Gluing mASD connections on cylindrical end 4-manifolds

David L. Duncan
(joint w/ Ian Hambleton)

James Madison University

Gauge Theory Virtual - April 7, 2021

Set-up

- $X=$ a connected, oriented 4-manifold with cylindrical ends:

$$
X=X_{0} \cup_{N}(N \times[0, \infty))
$$

- $E=$ a G-bundle over X
- A connection A is ASD if $F_{A}^{+}=0$.
- General goal: study

$$
M:=\{\text { ASD connections on } E\} /\{\text { gauge }\} .
$$

Set-up

- $X=$ a connected, oriented 4-manifold with cylindrical ends:

$$
X=X_{0} \cup_{N}(N \times[0, \infty))
$$

- $E=$ a G-bundle over X

Let's take $G=\mathrm{SU}(2)$.

- A connection A is ASD if $F_{A}^{+}=0$.
- General goal: study

$$
M:=\{\text { ASD connections on } E\} /\{\text { gauge }\} .
$$

mASD connections: Motivation

Difficulty:

mASD connections: Motivation

Difficulty: The space M is not cut out by Fredholm equations, in general.

mASD connections: Motivation

Difficulty: The space M is not cut out by Fredholm equations, in general.

This can be understood by the presence of asymptotic limits (flat connections) that are degenerate.

mASD Connections: Motivation

A. Floer's fix:

mASD Connections: Motivation

A. Floer's fix: Perturb the ASD equation. $F_{A}^{+}=0 \rightsquigarrow F_{A}^{+}=\sigma(A)$

mASD Connections: Motivation

A. Floer's fix: Perturb the ASD equation. $F_{A}^{+}=0 \rightsquigarrow F_{A}^{+}=\sigma(A)$

Alternative fix by J. Morgan, T. Mrowka, D. Ruberman ('94): Thicken.

mASD Connections: Motivation

A. Floer's fix: Perturb the ASD equation. $F_{A}^{+}=0 \rightsquigarrow F_{A}^{+}=\sigma(A)$

Alternative fix by J. Morgan, T. Mrowka, D. Ruberman ('94): Thicken.

\hat{M}

mASD Connections: Overview

mASD Connections: Overview

$$
F_{A}^{+}=0
$$

$\sim F_{A}^{+}-\beta F_{j(A)}^{+}=0$

mASD Connections: Overview

- The map j factors through a finite-dimensional manifold; it parametrizes the relevant connections by their asymptotic behavior.

mASD Connections: Overview

- The map j factors through a finite-dimensional manifold; it parametrizes the relevant connections by their asymptotic behavior.
- If A is ASD (and sufficiently close to a reference connection), then $\beta F_{j(A)}^{+}=0$.

mASD Connections: Overview

Upshot: The operator $A \mapsto F_{A}^{+}-\beta F_{j(A)}^{+}$is Fredholm* and maps ASD connections** to zero.

mASD Connections: Overview

Upshot: The operator $A \mapsto F_{A}^{+}-\beta F_{j(A)}^{+}$is Fredholm* and maps ASD connections** to zero.

* $=$ in a Coulomb slice
** $=$ assuming they are sufficiently close to a reference connection

mASD Connections: Overview

Upshot: The operator $A \mapsto F_{A}^{+}-\beta F_{j(A)}^{+}$is Fredholm* and maps ASD connections** to zero.

* $=$ in a Coulomb slice
** $=$ assuming they are sufficiently close to a reference connection
A connection A is modified ASD (mASD) if

$$
F_{A}^{+}-\beta F_{j(A)}^{+}=0
$$

mASD Connections: Overview

Upshot: The operator $A \mapsto F_{A}^{+}-\beta F_{j(A)}^{+}$is Fredholm* and maps ASD connections** to zero.

* $=$ in a Coulomb slice
** $=$ assuming they are sufficiently close to a reference connection
A connection A is modified ASD (mASD) if

$$
F_{A}^{+}-\beta F_{j(A)}^{+}=0
$$

Then we consider the space:

$$
\hat{M}:=\{\text { mASD connections }\} \cap\{\text { Coulomb slice }\}
$$

mASD Connections: Overview

A is $\mathbf{m A S D}$ if $F_{A}^{+}-\beta F_{j(A)}^{+}=0$
$\hat{M}:=\{$ mASD connections $\} \cap\{$ Coulomb slice $\}$

mASD Connections: Overview

A is $\mathbf{m A S D}$ if $F_{A}^{+}-\beta F_{j(A)}^{+}=0$

$$
\hat{M}:=\{\text { mASD connections }\} \cap\{\text { Coulomb slice }\}
$$

This depends on various auxiliary choices:

