Gluing mASD connections on cylindrical end 4-manifolds

David L. Duncan (joint w/ Ian Hambleton)

James Madison University

Gauge Theory Virtual — April 7, 2021

E 6 4 E 6

- (日)

Set-up

• X = a connected, oriented 4-manifold with cylindrical ends:

$$X = X_0 \cup_N (N \times [0,\infty))$$

•
$$E = a G$$
-bundle over X

- A connection A is **ASD** if $F_A^+ = 0$.
- General goal: study

 $M := \left\{ \text{ASD connections on } E \right\} / \left\{ \text{gauge} \right\}.$

3

< □ > < 同 > < 三 > < 三 >

Set-up

• X = a connected, oriented 4-manifold with cylindrical ends:

$$X = X_0 \cup_N (N \times [0,\infty))$$

Let's take G = SU(2).

- A connection A is **ASD** if $F_A^+ = 0$.
- General goal: study

 $M := \{\text{ASD connections on } E\} / \{\text{gauge}\}.$

< □ > < 同 > < 三 > < 三 >

Difficulty:

▶ < ∃ >

< □ > < 同 >

э

Difficulty: The space M is not cut out by Fredholm equations, in general.

_____M

Difficulty: The space M is not cut out by Fredholm equations, in general.

This can be understood by the presence of asymptotic limits (flat connections) that are degenerate.

A. Floer's fix:

< □ > < 同 > < 回 > < 回 > < 回 >

э

A. Floer's fix: Perturb the ASD equation. $F_A^+ = 0 \rightsquigarrow F_A^+ = \sigma(A)$

Alternative fix by J. Morgan, T. Mrowka, D. Ruberman ('94): Thicken.

A. Floer's fix: Perturb the ASD equation. $F_A^+ = 0 \rightsquigarrow F_A^+ = \sigma(A)$

Alternative fix by J. Morgan, T. Mrowka, D. Ruberman ('94): Thicken.

э

イロト イヨト イヨト イヨト

David L. Duncan (JMU)

Gluing mASD connections

Gauge Theory Virtual 4 / 20

3

イロト イヨト イヨト イヨト

• The map *j* factors through a finite-dimensional manifold; it parametrizes the relevant connections by their asymptotic behavior.

- The map j factors through a finite-dimensional manifold; it parametrizes the relevant connections by their asymptotic behavior.
- If A is ASD (and sufficiently close to a reference connection), then $\beta F_{j(A)}^+ = 0.$

Upshot: The operator $A \mapsto F_A^+ - \beta F_{j(A)}^+$ is Fredholm* and maps ASD connections** to zero.

- 3

< □ > < □ > < □ > < □ > < □ > < □ >

Upshot: The operator $A \mapsto F_A^+ - \beta F_{j(A)}^+$ is Fredholm* and maps ASD connections** to zero.

* = in a Coulomb slice

** = assuming they are sufficiently close to a reference connection

Upshot: The operator $A \mapsto F_A^+ - \beta F_{j(A)}^+$ is Fredholm* and maps ASD connections** to zero.

* = in a Coulomb slice
** = assuming they are sufficiently close to a reference connection

A connection A is **modified ASD (mASD)** if

$$F_A^+ - \beta F_{j(A)}^+ = 0.$$

Upshot: The operator $A \mapsto F_A^+ - \beta F_{j(A)}^+$ is Fredholm* and maps ASD connections** to zero.

* = in a Coulomb slice
** = assuming they are sufficiently close to a reference connection
A connection A is modified ASD (mASD) if

$$F_A^+ - \beta F_{j(A)}^+ = 0.$$

Then we consider the space:

 $\hat{M} := \{\text{mASD connections}\} \cap \{\text{Coulomb slice}\} \,.$

A is **mASD** if $F_A^+ - \beta F_{j(A)}^+ = 0$

 $\hat{M} := \{\text{mASD connections}\} \cap \{\text{Coulomb slice}\}$

- 3

イロト イポト イヨト イヨト

A is **mASD** if
$$F_A^+ - \beta F_{j(A)}^+ = 0$$

 $\hat{M} := \{ \text{mASD connections} \} \cap \{ \text{Coulomb slice} \}$

This depends on various auxiliary choices:

