 12 ∪Σ1 ([0, π]× Σ1) ∪Σ1 Y12 ∪Σ2 ([0, π]× Σ2) ∪Σ2 . (4.33)

This is a cyclic decomposition, so the right side wraps around and glues onto the left

side, just as in (2.2). Then polar coordinates provide a map

ι : R×X ↪→ R× Y∞12 ,

which is an embedding onto the complement of {0} × Y12 in R× Y∞12 (the R in R×X

is the radial parameter τ , whereas the R in R× Y∞12 is the parameter s).

7Strictly speaking, X is only a C1-manifold. It is perhaps easiest to see this by reducing the
dimension. So suppose Y12 = I is an interval, which means we take the Σi to be points. Then X
is obtained by gluing the end points of two semi-circles to the endpoints of two line segments. The
result is a topological circle. Consider the tangent lines to the semi-circles near the endpoints. These
tangent lines approach a horizontal line at the endpoints, but only in a C0 sense. So we only get a C1

manifold X. To get a C∞ manifold, one would need to perturb the polar coordinates slightly so that
these tangent lines converge in C∞. We leave the details to the reader.
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Y 12

Y12

[0, π]× Σ1[0, π]× Σ2

X

Example 4.3.3. As in example 4.3.2, suppose Y12 = I × Σ2 is the trivial cobordism.

Then R× Y∞12 = C×Σ2, and X = S1 ×Σ2. In this case, the foliation is provided by a

family of embeddings S1 × Σ1 ↪→ C × Σ1, defined by embedding S1 ↪→ C as a circle of

some radius τ > 0.

In our situation, Y12 is not a trivial cobordism, but the discussion of the previous

example carries through. Namely, the polar coordinates on H×Σ1∪Σ2 provide a family

of embeddings ιτ : X ↪→ R× Y∞12 . For each τ > 0, the restriction of A to the image of

ιτ defines a continuous connection a(τ) on the closed oriented 3-manifold X. In terms

of the polar coordinates defined above, we can write

a(τ) =



a(−eτ ) on Y 12

α(τ, ·) + ψ(τ, ·) dθ|Σ1 on [0, π]× Σ1

a(eτ ) on Y12

α(τ, ·) + ψ(τ, ·) dθ|Σ2 on [0, π]× Σ2

Then if A is an instanton on R× Y∞12 , we have

1

2

∫
R×Y∞12

|FA|2 =

∫ ∞
−∞

∫
X
〈Fa(τ) ∧ ∂τa(τ)〉 dτ

=

∫ ∞
−∞

{∫
X
〈da0(a(τ)− a0) ∧ ∂τa(τ)〉

+
1

2
〈[a(τ)− a0 ∧ a(τ)− a0] ∧ ∂τa(τ)〉

}
dτ

=

∫ ∞
−∞

d

dτ
CSa0(a(τ)) dτ

(4.34)
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for any fixed reference connection a0 on X, which we may assume is flat.

We want to be able to say that there are limiting flat connections a± over X with

lim
τ→±∞

a(τ) = a±.

This would be immediate if A pulled back under

ι : R×X ↪→ R× Y∞12

to an instanton on R ×X with respect to the usual metric on R. However, since A is

an instanton on R × Y∞12 with respect to a product metric ds2 + g, its pullback ι∗A is

an instanton on R×X with respect to the pulled back metric

e2τdτ2 + g′ = ι∗(ds2 + g),

and this is enough to conclude that a(τ) limits to a flat connection at +∞. Indeed,

consider the restrictions

An := ι∗A|[n,n+1]×X

for n large. View each An as being defined on [0, 1] × X. Then, with respect to the

fixed metric dτ2 + g′ on [0, 1]×X, this satisfies

‖FAn‖
2
L2([0,1]×X),dτ2+g′ = ‖Fa‖2L2([n,n+1]×X),dτ2+g′ + ‖∂a− dap‖

2
L2([n,n+1]×X),dτ2+g′

≤ e−n
(
‖Fa‖2L2,dτ2+g′ + ‖∂a− dap‖

2
L2,ι∗(ds2+g)

)

≤ e−n‖FA‖L2,ds2+g.

