
“Nahm-like” gradient flows: analysis and

implementation in Matlab

Andre Mas
James Madison University

June 29, 2022

Abstract

The central interest in [3] is a Lie algebra gradient flow that describes the
geometry of a nilpotent variety. These gradient flows are seen to be a general-
ization of Nahm’s equations, which were historically used in articles such as [1]
and [2] to construct and classify monopoles.

We analyze a parameterized family of these “Nahm-like flows”, giving a char-
acterization of critical points of the flows (zeros of their respective vector fields).
This is done in the case of g = so(3), which is isomorphic to R3 with the Lie
bracket being the standard cross product. We show that “diagonal” trajecto-
ries necessarily stay diagonal along these flows, which allows for a dimensional
reduction from R9 to R3. For the flow analyzed in [3], we present an ansätz
diagonal solution that converges to a nontrivial zero of the flow’s associated
vector field.

This project made extensive use of the visualization tools in Matlab to mo-
tivate analytic results. This follows the trend of “experimental mathematics”
that has gained prominence in recent years, in which computer software and
numerical methods are used to guess and later verify solutions to problems in
pure mathematics.

A Matlab script to visualize the aforementioned ansätz solution is provided.
Implementation of standard gradient descent techniques is also included, with
the ability to modify parameters and initial conditions. Additionally, we propose
a modified gradient descent algorithm to detect trajectories that approach non-
trivial zeros. Documentation is included in each of these files, which are included
in the typical Matlab .m format.

Acknowledgements

This project was conducted over the Summer of 2022 alongside Dr. David
Duncan at James Madison University. I am highly grateful for his patience and
guidance during this process. Thank you to the numerous other professors and
faculty members who have contributed to my undergraduate education, and
introduced me to the methods and ideas used during this project.

1

Contents

1 Introduction and analytic results 3
1.1 “Nahm-like” gradient flows . 3
1.2 Diagonal trajectories . 4
1.3 Zeros of the flow . 5
1.4 Solutions of the flow . 7

2 Implementation in Matlab 9
2.1 Revisited: Visualizing the exact solution to Kronheimer’s flow . . 9
2.2 Gradient descent . 10
2.3 Velocity based gradient descent 10

2

Chapter 1

Introduction and analytic
results

1.1 “Nahm-like” gradient flows

Let g be a Lie algebra equipped with an Ad-invariant inner product ⟨ , ⟩. The
initial function in [3] is φ : g× g× g → R given by:

φ(A1, A2, A3)
def
=

3∑
i=1

⟨Ai, Ai⟩+
〈
A1, [A2, A3]

〉
The function φ is a relatively simple construction, given by the sum of two

functions f and ψ, where:

f(A1, A2, A3)
def
=

3∑
i=1

⟨Ai, Ai⟩

ψ(A1, A2, A3)
def
=

〈
A1, [A2, A3]

〉
The generalization of φ that we will consider is constructed by adding a

family of three real valued parameters α = {α1, α2, α3} to f , and a single
parameter β to ψ, giving the functions:

fα(A1, A2, A3)
def
=

3∑
i=1

αi⟨Ai, Ai⟩

ψβ(A1, A2, A3)
def
= β

〈
A1, [A2, A3]

〉
We then set φ̂ to be the sum of fα and ψβ . Let A = (A1, A2, A3), so that

φ̂ can be interpreted as a function defined on g3. The gradient flow equation
Ȧ = −∇φ̂(A) becomes a nonlinear system of three equations given by:

3

Ȧi = −2αiAi − β[Ai+1, Ai+2] (1.1)

This vector field has zero curl, and zeros necessarily have orthogonal com-
ponents. The divergence of the vector field is equal to the trace of its linear
component:

div
(
∇φ̂

)
= −2

3∑
i=1

αi

Remark 1.1.1. Note that the gradient flow analyzed in [3] is a special case of
the flow in equation 1.1 that arises when each of the parameters αi = β = 1. In
the case of αi = 0 and β = 1, equation 1.1 becomes Nahm’s system [5] taking
values in g.

The initial value problem for Ȧ = −∇φ̂(A) that we shall consider is given
by an initial condition at t = 0:{

Ȧ = −∇φ̂(A)
A0 = A(0)

(1.2)

We now turn to the issue of existence and uniqueness for this initial value
problem. The flow is Lipschitz, and we assume that the vector field −∇φ̂ is
continuous in some region R of A0 defined by ∥A−A0∥ ≤ ϵ1, where ϵ1 is greater
than zero and ∥ · ∥ is the standard L2 norm on g3. Let ϵ2 = max∥∇φ̂(A)∥ on
R. It can be shown that ϵ2 is bounded entirely in terms of ϵ1, where a (not
necessarily sharp) bound is given by:

ϵ2 ≤ 4 max
i

|αi|
(
ϵ1 + ∥A0∥

)
+ 4

√
3 |β|

(
ϵ1 + ∥A0∥

)2
From the above, the existence of a unique solution is guaranteed on the

interval [0, ϵ1/ϵ2) by the Picard-Lindelöf theorem as stated in [4].