3

< □ > < 同 > < 回 > < 回 > < 回 >

A is **mASD** if
$$F_A^+ - \beta F_{j(A)}^+ = 0$$

 $\hat{M} := \{ \text{mASD connections} \} \cap \{ \text{Coulomb slice} \}$

This depends on various auxiliary choices:

3

< □ > < 同 > < 回 > < 回 > < 回 >

A is **mASD** if
$$F_A^+ - \beta F_{j(A)}^+ = 0$$

 $\hat{M} := \{\text{mASD connections}\} \cap \{\text{Coulomb slice}\}$

This depends on various auxiliary choices:

• a flat connection Γ on N;

Image: A matrix

3

A is **mASD** if
$$F_A^+ - \beta F_{j(A)}^+ = 0$$

 $\hat{M} := \{\text{mASD connections}\} \cap \{\text{Coulomb slice}\}$

This depends on various auxiliary choices:

- a flat connection Γ on N;
- a connection A' on X defining the Coulomb slice;

A is **mASD** if
$$F_A^+ - \beta F_{j(A)}^+ = 0$$

 $\hat{M} := \{\text{mASD connections}\} \cap \{\text{Coulomb slice}\}$

This depends on various auxiliary choices:

- a flat connection Γ on N;
- a connection A' on X defining the Coulomb slice;
- a bunch of other things (e.g., cut-off functions)

A is **mASD** if
$$F_A^+ - \beta F_{j(A)}^+ = 0$$

 $\hat{M} := \{\text{mASD connections}\} \cap \{\text{Coulomb slice}\}$

This depends on various auxiliary choices:

- a flat connection Γ on N;
- a connection A' on X defining the Coulomb slice;
- a bunch of other things (e.g., cut-off functions) collectively called "thickening data" and denoted \mathcal{T} .

A is **mASD** if
$$F_A^+ - \beta F_{j(A)}^+ = 0$$

 $\hat{M} := \{\text{mASD connections}\} \cap \{\text{Coulomb slice}\}$

This depends on various auxiliary choices:

- a flat connection Γ on N;
- a connection A' on X defining the Coulomb slice;
- a bunch of other things (e.g., cut-off functions) collectively called "thickening data" and denoted \mathcal{T} .

When these choices are relevant, write

$$\hat{M}(\Gamma, A', \mathcal{T}), \qquad \hat{M}(\Gamma, A'), \qquad \text{etc.}$$

Morgan–Mrowka–Ruberman show the $\hat{M}(\Gamma, A', \mathcal{T})$ cover the ASD moduli space M:

Morgan–Mrowka–Ruberman show the $\hat{M}(\Gamma, A', \mathcal{T})$ cover the ASD moduli space M:

Morgan–Mrowka–Ruberman show the $\hat{M}(\Gamma, A', \mathcal{T})$ cover the ASD moduli space M:

Morgan–Mrowka–Ruberman show the $\hat{M}(\Gamma, A', \mathcal{T})$ cover the ASD moduli space M:

 $\hat{M}(\Gamma_a, A'_a, \mathcal{T}_a)$

Morgan–Mrowka–Ruberman show the $\hat{M}(\Gamma, A', \mathcal{T})$ cover the ASD moduli space M:

 $\hat{M}(\Gamma_a, A'_a, \mathcal{T}_a)$

mASD Connections: Relation to the ASD moduli space Morgan–Mrowka–Ruberman show the $\hat{M}(\Gamma, A', T)$ cover the ASD moduli space M:

mASD Connections: Relation to the ASD moduli space Morgan–Mrowka–Ruberman show the $\hat{M}(\Gamma, A', T)$ cover the ASD moduli space M:

mASD Connections: Relation to the ASD moduli space Morgan–Mrowka–Ruberman show the $\hat{M}(\Gamma, A', T)$ cover the ASD moduli space M:

Updated general goal: Try to do for mASD connections (\hat{M}) what has been done for ASD connections (M).

- (日)

э

Updated general goal: Try to do for mASD connections (\hat{M}) what has been done for ASD connections (M).