Since A has finite energy, this shows ‖FAn‖
2
L2([0,1]×X),dτ2+g′ converges to zero. By

Uhlenbeck’s weak compactness theorem, it follows that a subsequence of the An con-

verges, after composing with suitable gauge transformations, to a flat connection A
+

on [0, 1]×X as n→∞. Write A
+

= a+ + p+dτ . If we assume that A is in radial gauge
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(i.e., dτ -component equal to zero) then p+ = 0, and a+ is independent of the τ variable.

By this same argument, every subsequence of An has subsequence which converges to

a flat connection. If all flat connection on X are non-degenerate (i.e., isolated, mod-

ulo gauge), then these limiting flat connections must all be the same, and so the full

sequence An converges to flat connection a+, after composing with a suitable sequence

of gauge transformations. Since the An are restrictions of the same connection, these

gauge transformations can be chosen to piece together to form a single continuous gauge

transformation on [0,∞)×X. This shows that a(τ) converges

lim
τ→∞

a(τ) = a+

to some flat connection.

At first glance, this argument breaks down when one tries to repeat the process as

τ → −∞ (since e−τ > 1 for τ << 0, our energy bound from before fails). Geometrically,

however, there should be no issue at −∞ because this corresponds to the cut {0}×Y12,

and A extends continuously over the cut. There are various ways to deal with this issue,

and we follow an argument similar to the one given by Wehrheim in [48]. The idea is

to put A in a suitable gauge, and to find a suitable reference connection a0, for which

lim
τ→−∞

CSa0(a(τ)) = 0.

We assume that A is in a gauge such that ψ = 0 on H×Σ1tΣ2, at least for τ << 0. This

is a ‘θ-temporal gauge’. (It may not be possible to do this for large τ since above we

needed A to be in radial (τ -temporal) gauge for large τ .) We assume that a0 satisfies a

similar condition: Over [0, π]×Σ1tΣ2 ⊂ X we write our flat connection in coordinates

as a0 = α0 +ψ0 dθ. Then by acting on it with a suitable gauge transformation, we may

assume ψ0 = 0.

Setting µ(s) = a(s)− a0|Y12 , we have
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CSa0(a(τ)) =
1

2

∫
Y 12

〈da0µ(τ) ∧ µ(−eτ )〉+
1

3
〈[µ(−eτ ) ∧ µ(−eτ )] ∧ µ(−eτ )〉

+
1

2

∫
Y12

〈da0µ(eτ ) ∧ µ(eτ )〉+
1

3
〈[µ(eτ ) ∧ µ(eτ )] ∧ µ(eτ )〉

+

∫ π

0

∫
Σ1tΣ2

1

2
〈∂θα(τ, θ) ∧ α(τ, θ)− α0(θ)〉+ 〈Fα(τ,θ), ψ(τ, θ)〉 dθ

The first two integrals on the right cancel as τ → −∞, because A extends continuously

over {0} × Y12. Likewise, the third term goes to zero as well since we have assumed

ψ(τ, θ) = 0, and (4.31) shows that ∂θα(τ, θ) converges to zero as τ approaches −∞.

We therefore have

1

2

∫
R×Y∞12

|FA|2 = CSa0(a+)

for some flat connections a0, a
+. If A is not flat, then Proposition 4.3.4 below shows

that there is some ~ > 0 (depending only on the bundle) with

1

2

∫
R×Y∞12

|FA|2 ≥ ~.

This finishes case 2.

Proposition 4.3.4. Let Y be a closed, connected, oriented 3-manifold, and Q → Y

a principal PSU(r)-bundle. Fix a reference connection a0 ∈ A1,2(Q). Then when

restricted to the flat connections, the Chern-Simons functional CSa0 : A1,2
flat(Q) → R

obtains only discrete values. Moreover, the set

{
CSa0(a)

∣∣∣a, a0 ∈ A1,2
flat(Q)

}
is discrete.

Remark 4.3.5. In the case where the group is PSU(2) and Y is the mapping torus of

some surface diffeomorphism, Dostoglou and Salamon showed the stronger result that

CSa0 only takes on values in CPSU(2)Z [12]. In [48], Wehrheim extended this to other
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Lie groups (but still only for mapping tori) by showing that each flat connection can be

gauge transformed to one with Chern-Simons value zero.

Proof of Proposition 4.3.4. We prove this in three steps.

