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Set-up

X = a connected, oriented 4-manifold with cylindrical ends:

X = X0 ∪N (N × [0,∞))

E = a G -bundle over X

Let’s take G = SU(2).

A connection A is ASD if F+
A = 0.

General goal: study

M := {ASD connections on E} / {gauge} .
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mASD connections: Motivation

Difficulty:

The space M is not cut out by Fredholm equations, in general.

M

This can be understood by the presence of asymptotic limits (flat
connections) that are degenerate.
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mASD Connections: Motivation

A. Floer’s fix:

Perturb the ASD equation. F+
A = 0 F+

A = σ(A)

M Mσ
/o/o/o/o/o/o/o >

Alternative fix by J. Morgan, T. Mrowka, D. Ruberman (’94): Thicken.
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mASD Connections: Overview

M
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F+
A = 0 F+

A − βF
+
j(A) = 0/o/o/o/o/o/o/o >

The map j factors through a finite-dimensional manifold; it
parametrizes the relevant connections by their asymptotic behavior.

If A is ASD (and sufficiently close to a reference connection), then
βF+

j(A) = 0.

X
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mASD Connections: Overview

Upshot: The operator A 7→ F+
A − βF

+
j(A) is Fredholm* and maps ASD

connections** to zero.

* = in a Coulomb slice
** = assuming they are sufficiently close to a reference connection

A connection A is modified ASD (mASD) if

F+
A − βF

+
j(A) = 0.

Then we consider the space:

M̂ := {mASD connections} ∩ {Coulomb slice} .
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mASD Connections: Overview

A is mASD if F+
A − βF

+
j(A) = 0

M̂ := {mASD connections} ∩ {Coulomb slice}

This depends on various auxiliary choices:

a flat connection Γ on N;

a connection A′ on X defining the Coulomb slice;

a bunch of other things (e.g., cut-off functions) collectively called
“thickening data” and denoted T .

When these choices are relevant, write

M̂(Γ,A′, T ), M̂(Γ,A′), etc.
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mASD Connections: Relation to the ASD moduli space
Morgan–Mrowka–Ruberman show the M̂(Γ,A′, T ) cover the ASD moduli
space M:

M

M̂(Γa,A
′
a, Ta)M̂(Γb,A

′
b, Tb)

M̂(Γc ,A
′
c , Tc)
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Updated general goal: Try to do for mASD connections (M̂) what has
been done for ASD connections (M).

Some important differences between the ASD and mASD settings:

M̂ is a local object;

the operator A 7→ F+
A − βF

+
j(A) is not gauge equivariant.

What is the same? Gluing! (mostly)
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Main Results

Theorem (D–Hambleton ’20)

Assume b+2 (X ) = 0. Then there is an mASD connection on E that is
irreducible and regular. This can be chosen to have relative second Chern
class arbitrarily close to 1.

Corollary

Assume the 3-manifold N is a circle bundle over a surface, with positive
euler class. Then the mASD connection from the above theorem is ASD.

Example: Suppose X0 is diffeomorphic to the total space of a disk bundle
over a surface, with positive euler class. Then this implies the existence of
finite-energy ASD connections on X (for any metric that decays on the
end to a cylindrical metric).
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Proofs of the Main Results

A is mASD if F+
A − βF

+
j(A) = 0

M̂ := {mASD connections} ∩ {Coulomb slice}

Corollary

Assume the 3-manifold N is a circle bundle over a surface, with positive
euler class. Then the mASD connection from the above theorem is ASD.

Proof.

The connection j(A) is ASD for all relevant A. (Observation by
Morgan–Mrowka–Ruberman.)

David L. Duncan (JMU) Gluing mASD connections Gauge Theory Virtual 10 / 20



Proofs of the Main Results

A is mASD if F+
A − βF

+
j(A) = 0

M̂ := {mASD connections} ∩ {Coulomb slice}

Corollary

Assume the 3-manifold N is a circle bundle over a surface, with positive
euler class. Then the mASD connection from the above theorem is ASD.