Some important differences between the ASD and mASD settings:
Some important differences between the ASD and mASD settings:

• \hat{M} is a local object;

Some important differences between the ASD and mASD settings:

- \hat{M} is a local object;
- the operator $A \mapsto F_A^+ \beta F_{j(A)}^+$ is not gauge equivariant.

Some important differences between the ASD and mASD settings:

- \hat{M} is a local object;
- the operator $A \mapsto F_A^+ \beta F_{j(A)}^+$ is not gauge equivariant.

What is the same?

Some important differences between the ASD and mASD settings:

- \hat{M} is a local object;
- the operator $A \mapsto F_A^+ \beta F_{j(A)}^+$ is not gauge equivariant.

What is the same? Gluing! (mostly)

Theorem (D-Hambleton '20)

Assume $b_2^+(X) = 0$. Then there is an mASD connection on E that is irreducible and regular. This can be chosen to have relative second Chern class arbitrarily close to 1.

A B A A B A

Theorem (D-Hambleton '20)

Assume $b_2^+(X) = 0$. Then there is an mASD connection on E that is irreducible and regular. This can be chosen to have relative second Chern class arbitrarily close to 1.

Corollary

Assume the 3-manifold N is a circle bundle over a surface, with positive euler class. Then the mASD connection from the above theorem is ASD.

< □ > < 同 > < 三 > < 三 >

Theorem (D-Hambleton '20)

Assume $b_2^+(X) = 0$. Then there is an mASD connection on E that is irreducible and regular. This can be chosen to have relative second Chern class arbitrarily close to 1.

Corollary

Assume the 3-manifold N is a circle bundle over a surface, with positive euler class. Then the mASD connection from the above theorem is ASD.

Example: Suppose X_0 is diffeomorphic to the total space of a disk bundle over a surface, with positive euler class. Then this implies the existence of finite-energy ASD connections on X

< ロ > < 同 > < 回 > < 回 > < 回 >

Theorem (D-Hambleton '20)

Assume $b_2^+(X) = 0$. Then there is an mASD connection on E that is irreducible and regular. This can be chosen to have relative second Chern class arbitrarily close to 1.

Corollary

Assume the 3-manifold N is a circle bundle over a surface, with positive euler class. Then the mASD connection from the above theorem is ASD.

Example: Suppose X_0 is diffeomorphic to the total space of a disk bundle over a surface, with positive euler class. Then this implies the existence of finite-energy ASD connections on X (for any metric that decays on the end to a cylindrical metric).

< ロ > < 同 > < 回 > < 回 > < 回 >

A is **mASD** if $F_A^+ - \beta F_{j(A)}^+ = 0$ $\hat{M} := \{\text{mASD connections}\} \cap \{\text{Coulomb slice}\}$

Corollary

Assume the 3-manifold N is a circle bundle over a surface, with positive euler class. Then the mASD connection from the above theorem is ASD.

Proof.

A B A A B A

A is **mASD** if $F_A^+ - \beta F_{j(A)}^+ = 0$ $\hat{M} := \{\text{mASD connections}\} \cap \{\text{Coulomb slice}\}$

Corollary

Assume the 3-manifold N is a circle bundle over a surface, with positive euler class. Then the mASD connection from the above theorem is ASD.

Proof.

The connection j(A) is ASD for all relevant A. (Observation by Morgan–Mrowka–Ruberman.)

A B K A B K

A is **mASD** if
$$F_A^+ - \beta F_{j(A)}^+ = 0$$

 $\hat{M} := \{\text{mASD connections}\} \cap \{\text{Coulomb slice}\}$

Theorem (D-Hambleton '20)

Assume $b_2^+(X) = 0$. Then there is an mASD connection on E that is irreducible and regular. This can be chosen to have relative second Chern class arbitrarily close to 1.

▲ 東 ▶ | ▲ 更 ▶

A is **mASD** if
$$F_A^+ - \beta F_{j(A)}^+ = 0$$

 $\hat{M} := \{\text{mASD connections}\} \cap \{\text{Coulomb slice}\}$

Theorem (D–Hambleton '20)

Assume $b_2^+(X) = 0$. Then there is an mASD connection on E that is irreducible and regular. This can be chosen to have relative second Chern class arbitrarily close to 1.

