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 After the animation was introduced into the code, I 
decided to move the focus of my efforts into creating a new 
script that could handle and animate the same information, 
but now for 4-gons. This new animation can be seen in Figure 
2. 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 2:  The new adapted code displaying an animation of a 
4-gon rotating about its axis, which is like the 3-gon’s 

movement in Figure 1.  

 

 

This modification took a substantial amount of time, 
but this allowed for new possibilities that I didn’t initially 
think about; this included the modeling of degenerate 4-
gons. These are 4-gons in which two of the vertices lay on top 
of one another, resembling a 3-gon in a 2D space. This led us 
to inquire about whether a degenerative 4-gon and a regular 
3-gon would result in the same path traveled, when applying 
the same initial position and velocity to them both. I created 
a code that, essentially, stacked the two previous animations 
on top of one another. This allowed us to see how the two 
shapes differ in their movement, as well as the exact 
moment in which their paths begin to diverge. The new code 
that includes the plotting of each of the independent shapes 
on top of one another can be seen in Figure 3.  

To begin, I will briefly explain exactly what it is that I 
completed in my weeks of research this summer. My 
experiences ranged from relatively simple calculations, such 
as calculating dot and cross products of vectors, to 
calculating partial derivatives and determinants of matrices, 
while also utilizing my newfound knowledge in second order 
differential equations.  

Initially, I began with practicing with a supplied code 
that modeled a 3-gon changing through time, with the 
primary objective of conserving its area. This code, when 
provided with initial velocity and positional values for each 
the vertices of the 3-gon, would plot the initial shape created 
as well as the final shape as it had changed with the given 
velocities through time; an example can be seen below in 
Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A still image of an initial 3-gon undergoing a 
basic rotation about its center. This displays an output of the 

code I was provided without any modifications.  

  

This point was where I began my modifications to the 
code I was provided. First, instead of only providing a still 
image of the transformation of the 3-gon (those being the 
initial shape and final shape), I wanted the code to create an 
animation of the 3-gon as it changed through time. This 
change presented a model that provided an easy and visually 
appealing way to plot these shapes through time, as now the 
shape can be seen at each time iteration as determined by 
the differential equation tool provided within MATLAB.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. This shows a 3-gon and a degenerative 4-gon. The 
last vertex of the 4-gon was copied from the 3rd to 

demonstrate the degenerative qualities. Both shapes 
received the same initial velocities, and their travel through 

time is modeled as such. 

 

 This was code adaptation was a feat for me, requiring 
new knowledge of complex topics I had yet to come across in 
my academic career thus far. After tackling 3-gons and 4-
gons, I turned my attention to applying the same concepts to 
tetrahedra. The code only worked currently in 2D, so 
transforming it to work in a 3rd dimension was tricky. I wrote 
the code such that the initial qualities of the fourth vertex 
were dependent upon the other three. This is demonstrated 
below, where V refers to the initial velocities and A refers to 
the initial positions.  

V4 = -(V1+V2+V3) 

A4 = -(A1+A2+A3) 

 Having the fourth vertex be dependent allowed for 
the code to be simplified greatly, letting me progress faster 
than I anticipated. The tetrahedra code animates an initial 
tetrahedron through time, tracking the positions of its 
vertices as it goes to calculate the volume generated by 
them. This allows us to model the behavior of these 
tetrahedra, as well as determining if a specific combination of 
positions and velocities result in a volume that is conserved. 
Figure 4 demonstrates the animation of the tetrahedron 
through time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. This demonstrates a tetrahedron undergoing a 
volume conserving movement. The initial shape can be seen 

in black, and the final, in orange. The paths of each of the 
vertices can be seen by the dotted/dashed line. 

 

 This was a big achievement for me in my research, 
probably the biggest yet. We ran into one problem, however. 
The code worked fine in certain scenarios, but sometimes, 
the computer would introduce a small level of computational 
error. This error compounds as the code runs, reaction 
resulting in a more and more inaccurate result. It would be a 
goal to have this inaccuracy diminished, but I believe I have 
run out of time to tackle it.  

 This isn’t all I focused on, however. One of my main 
goals is maintaining area and volume conservation through 
the manipulation of the initial conditions of the vertices of 
the respective shape we are discussing. I developed a code, 
that when given a set of initial positions and initial velocities, 
can calculate whether that combination will result in the area 
or volume being conserved. If that set of values doesn’t 
result in a conservation, then a projection is calculated and 
provided to the user. This projection is a suggested initial 
velocity vector, that when combined with the original 
position vector, should result in a conservational 
transformation. The expression for calculating the projection 
field can be seen below.  
 