Proof.

The connection j(A) is ASD for all relevant A. (Observation by
Morgan–Mrowka–Ruberman.)

David L. Duncan (JMU) Gluing mASD connections Gauge Theory Virtual 10 / 20



Proofs of the Main Results
A is mASD if F+
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Theorem (D–Hambleton ’20)

Assume b+2 (X ) = 0. Then there is an mASD connection on E that is
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Glue.
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Proofs of the Main Results (a little more detail)

Gluing comes down to an implicit function theorem argument:

Linearize
the defining equations at the trivial connection; we need the linearization
to be Fredholm and surjective.

Why can’t this be done purely in the ASD setting?

The linearization of the ASD operator is the map
d+ : Ω1(X , g)→ Ω+(X , g), and we should extend this to appropriate
Sobolev completions, e.g.:

d+ : L21(Ω1) −→ L2(Ω+).
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Proofs of the Main Results (a little more detail)

The linearization of the ASD operator is the map d+ : L21(Ω1) −→ L2(Ω+).

Lockhart–McOwen: When H1(N) 6= 0, this is not Fredholm* . . . but this
is*:

d+ : L21,δ(Ω1) −→ L2δ(Ω+) (for most δ).

* = in a Coulomb slice

Morgan–Mrowka–Ruberman provide a long exact sequence

. . .→ H1(N)→ coker(d+)δ → H2(Eδ)→ 0.

where dim(H2(Eδ)) = b+(X ). In fact, H2(Eδ) is the cokernel of the
mASD operator.

Summary: When H1(N) 6= 0, then the hypothesis that b+ = 0 is generally
not enough to use ASD connections alone. However, the space of mASD
connections is big enough.
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An Extension: Families of mASD Connections

It would be nice to allow the gluing point to vary.

This would give a (partial) compactification.

Difficulty: Moving the gluing point changes the Coulomb slice.

M̂ = {mASD connections} ∩ {Coulomb slice}

. . . and the space of mASD connections is NOT gauge-invariant!

Resolution: Use the implicit function theorem again.

David L. Duncan (JMU) Gluing mASD connections Gauge Theory Virtual 14 / 20



An Extension: Families of mASD Connections

It would be nice to allow the gluing point to vary.

This would give a (partial) compactification.

Difficulty: Moving the gluing point changes the Coulomb slice.

M̂ = {mASD connections} ∩ {Coulomb slice}

. . . and the space of mASD connections is NOT gauge-invariant!

Resolution: Use the implicit function theorem again.

David L. Duncan (JMU) Gluing mASD connections Gauge Theory Virtual 14 / 20



An Extension: Families of mASD Connections

It would be nice to allow the gluing point to vary.

This would give a (partial) compactification.

Difficulty: Moving the gluing point changes the Coulomb slice.

M̂ = {mASD connections} ∩ {Coulomb slice}

. . . and the space of mASD connections is NOT gauge-invariant!

Resolution: Use the implicit function theorem again.

David L. Duncan (JMU) Gluing mASD connections Gauge Theory Virtual 14 / 20



An Extension: Families of mASD Connections

It would be nice to allow the gluing point to vary.

This would give a (partial) compactification.

Difficulty: Moving the gluing point changes the Coulomb slice.

M̂ = {mASD connections} ∩ {Coulomb slice}

. . . and the space of mASD connections is NOT gauge-invariant!

Resolution: Use the implicit function theorem again.

David L. Duncan (JMU) Gluing mASD connections Gauge Theory Virtual 14 / 20



An Extension: Families of mASD Connections

It would be nice to allow the gluing point to vary.

This would give a (partial) compactification.

Difficulty: Moving the gluing point changes the Coulomb slice.

M̂ = {mASD connections} ∩ {Coulomb slice}

. . . and the space of mASD connections is NOT gauge-invariant!

Resolution: Use the implicit function theorem again.

David L. Duncan (JMU) Gluing mASD connections Gauge Theory Virtual 14 / 20



An Extension: Families of mASD Connections

It would be nice to allow the gluing point to vary.