Proof.

(4) (日本)

A is **mASD** if
$$F_A^+ - \beta F_{j(A)}^+ = 0$$

 $\hat{M} := \{\text{mASD connections}\} \cap \{\text{Coulomb slice}\}$

Theorem (D-Hambleton '20)

Assume $b_2^+(X) = 0$. Then there is an mASD connection on E that is irreducible and regular. This can be chosen to have relative second Chern class arbitrarily close to 1.

Gluing comes down to an implicit function theorem argument:

э

Gluing comes down to an implicit function theorem argument: Linearize the defining equations at the trivial connection;

Gluing comes down to an implicit function theorem argument: Linearize the defining equations at the trivial connection; we need the linearization to be Fredholm and surjective.

Gluing comes down to an implicit function theorem argument: Linearize the defining equations at the trivial connection; we need the linearization to be Fredholm and surjective.

Why can't this be done purely in the ASD setting?

Gluing comes down to an implicit function theorem argument: Linearize the defining equations at the trivial connection; we need the linearization to be Fredholm and surjective.

Why can't this be done purely in the ASD setting?

The linearization of the ASD operator is the map $d^+: \Omega^1(X, \mathfrak{g}) o \Omega^+(X, \mathfrak{g})$

Gluing comes down to an implicit function theorem argument: Linearize the defining equations at the trivial connection; we need the linearization to be Fredholm and surjective.

Why can't this be done purely in the ASD setting?

The linearization of the ASD operator is the map $d^+: \Omega^1(X, \mathfrak{g}) \to \Omega^+(X, \mathfrak{g})$, and we should extend this to appropriate Sobolev completions, e.g.:

$$d^+: L^2_1(\Omega^1) \longrightarrow L^2(\Omega^+).$$

The linearization of the ASD operator is the map $d^+: L^2_1(\Omega^1) \longrightarrow L^2(\Omega^+)$.

3

E 6 4 E 6

Image: A matrix and a matrix

The linearization of the ASD operator is the map $d^+ : L^2_1(\Omega^1) \longrightarrow L^2(\Omega^+)$. Lockhart-McOwen: When $H^1(N) \neq 0$, this is not Fredholm*

3

The linearization of the ASD operator is the map $d^+ : L^2_1(\Omega^1) \longrightarrow L^2(\Omega^+)$. Lockhart–McOwen: When $H^1(N) \neq 0$, this is not Fredholm*... but this is*:

$$d^+: L^2_{1,\delta}(\Omega^1) \longrightarrow L^2_{\delta}(\Omega^+) \qquad (\text{for most } \delta).$$

3

The linearization of the ASD operator is the map $d^+ : L^2_1(\Omega^1) \longrightarrow L^2(\Omega^+)$. Lockhart–McOwen: When $H^1(N) \neq 0$, this is not Fredholm*... but this is*:

$$d^+: L^2_{1,\delta}(\Omega^1) \longrightarrow L^2_{\delta}(\Omega^+) \qquad (\text{for most } \delta).$$

* = in a Coulomb slice

The linearization of the ASD operator is the map $d^+ : L^2_1(\Omega^1) \longrightarrow L^2(\Omega^+)$. Lockhart–McOwen: When $H^1(N) \neq 0$, this is not Fredholm*... but this is*:

$$d^+: L^2_{1,\delta}(\Omega^1) \longrightarrow L^2_{\delta}(\Omega^+) \qquad (\text{for most } \delta).$$

* = in a Coulomb slice

Morgan-Mrowka-Ruberman provide a long exact sequence

$$\ldots \rightarrow H^1(N) \rightarrow \operatorname{coker}(d^+)_{\delta} \rightarrow H^2(E_{\delta}) \rightarrow 0.$$

where dim $(H^2(E_{\delta})) = b^+(X)$.