mASD Connections: Overview

A is $\mathbf{m A S D}$ if $F_{A}^{+}-\beta F_{j(A)}^{+}=0$

$$
\hat{M}:=\{\text { mASD connections }\} \cap\{\text { Coulomb slice }\}
$$

This depends on various auxiliary choices:

mASD Connections: Overview

A is $\mathbf{m A S D}$ if $F_{A}^{+}-\beta F_{j(A)}^{+}=0$

$$
\hat{M}:=\{\text { mASD connections }\} \cap\{\text { Coulomb slice }\}
$$

This depends on various auxiliary choices:

- a flat connection「 on N;

mASD Connections: Overview

A is $\mathbf{m A S D}$ if $F_{A}^{+}-\beta F_{j(A)}^{+}=0$

$$
\hat{M}:=\{\text { mASD connections }\} \cap\{\text { Coulomb slice }\}
$$

This depends on various auxiliary choices:

- a flat connection 「 on N;
- a connection A^{\prime} on X defining the Coulomb slice;

mASD Connections: Overview

A is $\mathbf{m A S D}$ if $F_{A}^{+}-\beta F_{j(A)}^{+}=0$

$$
\hat{M}:=\{\text { mASD connections }\} \cap\{\text { Coulomb slice }\}
$$

This depends on various auxiliary choices:

- a flat connection 「 on N;
- a connection A^{\prime} on X defining the Coulomb slice;
- a bunch of other things (e.g., cut-off functions)

mASD Connections: Overview

A is $\mathbf{m A S D}$ if $F_{A}^{+}-\beta F_{j(A)}^{+}=0$

$$
\hat{M}:=\{\text { mASD connections }\} \cap\{\text { Coulomb slice }\}
$$

This depends on various auxiliary choices:

- a flat connection 「 on N;
- a connection A^{\prime} on X defining the Coulomb slice;
- a bunch of other things (e.g., cut-off functions) collectively called "thickening data" and denoted \mathcal{T}.

mASD Connections: Overview

A is $\mathbf{m A S D}$ if $F_{A}^{+}-\beta F_{j(A)}^{+}=0$

$$
\hat{M}:=\{\text { mASD connections }\} \cap\{\text { Coulomb slice }\}
$$

This depends on various auxiliary choices:

- a flat connection 「 on N;
- a connection A^{\prime} on X defining the Coulomb slice;
- a bunch of other things (e.g., cut-off functions) collectively called "thickening data" and denoted \mathcal{T}.

When these choices are relevant, write

$$
\hat{M}\left(\Gamma, A^{\prime}, \mathcal{T}\right), \quad \hat{M}\left(\Gamma, A^{\prime}\right), \quad \text { etc. }
$$

mASD Connections: Relation to the ASD moduli space

 Morgan-Mrowka-Ruberman show the $\hat{M}\left(\Gamma, A^{\prime}, \mathcal{T}\right)$ cover the ASD moduli space M :
mASD Connections: Relation to the ASD moduli space

 Morgan-Mrowka-Ruberman show the $\hat{M}\left(\Gamma, A^{\prime}, \mathcal{T}\right)$ cover the ASD moduli space M :

mASD Connections: Relation to the ASD moduli space

 Morgan-Mrowka-Ruberman show the $\hat{M}\left(\Gamma, A^{\prime}, \mathcal{T}\right)$ cover the ASD moduli space M :

mASD Connections: Relation to the ASD moduli space

 Morgan-Mrowka-Ruberman show the $\hat{M}\left(\Gamma, A^{\prime}, \mathcal{T}\right)$ cover the ASD moduli space M :$$
\hat{M}\left(\Gamma_{a}, A_{a}^{\prime}, \mathcal{T}_{a}\right)
$$

mASD Connections: Relation to the ASD moduli space

 Morgan-Mrowka-Ruberman show the $\hat{M}\left(\Gamma, A^{\prime}, \mathcal{T}\right)$ cover the ASD moduli space M :$$
\hat{M}\left(\Gamma_{a}, A_{a}^{\prime}, \mathcal{T}_{a}\right)
$$

mASD Connections: Relation to the ASD moduli space

 Morgan-Mrowka-Ruberman show the $\hat{M}\left(\Gamma, A^{\prime}, \mathcal{T}\right)$ cover the ASD moduli space M :$\hat{M}\left(\Gamma_{b}, A_{b}^{\prime}, \mathcal{T}_{b}\right)$