This would give a (partial) compactification.

Difficulty: Moving the gluing point changes the Coulomb slice.

M̂ = {mASD connections} ∩ {Coulomb slice}

. . . and the space of mASD connections is NOT gauge-invariant!

Resolution: Use the implicit function theorem again.

David L. Duncan (JMU) Gluing mASD connections Gauge Theory Virtual 14 / 20



Gluing Families

Assume X = X1#X2.
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Gluing Families

X = X1#X2.

Fix precompact open sets

G1 ⊆ M̂reg (A′1), G2 ⊆ M̂reg (A′2).

The A′1 and A′2 preglue to make A′ = A′(A′1,A
′
2) on X . For

(A1,A2) ∈ G1 × G2, let

J(A1,A2) ∈ M̂reg (A′)

be the glued connection on X .

Ideally, we would want to view J as a function from G1 × G2 into a fixed
mASD space. However, the Coulomb slice for J(A1,A2) depends on
(A1,A2) . . . Instead, turn J into a section of a bundle.
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Gluing Families
J(A1,A2) = mASD connection on X given by gluing A1 and A2

Set
E :=

{
(A1,A2,A)

∣∣∣ Ak ∈ Gk , A ∈ M̂reg (J(A1,A2))
}
.

Let Π : E → G1 × G2 be the projection. Then

Ψ(A1,A2) := (A1,A2, J(A1,A2))

is a section of Π.

Theorem (D–Hambleton ’20)

(a) There is a neighborhood U ⊆ E of the image of Ψ so that the
restriction Π|U : U → G1 × G2 is a locally trivial fiber bundle (with fiber an
open subset of M̂reg (Aref ) for some Aref ).

(b) For every point in G1 × G2, there is a neighborhood V ⊆ G1 × G2 and
a smooth map

Φ : V −→ M̂reg (Aref )

that is a diffeomorphism onto an open subset of the codomain.

David L. Duncan (JMU) Gluing mASD connections Gauge Theory Virtual 17 / 20



Gluing Families
J(A1,A2) = mASD connection on X given by gluing A1 and A2

Set
E :=

{
(A1,A2,A)

∣∣∣ Ak ∈ Gk , A ∈ M̂reg (J(A1,A2))
}
.

Let Π : E → G1 × G2 be the projection. Then

Ψ(A1,A2) := (A1,A2, J(A1,A2))

is a section of Π.

Theorem (D–Hambleton ’20)

(a) There is a neighborhood U ⊆ E of the image of Ψ so that the
restriction Π|U : U → G1 × G2 is a locally trivial fiber bundle (with fiber an
open subset of M̂reg (Aref ) for some Aref ).

(b) For every point in G1 × G2, there is a neighborhood V ⊆ G1 × G2 and
a smooth map

Φ : V −→ M̂reg (Aref )

that is a diffeomorphism onto an open subset of the codomain.

David L. Duncan (JMU) Gluing mASD connections Gauge Theory Virtual 17 / 20



Gluing Families
J(A1,A2) = mASD connection on X given by gluing A1 and A2

Set
E :=

{
(A1,A2,A)

∣∣∣ Ak ∈ Gk , A ∈ M̂reg (J(A1,A2))
}
.

Let Π : E → G1 × G2 be the projection.

Then

Ψ(A1,A2) := (A1,A2, J(A1,A2))

is a section of Π.

Theorem (D–Hambleton ’20)

(a) There is a neighborhood U ⊆ E of the image of Ψ so that the
restriction Π|U : U → G1 × G2 is a locally trivial fiber bundle (with fiber an
open subset of M̂reg (Aref ) for some Aref ).

(b) For every point in G1 × G2, there is a neighborhood V ⊆ G1 × G2 and
a smooth map

Φ : V −→ M̂reg (Aref )

that is a diffeomorphism onto an open subset of the codomain.