The linearization of the ASD operator is the map $d^+ : L^2_1(\Omega^1) \longrightarrow L^2(\Omega^+)$. Lockhart–McOwen: When $H^1(N) \neq 0$, this is not Fredholm*... but this is*:

$$d^+: L^2_{1,\delta}(\Omega^1) \longrightarrow L^2_{\delta}(\Omega^+) \qquad (\text{for most } \delta).$$

* = in a Coulomb slice

Morgan-Mrowka-Ruberman provide a long exact sequence

$$\ldots
ightarrow H^1(N)
ightarrow \mathrm{coker}(d^+)_{\delta}
ightarrow H^2(E_{\delta})
ightarrow 0.$$

where dim $(H^2(E_{\delta})) = b^+(X)$. In fact, $H^2(E_{\delta})$ is the cokernel of the *mASD* operator.

The linearization of the ASD operator is the map $d^+ : L^2_1(\Omega^1) \longrightarrow L^2(\Omega^+)$. Lockhart–McOwen: When $H^1(N) \neq 0$, this is not Fredholm*... but this is*:

$$d^+: L^2_{1,\delta}(\Omega^1) \longrightarrow L^2_{\delta}(\Omega^+) \qquad (\text{for most } \delta).$$

* = in a Coulomb slice

Morgan-Mrowka-Ruberman provide a long exact sequence

$$\ldots \to H^1(N) o \operatorname{coker}(d^+)_{\delta} \to H^2(E_{\delta}) \to 0.$$

where dim $(H^2(E_{\delta})) = b^+(X)$. In fact, $H^2(E_{\delta})$ is the cokernel of the *mASD* operator.

Summary: When $H^1(N) \neq 0$, then the hypothesis that $b^+ = 0$ is generally not enough to use ASD connections alone.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

The linearization of the ASD operator is the map $d^+ : L^2_1(\Omega^1) \longrightarrow L^2(\Omega^+)$. Lockhart–McOwen: When $H^1(N) \neq 0$, this is not Fredholm*... but this is*:

$$d^+: L^2_{1,\delta}(\Omega^1) \longrightarrow L^2_{\delta}(\Omega^+) \qquad (\text{for most } \delta).$$

* = in a Coulomb slice

Morgan-Mrowka-Ruberman provide a long exact sequence

$$\ldots
ightarrow H^1(N)
ightarrow \mathrm{coker}(d^+)_{\delta}
ightarrow H^2(E_{\delta})
ightarrow 0.$$

where dim $(H^2(E_{\delta})) = b^+(X)$. In fact, $H^2(E_{\delta})$ is the cokernel of the *mASD* operator.

Summary: When $H^1(N) \neq 0$, then the hypothesis that $b^+ = 0$ is generally not enough to use ASD connections alone. However, the space of mASD connections is big enough.

David L. Duncan (JMU)

イロト 不得下 イヨト イヨト 二日

David L. Duncan (JMU)

æ

ヨト イヨト

It would be nice to allow the gluing point to vary.

э

It would be nice to allow the gluing point to vary.

This would give a (partial) compactification.

It would be nice to allow the gluing point to vary.

This would give a (partial) compactification.

Difficulty: Moving the gluing point changes the Coulomb slice.

 $\hat{M} = \{ \text{mASD connections} \} \cap \{ \text{Coulomb slice} \}$

It would be nice to allow the gluing point to vary.

This would give a (partial) compactification.

Difficulty: Moving the gluing point changes the Coulomb slice.

$$\hat{M} = \{ \text{mASD connections} \} \cap \{ \text{Coulomb slice} \}$$

... and the space of mASD connections is NOT gauge-invariant!

It would be nice to allow the gluing point to vary.

This would give a (partial) compactification.

Difficulty: Moving the gluing point changes the Coulomb slice.

$$\hat{M} = \{\text{mASD connections}\} \cap \{\text{Coulomb slice}\}$$

... and the space of mASD connections is NOT gauge-invariant! Resolution: Use the implicit function theorem again.

Gluing Families

Assume $X = X_1 \# X_2$.

3

・ロト ・四ト ・ヨト ・ヨト

Gluing Families

Assume $X = X_1 \# X_2$.