$$
\hat{M}\left(\Gamma_{a}, A_{a}^{\prime}, \mathcal{T}_{a}\right)
$$

mASD Connections: Relation to the ASD moduli space

 Morgan-Mrowka-Ruberman show the $\hat{M}\left(\Gamma, A^{\prime}, \mathcal{T}\right)$ cover the ASD moduli space M :$\hat{M}\left(\Gamma_{b}, A_{b}^{\prime}, \mathcal{T}_{b}\right)$

$$
\hat{M}\left(\Gamma_{a}, A_{a}^{\prime}, \mathcal{T}_{a}\right)
$$

mASD Connections: Relation to the ASD moduli space

 Morgan-Mrowka-Ruberman show the $\hat{M}\left(\Gamma, A^{\prime}, \mathcal{T}\right)$ cover the ASD moduli space M :$\hat{M}\left(\Gamma_{b}, A_{b}^{\prime}, \mathcal{T}_{b}\right)$

$$
\hat{M}\left(\Gamma_{a}, A_{a}^{\prime}, \mathcal{T}_{a}\right)
$$

Updated general goal: Try to do for mASD connections (\hat{M}) what has been done for ASD connections (M).

Updated general goal: Try to do for mASD connections (\hat{M}) what has been done for ASD connections (M).

Some important differences between the ASD and mASD settings:

Updated general goal: Try to do for mASD connections (\hat{M}) what has been done for ASD connections (M).

Some important differences between the ASD and mASD settings:

- \hat{M} is a local object;

Updated general goal: Try to do for mASD connections (\hat{M}) what has been done for ASD connections (M).

Some important differences between the ASD and mASD settings:

- \hat{M} is a local object;
- the operator $A \mapsto F_{A}^{+}-\beta F_{j(A)}^{+}$is not gauge equivariant.

Updated general goal: Try to do for mASD connections (\hat{M}) what has been done for ASD connections (M).

Some important differences between the ASD and mASD settings:

- \hat{M} is a local object;
- the operator $A \mapsto F_{A}^{+}-\beta F_{j(A)}^{+}$is not gauge equivariant.

What is the same?

Updated general goal: Try to do for mASD connections (\hat{M}) what has been done for ASD connections (M).

Some important differences between the ASD and mASD settings:

- \hat{M} is a local object;
- the operator $A \mapsto F_{A}^{+}-\beta F_{j(A)}^{+}$is not gauge equivariant.

What is the same? Gluing! (mostly)

Main Results

Theorem (D-Hambleton '20)
Assume $b_{2}^{+}(X)=0$. Then there is an mASD connection on E that is irreducible and regular. This can be chosen to have relative second Chern class arbitrarily close to 1 .

Main Results

Theorem (D-Hambleton '20)
Assume $b_{2}^{+}(X)=0$. Then there is an mASD connection on E that is irreducible and regular. This can be chosen to have relative second Chern class arbitrarily close to 1 .

Corollary

Assume the 3 -manifold N is a circle bundle over a surface, with positive euler class. Then the mASD connection from the above theorem is ASD.

Main Results

Theorem (D-Hambleton '20)

Assume $b_{2}^{+}(X)=0$. Then there is an mASD connection on E that is irreducible and regular. This can be chosen to have relative second Chern class arbitrarily close to 1 .

Corollary

Assume the 3-manifold N is a circle bundle over a surface, with positive euler class. Then the mASD connection from the above theorem is ASD.

Example: Suppose X_{0} is diffeomorphic to the total space of a disk bundle over a surface, with positive euler class. Then this implies the existence of finite-energy ASD connections on X

Main Results

Theorem (D-Hambleton '20)

Assume $b_{2}^{+}(X)=0$. Then there is an mASD connection on E that is irreducible and regular. This can be chosen to have relative second Chern class arbitrarily close to 1 .

Corollary

Assume the 3-manifold N is a circle bundle over a surface, with positive euler class. Then the mASD connection from the above theorem is ASD.

Example: Suppose X_{0} is diffeomorphic to the total space of a disk bundle over a surface, with positive euler class. Then this implies the existence of finite-energy ASD connections on X (for any metric that decays on the end to a cylindrical metric).

Proofs of the Main Results

A is $\mathbf{m A S D}$ if $F_{A}^{+}-\beta F_{j(A)}^{+}=0$
$\hat{M}:=\{$ mASD connections $\} \cap\{$ Coulomb slice $\}$

Corollary

Assume the 3-manifold N is a circle bundle over a surface, with positive euler class. Then the mASD connection from the above theorem is ASD.