David L. Duncan (JMU) Gluing mASD connections Gauge Theory Virtual 17 / 20



Gluing Families
J(A1,A2) = mASD connection on X given by gluing A1 and A2

Set
E :=

{
(A1,A2,A)

∣∣∣ Ak ∈ Gk , A ∈ M̂reg (J(A1,A2))
}
.

Let Π : E → G1 × G2 be the projection. Then

Ψ(A1,A2) := (A1,A2, J(A1,A2))

is a section of Π.

Theorem (D–Hambleton ’20)

(a) There is a neighborhood U ⊆ E of the image of Ψ so that the
restriction Π|U : U → G1 × G2 is a locally trivial fiber bundle (with fiber an
open subset of M̂reg (Aref ) for some Aref ).

(b) For every point in G1 × G2, there is a neighborhood V ⊆ G1 × G2 and
a smooth map

Φ : V −→ M̂reg (Aref )

that is a diffeomorphism onto an open subset of the codomain.

David L. Duncan (JMU) Gluing mASD connections Gauge Theory Virtual 17 / 20



Gluing Families
J(A1,A2) = mASD connection on X given by gluing A1 and A2

Set
E :=

{
(A1,A2,A)

∣∣∣ Ak ∈ Gk , A ∈ M̂reg (J(A1,A2))
}
.

Let Π : E → G1 × G2 be the projection. Then

Ψ(A1,A2) := (A1,A2, J(A1,A2))

is a section of Π.

Theorem (D–Hambleton ’20)

(a) There is a neighborhood U ⊆ E of the image of Ψ so that the
restriction Π|U : U → G1 × G2 is a locally trivial fiber bundle (with fiber an
open subset of M̂reg (Aref ) for some Aref ).

(b) For every point in G1 × G2, there is a neighborhood V ⊆ G1 × G2 and
a smooth map

Φ : V −→ M̂reg (Aref )

that is a diffeomorphism onto an open subset of the codomain.

David L. Duncan (JMU) Gluing mASD connections Gauge Theory Virtual 17 / 20



Gluing Families
J(A1,A2) = mASD connection on X given by gluing A1 and A2

Set
E :=

{
(A1,A2,A)

∣∣∣ Ak ∈ Gk , A ∈ M̂reg (J(A1,A2))
}
.

Let Π : E → G1 × G2 be the projection. Then

Ψ(A1,A2) := (A1,A2, J(A1,A2))

is a section of Π.

Theorem (D–Hambleton ’20)

(a) There is a neighborhood U ⊆ E of the image of Ψ so that the
restriction Π|U : U → G1 × G2 is a locally trivial fiber bundle (with fiber an
open subset of M̂reg (Aref ) for some Aref ).

(b) For every point in G1 × G2, there is a neighborhood V ⊆ G1 × G2 and
a smooth map

Φ : V −→ M̂reg (Aref )

that is a diffeomorphism onto an open subset of the codomain.

David L. Duncan (JMU) Gluing mASD connections Gauge Theory Virtual 17 / 20



Gluing Families

Theorem (D–Hambleton ’20)

(a) There is a neighborhood U ⊆ E of the image of Ψ so that the
restriction Π|U : U → G1 × G2 is a locally trivial fiber bundle (with fiber an
open subset of M̂reg (Aref ) for some Aref ).
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Gluing Families

Theorem (D–Hambleton ’20)

(b) For every point in G1 × G2, there is a neighborhood V ⊆ G1 × G2 and
a smooth map Φ : V → M̂reg (Aref ) that is a diffeomorphism onto an open
subset of the codomain.

im(Ψ)

Π−1(V) ∩ U
V × M̂reg (Aref ) M̂reg (Aref )

V ⊆ G1 × G2

local triv.

Π
Φ
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Gluing Families

Theorem (D–Hambleton ’20)

(b) For every point in G1 × G2, there is a neighborhood V ⊆ G1 × G2 and
a smooth map Φ : V → M̂reg (Aref ) that is a diffeomorphism onto an open
subset of the codomain.
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Thank you!
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