Image: A matrix

э

Gluing Families

 $X = X_1 \# X_2.$

- 2
$X = X_1 \# X_2$. Fix precompact open sets

$$G_1 \subseteq \hat{M}_{reg}(A_1'), \qquad G_2 \subseteq \hat{M}_{reg}(A_2').$$

- 2

イロト イボト イヨト イヨト

 $X=X_1\#X_2.$ Fix precompact open sets $G_1\subseteq \hat{M}_{reg}(A_1'), \qquad G_2\subseteq \hat{M}_{reg}(A_2').$

The A'_1 and A'_2 preglue to make $A' = A'(A'_1, A'_2)$ on X.

Image: A math

 $X=X_1\#X_2.$ Fix precompact open sets $G_1\subseteq \hat{M}_{reg}(A_1'), \qquad G_2\subseteq \hat{M}_{reg}(A_2').$

The A_1' and A_2' preglue to make $A' = A'(A_1', A_2')$ on X. For $(A_1, A_2) \in G_1 \times G_2$, let

$$J(A_1, A_2) \in \hat{M}_{reg}(A')$$

be the glued connection on X.

- 3

A B < A B </p>

 $X=X_1\#X_2.$ Fix precompact open sets $G_1\subseteq \hat{M}_{reg}(A_1'), \qquad G_2\subseteq \hat{M}_{reg}(A_2').$

The A_1' and A_2' preglue to make $A' = A'(A_1', A_2')$ on X. For $(A_1, A_2) \in G_1 \times G_2$, let

$$J(A_1, A_2) \in \hat{M}_{reg}(A')$$

be the glued connection on X.

Ideally, we would want to view J as a function from $G_1 \times G_2$ into a fixed mASD space.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $X=X_1\#X_2.$ Fix precompact open sets $G_1\subseteq \hat{M}_{reg}(A_1'), \qquad G_2\subseteq \hat{M}_{reg}(A_2').$

The A_1' and A_2' preglue to make $A' = A'(A_1', A_2')$ on X. For $(A_1, A_2) \in G_1 \times G_2$, let

$$J(A_1, A_2) \in \hat{M}_{reg}(A')$$

be the glued connection on X.

Ideally, we would want to view J as a function from $G_1 \times G_2$ into a fixed mASD space. However, the Coulomb slice for $J(A_1, A_2)$ depends on (A_1, A_2)

- 31

A B M A B M

 $X=X_1\#X_2.$ Fix precompact open sets $G_1\subseteq \hat{M}_{reg}(A_1'), \qquad G_2\subseteq \hat{M}_{reg}(A_2').$

The A_1' and A_2' preglue to make $A' = A'(A_1', A_2')$ on X. For $(A_1, A_2) \in G_1 \times G_2$, let

$$J(A_1, A_2) \in \hat{M}_{reg}(A')$$

be the glued connection on X.

Ideally, we would want to view J as a function from $G_1 \times G_2$ into a fixed mASD space. However, the Coulomb slice for $J(A_1, A_2)$ depends on (A_1, A_2) ... Instead, turn J into a section of a bundle.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $J(A_1, A_2) = mASD$ connection on X given by gluing A_1 and A_2

イロト 不得 トイヨト イヨト 二日

 $J(A_1, A_2) = mASD$ connection on X given by gluing A_1 and A_2 Set

$$\mathcal{E} := \left\{ (A_1, A_2, A) \mid A_k \in G_k, \ A \in \hat{M}_{reg}(J(A_1, A_2)) \right\}.$$

イロト 不得 トイヨト イヨト 二日

 $J(A_1, A_2) = mASD$ connection on X given by gluing A_1 and A_2 Set

$$\mathcal{E} := \left\{ (A_1, A_2, A) \mid A_k \in G_k, \ A \in \hat{M}_{reg}(J(A_1, A_2)) \right\}.$$

Let $\Pi: \mathcal{E} \to \mathcal{G}_1 \times \mathcal{G}_2$ be the projection.