Proof.

Proofs of the Main Results

A is $\mathbf{m A S D}$ if $F_{A}^{+}-\beta F_{j(A)}^{+}=0$
$\hat{M}:=\{$ mASD connections $\} \cap\{$ Coulomb slice $\}$

Corollary

Assume the 3-manifold N is a circle bundle over a surface, with positive euler class. Then the mASD connection from the above theorem is ASD.

Proof.

The connection $j(A)$ is ASD for all relevant A. (Observation by Morgan-Mrowka-Ruberman.)

Proofs of the Main Results

A is $\mathbf{m A S D}$ if $F_{A}^{+}-\beta F_{j(A)}^{+}=0$
$\hat{M}:=\{$ mASD connections $\} \cap\{$ Coulomb slice $\}$
Theorem (D-Hambleton '20)
Assume $b_{2}^{+}(X)=0$. Then there is an mASD connection on E that is irreducible and regular. This can be chosen to have relative second Chern class arbitrarily close to 1 .

Proofs of the Main Results

A is $\mathbf{m A S D}$ if $F_{A}^{+}-\beta F_{j(A)}^{+}=0$
$\hat{M}:=\{$ mASD connections $\} \cap\{$ Coulomb slice $\}$
Theorem (D-Hambleton '20)
Assume $b_{2}^{+}(X)=0$. Then there is an mASD connection on E that is irreducible and regular. This can be chosen to have relative second Chern class arbitrarily close to 1 .

Proof.

Proofs of the Main Results

A is $\mathbf{m A S D}$ if $F_{A}^{+}-\beta F_{j(A)}^{+}=0$
$\hat{M}:=\{$ mASD connections $\} \cap\{$ Coulomb slice $\}$
Theorem (D-Hambleton '20)
Assume $b_{2}^{+}(X)=0$. Then there is an mASD connection on E that is irreducible and regular. This can be chosen to have relative second Chern class arbitrarily close to 1 .

Proof.

Glue.

Proofs of the Main Results (a little more detail)

Gluing comes down to an implicit function theorem argument:

Proofs of the Main Results (a little more detail)

Gluing comes down to an implicit function theorem argument: Linearize the defining equations at the trivial connection;

Proofs of the Main Results (a little more detail)

Gluing comes down to an implicit function theorem argument: Linearize the defining equations at the trivial connection; we need the linearization to be Fredholm and surjective.

Proofs of the Main Results (a little more detail)

Gluing comes down to an implicit function theorem argument: Linearize the defining equations at the trivial connection; we need the linearization to be Fredholm and surjective.

Why can't this be done purely in the ASD setting?

Proofs of the Main Results (a little more detail)

Gluing comes down to an implicit function theorem argument: Linearize the defining equations at the trivial connection; we need the linearization to be Fredholm and surjective.

Why can't this be done purely in the ASD setting?

The linearization of the ASD operator is the map $d^{+}: \Omega^{1}(X, \mathfrak{g}) \rightarrow \Omega^{+}(X, \mathfrak{g})$

Proofs of the Main Results (a little more detail)

Gluing comes down to an implicit function theorem argument: Linearize the defining equations at the trivial connection; we need the linearization to be Fredholm and surjective.

Why can't this be done purely in the ASD setting?

The linearization of the ASD operator is the map $d^{+}: \Omega^{1}(X, \mathfrak{g}) \rightarrow \Omega^{+}(X, \mathfrak{g})$, and we should extend this to appropriate Sobolev completions, e.g.:

$$
d^{+}: L_{1}^{2}\left(\Omega^{1}\right) \longrightarrow L^{2}\left(\Omega^{+}\right)
$$

Proofs of the Main Results (a little more detail)

The linearization of the ASD operator is the map $d^{+}: L_{1}^{2}\left(\Omega^{1}\right) \longrightarrow L^{2}\left(\Omega^{+}\right)$.