 𝑊 →  𝑊 − 
(∇𝑉𝛾 ∙ 𝑊)

ฮ∇𝑉𝛾ฮ
2  ∗  ∇𝑉𝛾  

 In this expression, W represents the initial velocity 
vector inputted by the user.  ∇𝑉𝛾 is the gradient of the 

position vector at any given time, 𝛾. 

 

 



 

 

 

For the combination of positions and velocities to 
result in a conservation of area, the difference between W 
and the right side of the expression needs to equal zero. If it 
doesn’t, the difference between the two is the new 
projection velocity to be considered for conservation. My 
code detects this value, and when it equals zero, displays, 
“You’ve got it!” as a confirmation of the user’s success. When 
the difference isn’t zero, it provides this value to the user in 
an easy-to-read fashion, so that it can be inputted back into 
the code to check its validity and accuracy. An example of the 
formatting can be seen in figure 5 where it is applied to 
tetrahedra, but I also developed the same code to work with 
3-gons and 4-gons.  

 

 
 

Figure 5. This is an example of the output of my code for 
tetrahedra. On the first run, the code calculated the volume 
of the tetrahedron would be conserved, thus outputting the 
confirmation phrase. After this, I manually changed one of 

the velocity values to something that I knew wouldn’t work. 
This resulted in my code outputting the calculated projection 
field based upon the differences discussed earlier, with each 

column referring to the x, y, and z dimensions.  

 

 After creating a script that would determine whether 
a conservational result would be achieved through any given 
initial position and speed conditions, I turned my attention, 
again, towards modeling these shapes through time. This 
time, however, I wanted to work in three dimensions, using 
time as the unit for the z-axis. This allowed for a three-
dimensional representation of a two-dimensional shape 
through time, again, using time itself as the unit along the z-
axis. As I am only being concerned with velocity and position 
combinations that conserve area through time, I relied 
heavily on my previous code to guide me.  

 My “Does it Work?” code allowed me to see if 
combinations resulted in the outcome I was searching for, 
which I would then plug into my first code to model it in two-
dimensions through time. I had to modify this code, however, 
to output the positions of each of the vertices of the given 
shape at each given time step. This provided me with the 
coordinates of each of the vertices at each iteration of the 
animation, providing the necessary information that I need to  

 

 

model its position through time. I was provided another 
OpenSCAD script by Dr. Taalman which I utilized to create the 
three-dimensional models that I would later 3D print. I was 
able to modify both my 3-gon and 4-gon code to output the 
positions of their respective vertices.  
 

 

Figure 6. This displays the image generated from the preview 
of the OpenSCAD code. This shows the given the positional 
information of a square’s vertices, using time on the Z axis. 
The mesh generated here can be outputted as an .STL file, 

which can be further utilized in different modeling software. 

 

 Now that my two-dimensional modeling codes were 
able to output the positions of the vertices, I went to work on 
bringing these three-dimensional models into fruition. I was 
able to utilize Dr. Taalman’s OpenSCAD code to model both 
3-gons and 4-gons through time. My two-dimensional 
modeling code had some limitations in the way it presented 
the information, however, as I was only able to get the real 
time positions for each of the vertices in the X and Y 
dimensions. Because we are introducing a new dimension 
into the output, there isn’t a real time value within the code 
itself to place in the Z coordinate’s place. Thus, there is just a 
placeholder value, 1, in every Z position for each vertex’s 
position. I had to manually go in, replace the 1s in the first 
line with 0s, replace the 1s in the third line with 2s, and so on 
until there were no more two-dimensional layers to match 
up with a sliced time value. This was time consuming, and If I 
had the chance, would be something I would try to improve 
in the future. It got the job done, but getting the output of 
my code formatted in just the right way can save lots of time 
when copying it into the OpenSCAD script. The main 
objective of this script is to take the layered positions of the 
given shape and connects them together using a mesh. This 
creates a smooth surface on the 3D model instead of a 
jagged, stair-like face. 

 I used all three of these codes to generate many very 
fascinating models for both 3-gons and 4-gons. They are 
included on the next page, with labels describing each of 
them and their respective movements through time.  

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 
 