 $J(A_1, A_2) = mASD$ connection on X given by gluing A_1 and A_2 Set

$$\mathcal{E} := \left\{ (A_1, A_2, A) \mid A_k \in G_k, \ A \in \hat{M}_{reg}(J(A_1, A_2)) \right\}.$$

Let $\Pi: \mathcal{E} \to \mathit{G}_1 \times \mathit{G}_2$ be the projection. Then

$$\Psi(A_1,A_2) := (A_1,A_2,J(A_1,A_2))$$

is a section of Π .

イロト イポト イヨト イヨト 二日

 $J(A_1, A_2) = mASD$ connection on X given by gluing A_1 and A_2 Set

$$\mathcal{E} := \left\{ (A_1, A_2, A) \mid A_k \in G_k, \ A \in \hat{M}_{reg}(J(A_1, A_2)) \right\}.$$

Let $\Pi: \mathcal{E} \to \mathit{G}_1 \times \mathit{G}_2$ be the projection. Then

$$\Psi(A_1,A_2) := (A_1,A_2,J(A_1,A_2))$$

is a section of Π .

Theorem (D–Hambleton '20)

(a) There is a neighborhood $\mathcal{U} \subseteq \mathcal{E}$ of the image of Ψ so that the restriction $\Pi|_{\mathcal{U}} : \mathcal{U} \to G_1 \times G_2$ is a locally trivial fiber bundle (with fiber an open subset of $\hat{M}_{reg}(A_{ref})$ for some A_{ref}).

 $J(A_1, A_2) = mASD$ connection on X given by gluing A_1 and A_2 Set

$$\mathcal{E} := \left\{ (A_1, A_2, A) \mid A_k \in G_k, \ A \in \hat{M}_{reg}(J(A_1, A_2)) \right\}.$$

Let $\Pi: \mathcal{E} \to \mathit{G}_1 \times \mathit{G}_2$ be the projection. Then

$$\Psi(A_1, A_2) := (A_1, A_2, J(A_1, A_2))$$

is a section of Π .

Theorem (D–Hambleton '20)

(a) There is a neighborhood $\mathcal{U} \subseteq \mathcal{E}$ of the image of Ψ so that the restriction $\Pi|_{\mathcal{U}} : \mathcal{U} \to G_1 \times G_2$ is a locally trivial fiber bundle (with fiber an open subset of $\hat{M}_{reg}(A_{ref})$ for some A_{ref}).

(b) For every point in $G_1 \times G_2$, there is a neighborhood $\mathcal{V} \subseteq G_1 \times G_2$ and a smooth map

$$\Phi:\mathcal{V}\longrightarrow \hat{M}_{reg}(A_{ref})$$

that is a diffeomorphism onto an open subset of the codomain.

Theorem (D-Hambleton '20)

(a) There is a neighborhood $\mathcal{U} \subseteq \mathcal{E}$ of the image of Ψ so that the restriction $\Pi|_{\mathcal{U}} : \mathcal{U} \to G_1 \times G_2$ is a locally trivial fiber bundle (with fiber an open subset of $\hat{M}_{reg}(A_{ref})$ for some A_{ref}).

Theorem (D-Hambleton '20)

(a) There is a neighborhood $\mathcal{U} \subseteq \mathcal{E}$ of the image of Ψ so that the restriction $\Pi|_{\mathcal{U}} : \mathcal{U} \to G_1 \times G_2$ is a locally trivial fiber bundle (with fiber an open subset of $\hat{M}_{reg}(A_{ref})$ for some A_{ref}).

Theorem (D–Hambleton '20)

(b) For every point in $G_1 \times G_2$, there is a neighborhood $\mathcal{V} \subseteq G_1 \times G_2$ and a smooth map $\Phi : \mathcal{V} \to \hat{M}_{reg}(A_{ref})$ that is a diffeomorphism onto an open subset of the codomain.

Theorem (D-Hambleton '20)

(b) For every point in $G_1 \times G_2$, there is a neighborhood $\mathcal{V} \subseteq G_1 \times G_2$ and a smooth map $\Phi : \mathcal{V} \to \hat{M}_{reg}(A_{ref})$ that is a diffeomorphism onto an open subset of the codomain.

David L. Duncan (JMU)

Thank you!

2

イロト イヨト イヨト イヨト