Proofs of the Main Results (a little more detail)

The linearization of the ASD operator is the map $d^{+}: L_{1}^{2}\left(\Omega^{1}\right) \longrightarrow L^{2}\left(\Omega^{+}\right)$. Lockhart-McOwen: When $H^{1}(N) \neq 0$, this is not Fredholm*

Proofs of the Main Results (a little more detail)

The linearization of the ASD operator is the map $d^{+}: L_{1}^{2}\left(\Omega^{1}\right) \longrightarrow L^{2}\left(\Omega^{+}\right)$. Lockhart-McOwen: When $H^{1}(N) \neq 0$, this is not Fredholm* \ldots but this is*:

$$
d^{+}: L_{1, \delta}^{2}\left(\Omega^{1}\right) \longrightarrow L_{\delta}^{2}\left(\Omega^{+}\right) \quad(\text { for } \operatorname{most} \delta) .
$$

Proofs of the Main Results (a little more detail)

The linearization of the ASD operator is the map $d^{+}: L_{1}^{2}\left(\Omega^{1}\right) \longrightarrow L^{2}\left(\Omega^{+}\right)$. Lockhart-McOwen: When $H^{1}(N) \neq 0$, this is not Fredholm* \ldots but this is*:

$$
d^{+}: L_{1, \delta}^{2}\left(\Omega^{1}\right) \longrightarrow L_{\delta}^{2}\left(\Omega^{+}\right) \quad(\text { for } \operatorname{most} \delta)
$$

* $=$ in a Coulomb slice

Proofs of the Main Results (a little more detail)

The linearization of the ASD operator is the map $d^{+}: L_{1}^{2}\left(\Omega^{1}\right) \longrightarrow L^{2}\left(\Omega^{+}\right)$. Lockhart-McOwen: When $H^{1}(N) \neq 0$, this is not Fredholm* \ldots but this is*:

$$
d^{+}: L_{1, \delta}^{2}\left(\Omega^{1}\right) \longrightarrow L_{\delta}^{2}\left(\Omega^{+}\right) \quad(\text { for } \operatorname{most} \delta)
$$

* $=$ in a Coulomb slice

Morgan-Mrowka-Ruberman provide a long exact sequence

$$
\ldots \rightarrow H^{1}(N) \rightarrow \operatorname{coker}\left(d^{+}\right)_{\delta} \rightarrow H^{2}\left(E_{\delta}\right) \rightarrow 0
$$

where $\operatorname{dim}\left(H^{2}\left(E_{\delta}\right)\right)=b^{+}(X)$.

Proofs of the Main Results (a little more detail)

The linearization of the ASD operator is the map $d^{+}: L_{1}^{2}\left(\Omega^{1}\right) \longrightarrow L^{2}\left(\Omega^{+}\right)$. Lockhart-McOwen: When $H^{1}(N) \neq 0$, this is not Fredholm* \ldots but this is*:

$$
d^{+}: L_{1, \delta}^{2}\left(\Omega^{1}\right) \longrightarrow L_{\delta}^{2}\left(\Omega^{+}\right) \quad(\text { for } \operatorname{most} \delta)
$$

* $=$ in a Coulomb slice

Morgan-Mrowka-Ruberman provide a long exact sequence

$$
\ldots \rightarrow H^{1}(N) \rightarrow \operatorname{coker}\left(d^{+}\right)_{\delta} \rightarrow H^{2}\left(E_{\delta}\right) \rightarrow 0
$$

where $\operatorname{dim}\left(H^{2}\left(E_{\delta}\right)\right)=b^{+}(X)$. In fact, $H^{2}\left(E_{\delta}\right)$ is the cokernel of the $m A S D$ operator.

Proofs of the Main Results (a little more detail)

The linearization of the ASD operator is the map $d^{+}: L_{1}^{2}\left(\Omega^{1}\right) \longrightarrow L^{2}\left(\Omega^{+}\right)$. Lockhart-McOwen: When $H^{1}(N) \neq 0$, this is not Fredholm* \ldots but this is*:

$$
d^{+}: L_{1, \delta}^{2}\left(\Omega^{1}\right) \longrightarrow L_{\delta}^{2}\left(\Omega^{+}\right) \quad(\text { for } \operatorname{most} \delta)
$$

$$
*=\text { in a Coulomb slice }
$$

Morgan-Mrowka-Ruberman provide a long exact sequence

$$
\ldots \rightarrow H^{1}(N) \rightarrow \operatorname{coker}\left(d^{+}\right)_{\delta} \rightarrow H^{2}\left(E_{\delta}\right) \rightarrow 0
$$

where $\operatorname{dim}\left(H^{2}\left(E_{\delta}\right)\right)=b^{+}(X)$. In fact, $H^{2}\left(E_{\delta}\right)$ is the cokernel of the $m A S D$ operator.

Summary: When $H^{1}(N) \neq 0$, then the hypothesis that $b^{+}=0$ is generally not enough to use ASD connections alone.