Step 1: The path-connected components of A1,2
flat(Q) are the connected components.

It suffices to show that A1,2
flat(Q) is locally path-connected. The Yang-Mills heat flow

provides a nice proof of this. For i = 0, 1, let ai ∈ A1,2
flat(Q). We want to show that if a0

and a1 are close enough, then they are connected by a path in A1,2
flat(Q). Consider the

straight-line path γ(t) = a0 + t(a1 − a0), which lies in A1,2(Q). Then

Fγ(t) = tda0(a1 − a0) +
t2

2
[a1 − a0 ∧ a1 − a0] ,

and so

‖Fγ(t)‖L2 ≤ ‖da0(a1 − a0)‖L2 + ‖a1 − a0‖2L4

≤ C
(
‖a1 − a0‖W 1,2 + ‖a1 − a0‖2W 1,2

)
since ‖a1 − a0‖L4 ≤ C ′‖a1 − a0‖W 1,2 by Sobolev embedding. Let εQ be the constant

from (3.38), and take δQ := min {1, εQ/2C}. Then γ(t) is in the realm of the heat flow

map, HeatQ, whenever ‖a1 − a0‖W 1,2 < δQ. In particular,

at := HeatQ(γ(t)) ∈ A1,2
flat(Q)

is a continuous path from a0 to a1, as desired (this uses the fact that HeatQ is the

identity on A1,2
flat(Q)).

Step 2: The restriction of the Chern-Simons functional

CSa0 : A1,2
flat(Q) −→ R

is locally constant. In particular, it descends to a map

CSa0 : M(Q) = A1,2
flat(Q)/G2,2

0 (Q) −→ R.



157

Suppose a : I → A1,2
flat(Q) is a smooth path. Set γ(t) = a(t)− a0. Then we have

d
dtCSa0(a(t)) =

1

2

d

dt

∫
Y

2〈Fa0 ∧ γ(t)〉+ 〈da0γ(t) ∧ γ(t)〉+
1

3
〈[γ(t) ∧ γ(t)] ∧ γ(t)〉

=
1

2

∫
Y

{
2〈Fa0 ∧ γ′(t)〉+ 〈da0γ

′(t) ∧ γ(t)〉+ 〈da0γ(t) ∧ γ′(t)〉

+〈[γ(t) ∧ γ(t)] ∧ γ′(t)〉}

=
1

2

∫
Y
〈Fa(t) ∧ γ′(t)〉

= 0.

Hence CSa0(a(0)) = CSa0(a(1)).

Step 3: For each gauge transformation u ∈ G2,2(Q) (not necessarily in the identity

component), and each flat connection a ∈ A1,2
flat(Q), we have

CSa0(u∗a)− CSa0(a) = CPSU(r) deg(u),

for some constant CPSU(r) depending only on PSU(r) and choice of metric on its Lie

algebra.

To see this, first define the bundle

Qu := I ×Q/({0} , q) ∼ ({1} , u(q)).

This is a bundle over S1 × Y . Here we identify S1 = R/Z. The path of connections

a(·) : t 7−→ a+ t(u∗a− a)

descends to give a connection A on Qu. From the definitions, we have
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CSa0(u∗a)− CSa0(a) =

∫ 1

0

∫
Y
〈Fa(t) ∧ ∂ta(t)〉 dt

=

∫
S1×Y

〈FA ∧ FA〉

= CPSU(r)q4(Qu)

= CPSU(r) deg(u),

where characteristic class q4 is as in section 2.2.1.

Combining steps 2 and 3 shows that CSa0 descends to a map

C̃Sa0 : M(Q)/π0(G2,2(Q)) −→ S1 = R/CGZ

which is locally constant. Therefore, it only depends on the number of connected

components of M(Q)/π0(G2,2(Q)). By Remark 2.2.17, the space is M(Q)/π0(G2,2(Q))

is compact, so there are only finitely many components. This shows that C̃Sa0 only

obtains finitely many values, and so CSa0 only obtains discrete values. This proves the

first part of the proposition.

The second part is similar: Notice that it follows from the definition that

CSa0(a) = −CSa(a0),

and so if a0 and a are both flat and u is a gauge transformation, then

CSu∗a0(a)− CSa0(a) = CSa(a0)− CSa(u∗a0) = CPSU(r) deg(u).