Proofs of the Main Results (a little more detail)

The linearization of the ASD operator is the map $d^{+}: L_{1}^{2}\left(\Omega^{1}\right) \longrightarrow L^{2}\left(\Omega^{+}\right)$. Lockhart-McOwen: When $H^{1}(N) \neq 0$, this is not Fredholm* ... but this is*:

$$
d^{+}: L_{1, \delta}^{2}\left(\Omega^{1}\right) \longrightarrow L_{\delta}^{2}\left(\Omega^{+}\right) \quad(\text { for } \operatorname{most} \delta)
$$

$$
*=\text { in a Coulomb slice }
$$

Morgan-Mrowka-Ruberman provide a long exact sequence

$$
\ldots \rightarrow H^{1}(N) \rightarrow \operatorname{coker}\left(d^{+}\right)_{\delta} \rightarrow H^{2}\left(E_{\delta}\right) \rightarrow 0
$$

where $\operatorname{dim}\left(H^{2}\left(E_{\delta}\right)\right)=b^{+}(X)$. In fact, $H^{2}\left(E_{\delta}\right)$ is the cokernel of the $m A S D$ operator.

Summary: When $H^{1}(N) \neq 0$, then the hypothesis that $b^{+}=0$ is generally not enough to use ASD connections alone. However, the space of mASD connections is big enough.

An Extension: Families of mASD Connections

An Extension: Families of mASD Connections

It would be nice to allow the gluing point to vary.

An Extension: Families of mASD Connections

It would be nice to allow the gluing point to vary.

This would give a (partial) compactification.

An Extension: Families of mASD Connections

It would be nice to allow the gluing point to vary.

This would give a (partial) compactification.
Difficulty: Moving the gluing point changes the Coulomb slice.

$$
\hat{M}=\{\text { mASD connections }\} \cap\{\text { Coulomb slice }\}
$$

An Extension: Families of mASD Connections

It would be nice to allow the gluing point to vary.

This would give a (partial) compactification.
Difficulty: Moving the gluing point changes the Coulomb slice.

$$
\hat{M}=\{\mathrm{mASD} \text { connections }\} \cap\{\text { Coulomb slice }\}
$$

... and the space of mASD connections is NOT gauge-invariant!

An Extension: Families of mASD Connections

It would be nice to allow the gluing point to vary.

This would give a (partial) compactification.
Difficulty: Moving the gluing point changes the Coulomb slice.

$$
\hat{M}=\{\mathrm{mASD} \text { connections }\} \cap\{\text { Coulomb slice }\}
$$

... and the space of mASD connections is NOT gauge-invariant!
Resolution: Use the implicit function theorem again.

Gluing Families

Assume $X=X_{1} \# X_{2}$.

Gluing Families

Assume $X=X_{1} \# X_{2}$.

Gluing Families

$X=X_{1} \# X_{2}$.

Gluing Families

$X=X_{1} \# X_{2}$. Fix precompact open sets

$$
G_{1} \subseteq \hat{M}_{r e g}\left(A_{1}^{\prime}\right), \quad G_{2} \subseteq \hat{M}_{r e g}\left(A_{2}^{\prime}\right)
$$

Gluing Families

$X=X_{1} \# X_{2}$. Fix precompact open sets

$$
G_{1} \subseteq \hat{M}_{r e g}\left(A_{1}^{\prime}\right), \quad G_{2} \subseteq \hat{M}_{r e g}\left(A_{2}^{\prime}\right)
$$

The A_{1}^{\prime} and A_{2}^{\prime} preglue to make $A^{\prime}=A^{\prime}\left(A_{1}^{\prime}, A_{2}^{\prime}\right)$ on X.

Gluing Families

$X=X_{1} \# X_{2}$. Fix precompact open sets

$$
G_{1} \subseteq \hat{M}_{r e g}\left(A_{1}^{\prime}\right), \quad G_{2} \subseteq \hat{M}_{r e g}\left(A_{2}^{\prime}\right)
$$

The A_{1}^{\prime} and A_{2}^{\prime} preglue to make $A^{\prime}=A^{\prime}\left(A_{1}^{\prime}, A_{2}^{\prime}\right)$ on X. For $\left(A_{1}, A_{2}\right) \in G_{1} \times G_{2}$, let

$$
J\left(A_{1}, A_{2}\right) \in \hat{M}_{r e g}\left(A^{\prime}\right)
$$

be the glued connection on X.