So we again obtain a well-defined map

M(Q)×M(Q) −→ R

sending ([a] , [a0]) to CSa0(a), and as before this descends to a circle-valued map
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M(Q)/π0(G2,2)×M(Q)/π0(G2,2) −→ S1.

Since M(Q)/π0(G2,2)×M(Q)/π0(G2,2) is compact, we are done by the same argument

as before.

Case 3: Holomorphic spheres and disks in M(P ).

In this case, we rescale around the blow-up point to find that a holomorphic sphere

or disk bubbles off in the moduli space of flat connections. However, these rescaled con-

nections do not satisfy a fixed ASD equation, and so Uhlenbeck’s Strong Compactness

Theorem does not apply, as it did in Cases 1 and 2. One could try to use Uhlenbeck’s

Weak Compactness, but it is too weak to conclude that the bubbles are non-constant,

as we were able to do easily in the previous two cases. The technique of Dostoglou

and Salamon [13] applies here to show that the holomorphic spheres are non-constant.

However, due to the presence of boundaries, it is not clear how to extend their analysis

to apply to holomorphic disks. In our approach, the non-triviality of the holomorphic

disks stems directly from item (v) in Theorem 4.2.1 (or, rather, a variation of this

proposition suited to other domains, as in Remark 4.2.2 (a)).

The condition of this case implies that

cν := sup
R×I
‖projανβs,ν‖L2(Σi) −→∞

for some i. Find points (sν , tν) ∈ R× I with

‖projανβs.ν(sν , tν)‖L2(Σi) = cν .

(Such points exist since βs,ν decays at ∞, due to the finite energy; alternatively, one

could replace cν by cν/2, without changing the argument.) We may translate so that

sν = 0, and pass to a subsequence so that tν → t∞ ∈ I converges. The two relevant

subcases to consider are as follows:
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Sub-case 1 t∞ ∈ (0, 1)

Sub-case 2 t∞ ∈ {0, 1}

We may assume, without loss of generality, that i = 2 and, if Sub-case 2 holds, that

t∞ = 0. Define rescaled connections Âν using (4.25) and (4.26), except with every εν

replaced by c−1
ν , and with the Sub-cases here replacing the ones in Case 1. We will prove

we have energy quantization in Sub-case 2, by showing a holomorphic disk bubbles off.

Sub-case 1 is similar, but we get a holomorphic sphere instead and we leave the details

to the reader.

The rescaling for Sub-case 2 is such that we view the connections Âν as being defined

on R×Y12(cν) (see the discussion above Remark 4.3.1). The components of FÂν satisfy

β̂s,ν + ∗β̂t,ν = 0, γ̂ = −ε̂−2
ν ∗ Fα̂ν , b̂s,ν = −ε̂−1

ν Fâν ,

where ε̂ν := cνεν . It may not be the case that ε̂ν is decaying to zero; this is replaced by

the assumption in this case that the slice-wise curvatures converge to zero in L∞:

‖Fα̂ν‖L∞ = ‖Fαν‖L∞ , ‖Fâν‖L∞ = ‖Faν‖L∞ .

We also have

‖projα̂ν β̂s,ν(0, 0)‖L2(Σ2) = 1. (4.35)

Then exactly the same proof as in Theorem 4.2.1 (see Remark 4.2.2 (a)) shows that,

after possibly passing to a subsequence, there exists a sequence of gauge transformations

uν ∈ G2,q
loc (H× P•), and a limit connection Â∞ ∈ A1,q

loc(R×Q∞12) satisfying

(i) β̂s,∞ + ∗β̂t,∞ = 0

(ii) Fα̂∞ = 0, Fâ∞ = 0
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(iii) supK ‖Ad(uν)projα̂ν β̂s,ν − β̂s,∞‖L2(Σ•)
ν−→ 0

for all compact K ⊂ H. Let ΠPi : Aflat(Pi)→ M(Pi) and ΠQ12 : Aflat(Q12)→ M(Q12)

be the projections to the moduli spaces. Then

v∞ := (ΠP1(α̂∞|Σ1),ΠP2(α̂∞|Σ2)) : H −→M(P1)×M(P2)

is a holomorphic curve with Lagrangian boundary conditions

R −→M(Q12) ↪→M(P1)×M(P2)

determined by a∞ : R→ A1,q
flat(Q12). Furthermore, v∞ has bounded energy

∫
H
|∂sv∞|2 =

∫
H×Σ1tΣ2

|β̂s,∞|2

≤ lim infν ‖βs,ν‖2L2(R×Y )

= lim infν ‖βs,ν‖2L2(R×Y ),εν

≤ lim infν ‖FAν‖2L2(R×Y ),εν

= 2 (CSa0(a−)− CSa0(a+))

(4.36)

In particular, the removal of singularities theorem [30, Theorem 4.1.2 (ii)] applies and so

v∞ extends to a holomorphic disk v∞ : D→M(P1)×M(P2) with Lagrangian boundary

conditions. Condition (iii) above combines with (4.35) to show that

|∂sv∞(0, 0)| ≥ ‖projα̂∞(0,0)β̂s,∞(0, 0)‖L2(Σ•)

= lim
ν→∞

‖projα̂ν(0,0)β̂s,ν(0, 0)‖L2(Σ•)

= 1.



162

In particular, v∞ is non-constant. We have energy quantization for non-constant holo-

morphic disks [30, Proposition 4.1.4], which takes care of Case 3.

4.3.2 Energy quantization implies the Main Theorem

Here we show that any energy quantization leads to a contradiction. By the assumptions

of the Main Theorem, we only consider connections A = Aν which satisfy the ε-ASD

equations and limit to fixed flat connection a± at ±∞. Any such connection has energy

which depends only on the a±:

YMε(A) = CSa0(a−)− CSa0(a+),

where

YMε(A) :=
1

2

∫
R×Y
〈FA ∧ ∗εFA〉

is the total energy, and a0 is any fixed reference connection on Y . In particular, the

energy is finite, so energy quantization can only occur for a finite number of points

(from cases 1 and 2) or slices (from case 3). Denote the collection of these points and

slices by {Sk}Kk=1. On the complement of the Sk, the hypotheses of Theorem 4.2.1

are satisfied, and so there is some limiting broken trajectory
(
A1, . . . , AJ

)
on R × Y ,

and tuple of flat connection (a0 = a−, a1, . . . , aJ = a+), where each Aj descends to a

holomorphic curve with Lagrangian boundary conditions:

vj : R× I −→M(P1)× . . .×M(PN ).

Moreover, vj lifts to a connection on R × Y which converges to aj−1 and aj at −∞

and ∞, respectively. By the energy bound (4.11) and the energy quantization, we

immediately have
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∑
j

E(vj) =
1

2

∫
R×I×Σ•

|∂sα∞ − dα∞φ∞|2

≤ −K~ + lim supν YM(Aν)

= −K~ + (CSa0(a−)− CSa0(a+))

(4.37)

To achieve the desired contradiction, we assume the conjectural index relation

µsymp(a, a′) = µinst(a, a
′)

for flat connections a, a′. Then the index formula (2.31) gives

J∑
j=1

µsymp(aj−1, aj) =
J∑
j=1

µinst(a
j−1, aj)

=
J∑
j=1

1

2
(ηaj − ηaj−1) + C

(
CS(aj−1)− CS(aj)

)

=
J∑
j=1

1

2
(ηaj − ηaj−1) + CE(vj)

≤ −KC~ +
1

2
(ηa+ − ηa−) + CYM(Aν)

= −KC~ +
1

2
(ηa+ − ηa−) + C

(
CS(a−)− CS(a+)

)

= −KC~ + µinst(a
−, a+)

= −KC~ + 1,

If the number of bubbles K is positive then, since µsymp only takes on integer values,

this would imply that µsymp(aj−1, aj) ≤ 0 for some j. This is not possible since this

would mean that vj descends to a moduli space of negative dimension (quotienting by

R reduces the dimension by 1). This shows that K = 0 and so no bubbling can occur.
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Similarly, if J ≥ 2, then µsymp(aj−1, aj) ≤ 0 for some j, which cannot happen for the

same reason. This shows that the broken trajectory (A1, . . . , AJ) consists of a single

trajectory A1, which finishes the proof of Theorem 2.4.1.
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