Gluing Families

$X=X_{1} \# X_{2}$. Fix precompact open sets

$$
G_{1} \subseteq \hat{M}_{r e g}\left(A_{1}^{\prime}\right), \quad G_{2} \subseteq \hat{M}_{r e g}\left(A_{2}^{\prime}\right)
$$

The A_{1}^{\prime} and A_{2}^{\prime} preglue to make $A^{\prime}=A^{\prime}\left(A_{1}^{\prime}, A_{2}^{\prime}\right)$ on X. For $\left(A_{1}, A_{2}\right) \in G_{1} \times G_{2}$, let

$$
J\left(A_{1}, A_{2}\right) \in \hat{M}_{r e g}\left(A^{\prime}\right)
$$

be the glued connection on X.
Ideally, we would want to view J as a function from $G_{1} \times G_{2}$ into a fixed mASD space.

Gluing Families

$X=X_{1} \# X_{2}$. Fix precompact open sets

$$
G_{1} \subseteq \hat{M}_{r e g}\left(A_{1}^{\prime}\right), \quad G_{2} \subseteq \hat{M}_{r e g}\left(A_{2}^{\prime}\right)
$$

The A_{1}^{\prime} and A_{2}^{\prime} preglue to make $A^{\prime}=A^{\prime}\left(A_{1}^{\prime}, A_{2}^{\prime}\right)$ on X. For $\left(A_{1}, A_{2}\right) \in G_{1} \times G_{2}$, let

$$
J\left(A_{1}, A_{2}\right) \in \hat{M}_{r e g}\left(A^{\prime}\right)
$$

be the glued connection on X.
Ideally, we would want to view J as a function from $G_{1} \times G_{2}$ into a fixed mASD space. However, the Coulomb slice for $J\left(A_{1}, A_{2}\right)$ depends on $\left(A_{1}, A_{2}\right)$

Gluing Families

$X=X_{1} \# X_{2}$. Fix precompact open sets

$$
G_{1} \subseteq \hat{M}_{r e g}\left(A_{1}^{\prime}\right), \quad G_{2} \subseteq \hat{M}_{r e g}\left(A_{2}^{\prime}\right)
$$

The A_{1}^{\prime} and A_{2}^{\prime} preglue to make $A^{\prime}=A^{\prime}\left(A_{1}^{\prime}, A_{2}^{\prime}\right)$ on X. For $\left(A_{1}, A_{2}\right) \in G_{1} \times G_{2}$, let

$$
J\left(A_{1}, A_{2}\right) \in \hat{M}_{r e g}\left(A^{\prime}\right)
$$

be the glued connection on X.
Ideally, we would want to view J as a function from $G_{1} \times G_{2}$ into a fixed mASD space. However, the Coulomb slice for $J\left(A_{1}, A_{2}\right)$ depends on $\left(A_{1}, A_{2}\right) \ldots$ Instead, turn J into a section of a bundle.

Gluing Families
 $J\left(A_{1}, A_{2}\right)=\mathrm{mASD}$ connection on X given by gluing A_{1} and A_{2}

Gluing Families

$J\left(A_{1}, A_{2}\right)=m A S D$ connection on X given by gluing A_{1} and A_{2} Set

$$
\mathcal{E}:=\left\{\left(A_{1}, A_{2}, A\right) \mid A_{k} \in G_{k}, \quad A \in \hat{M}_{r e g}\left(J\left(A_{1}, A_{2}\right)\right)\right\} .
$$

Gluing Families

$J\left(A_{1}, A_{2}\right)=m A S D$ connection on X given by gluing A_{1} and A_{2} Set

$$
\mathcal{E}:=\left\{\left(A_{1}, A_{2}, A\right) \mid A_{k} \in G_{k}, \quad A \in \hat{M}_{r e g}\left(J\left(A_{1}, A_{2}\right)\right)\right\} .
$$

Let $\Pi: \mathcal{E} \rightarrow G_{1} \times G_{2}$ be the projection.

Gluing Families

$J\left(A_{1}, A_{2}\right)=m A S D$ connection on X given by gluing A_{1} and A_{2} Set

$$
\mathcal{E}:=\left\{\left(A_{1}, A_{2}, A\right) \mid A_{k} \in G_{k}, \quad A \in \hat{M}_{\text {reg }}\left(J\left(A_{1}, A_{2}\right)\right)\right\} .
$$

Let $\Pi: \mathcal{E} \rightarrow G_{1} \times G_{2}$ be the projection. Then

$$
\Psi\left(A_{1}, A_{2}\right):=\left(A_{1}, A_{2}, J\left(A_{1}, A_{2}\right)\right)
$$

is a section of Π.

Gluing Families

$J\left(A_{1}, A_{2}\right)=\mathrm{mASD}$ connection on X given by gluing A_{1} and A_{2} Set

$$
\mathcal{E}:=\left\{\left(A_{1}, A_{2}, A\right) \mid A_{k} \in G_{k}, \quad A \in \hat{M}_{r e g}\left(J\left(A_{1}, A_{2}\right)\right)\right\} .
$$

Let $\Pi: \mathcal{E} \rightarrow G_{1} \times G_{2}$ be the projection. Then

$$
\Psi\left(A_{1}, A_{2}\right):=\left(A_{1}, A_{2}, J\left(A_{1}, A_{2}\right)\right)
$$

is a section of Π.

Theorem (D-Hambleton '20)

(a) There is a neighborhood $\mathcal{U} \subseteq \mathcal{E}$ of the image of Ψ so that the restriction $\left.\Pi\right|_{\mathcal{U}}: \mathcal{U} \rightarrow G_{1} \times G_{2}$ is a locally trivial fiber bundle (with fiber an open subset of $\hat{M}_{\text {reg }}\left(A_{\text {ref }}\right)$ for some $\left.A_{\text {ref }}\right)$.

Gluing Families

$J\left(A_{1}, A_{2}\right)=\mathrm{mASD}$ connection on X given by gluing A_{1} and A_{2} Set

$$
\mathcal{E}:=\left\{\left(A_{1}, A_{2}, A\right) \mid A_{k} \in G_{k}, \quad A \in \hat{M}_{r e g}\left(J\left(A_{1}, A_{2}\right)\right)\right\} .
$$

Let $\Pi: \mathcal{E} \rightarrow G_{1} \times G_{2}$ be the projection. Then

$$
\Psi\left(A_{1}, A_{2}\right):=\left(A_{1}, A_{2}, J\left(A_{1}, A_{2}\right)\right)
$$

is a section of Π.

Theorem (D-Hambleton '20)

(a) There is a neighborhood $\mathcal{U} \subseteq \mathcal{E}$ of the image of Ψ so that the restriction $\left.\Pi\right|_{\mathcal{U}}: \mathcal{U} \rightarrow G_{1} \times G_{2}$ is a locally trivial fiber bundle (with fiber an open subset of $\hat{M}_{\text {reg }}\left(A_{\text {ref }}\right)$ for some $\left.A_{\text {ref }}\right)$.
(b) For every point in $G_{1} \times G_{2}$, there is a neighborhood $\mathcal{V} \subseteq G_{1} \times G_{2}$ and a smooth map

$$
\Phi: \mathcal{V} \longrightarrow \hat{M}_{\text {reg }}\left(A_{\text {ref }}\right)
$$

that is a diffeomorphism onto an open subset of the codomain.

Gluing Families

Theorem (D-Hambleton '20)
(a) There is a neighborhood $\mathcal{U} \subseteq \mathcal{E}$ of the image of Ψ so that the restriction $\left.\Pi\right|_{\mathcal{U}}: \mathcal{U} \rightarrow G_{1} \times G_{2}$ is a locally trivial fiber bundle (with fiber an open subset of $\hat{M}_{\text {reg }}\left(A_{\text {ref }}\right)$ for some $\left.A_{\text {ref }}\right)$.

Gluing Families

Theorem (D-Hambleton '20)

(a) There is a neighborhood $\mathcal{U} \subseteq \mathcal{E}$ of the image of Ψ so that the restriction $\left.\Pi\right|_{\mathcal{U}}: \mathcal{U} \rightarrow G_{1} \times G_{2}$ is a locally trivial fiber bundle (with fiber an open subset of $\hat{M}_{\text {reg }}\left(A_{\text {ref }}\right)$ for some $\left.A_{\text {ref }}\right)$.

Gluing Families

Theorem (D-Hambleton '20)
(b) For every point in $G_{1} \times G_{2}$, there is a neighborhood $\mathcal{V} \subseteq G_{1} \times G_{2}$ and a smooth map $\Phi: \mathcal{V} \rightarrow \hat{M}_{\text {reg }}\left(A_{\text {ref }}\right)$ that is a diffeomorphism onto an open subset of the codomain.

Gluing Families

Theorem (D-Hambleton '20)

(b) For every point in $G_{1} \times G_{2}$, there is a neighborhood $\mathcal{V} \subseteq G_{1} \times G_{2}$ and a smooth map $\Phi: \mathcal{V} \rightarrow \hat{M}_{\text {reg }}\left(A_{\text {ref }}\right)$ that is a diffeomorphism onto an open subset of the codomain.

Thank you!