1.2 Diagonal trajectories

For the remainder of this project we specialize to the case of g = R3, with the Lie
bracket being the standard cross product. To simplify various computations, we
use a nonstandard basis for R3 that satisfies −2vi = vi+1×vi+2. For definiteness,
we take:

v1 =

−2
0
0

 v2 =

02
0

 v3 =

00
2

This flow takes place in R9. Through a slight abuse of notation, we imagine

the vector field −∇φ̂ acting on the 3× 3 matrix A = [A1|A2|A3]. We can then
consider diagonal trajectories of the flow, and have the following lemma:

4

Lemma 1.2.1. Suppose A is a diagonal matrix given by the above construction.
Then −∇φ̂(A) is also diagonal.

This asserts that diagonal trajectories remain diagonal for all time along the
flow. The proof of lemma 1.2.1 is a straightforward computation:

Proof. Let A = [A1|A2|A3] be diagonal, where:

A1 =

x0
0

 A2 =

0y
0

 A3 =

00
z

It may be verified that −∇φ̂(A) is diagonal, with the form:

Ȧ =

−2α1x− βyz 0 0
0 −2α2y − βzx 0
0 0 −2α3z − βxy

Remark 1.2.1. When working with diagonal trajectories, it will be convenient
to think of these as three-tuples (x, y, z) in R3 rather than as diagonal matrices
diag(x, y, z) in R9. This slight abuse of notation reduces the dimension of the
flow considerably.

1.3 Zeros of the flow

We now discuss the zeros of the flow. That is, the triples (A1, A2, A3) which
satisfy:

−2αiAi = β[Ai+1, Ai+2]

The trivial zero (0, 0, 0) can be verified to be asymptotically stable. This follows
from fα having negative real eigenvalues, and the extent of the non-linearity
from ψβ being sufficiently well behaved. It will be useful in the upcoming
analysis to have a characterization of nontrivial zeros. Continuing in the case
of R3, we have the following theorem:

Theorem 1.3.1. Suppose g = R3, αi > 0, and β ̸= 0. Then the zero locus of
the flow is given by:

{
g
(√α2α3

β
v1,

√
α3α1

β
v2,

√
α1α2

β
v3

) ∣∣∣ g ∈ SO(3)
}
∪
{
(0, 0, 0)

}

5

Proof. Since −2αiAi = β[Ai+1, Ai+2], the set A = {A1, A2, A3} forms an or-
thogonal basis for R3. It follows that there exists some SO(3) element g mapping
Ai 7→ civi, where the ci are fixed scalars. This gives the system of equations:

−2α1c1v1 = β(c2v2 × c3v3)

−2α2c2v2 = β(c3v3 × c1v1)

−2α3c3v3 = β(c1v1 × c2v2)

Since −2vi = vi+1 × vi+2, this system reduces to solving for the coefficients ci
in terms of the parameters α1, α2, α3, and β. We have:

α1c1 = βc2c3

α2c2 = βc3c1

α3c3 = βc1c2

Algebraic manipulation gives that if each αi > 0 and β ̸= 0, then:

ci =

√
αi+1αi+2

β

Along with the zero solution, this gives the zero locus:

{
g
(√α2α3

β
v1,

√
α3α1

β
v2,

√
α1α2

β
v3

) ∣∣∣ g ∈ SO(3)
}
∪
{
(0, 0, 0)

}

Considering only diagonal trajectories, we have an exact characterization of
the zero locus. Since the only diagonal elements of SO(3) are given by:

1 0 0
0 1 0
0 0 1

 ,
−1 0 0

0 −1 0
0 0 1

 ,
−1 0 0

0 1 0
0 0 −1

 ,
1 0 0
0 −1 0
0 0 −1

It follows as a corollary of theorem 1.3.1 that the only non-trivial zeros that

are diagonal are the above SO(3) elements multiplied by the matrix:[√α2α3

β
v1

∣∣∣ √
α3α1

β
v2

∣∣∣ √
α1α2

β
v3

]
Corollary 1.3.1. Let g = R3, with associated Lie group SO(3). Let αi > 0
and β ̸= 0. Then the diagonal zero locus consists of the following five matrices:

6

diag
(
− 2

√
α2α3

β
, 2

√
α3α1

β
, 2

√
α1α2

β

)
diag

(
2

√
α2α3

β
,−2

√
α3α1

β
, 2

√
α1α2

β

)
diag

(
2

√
α2α3

β
, 2

√
α3α1

β
,−2

√
α1α2

β

)
diag

(
− 2

√
α2α3

β
,−2

√
α3α1

β
,−2

√
α1α2

β

)
diag

(
0, 0, 0

)
Example 1.3.1. Setting αi = β = 1, we have Kronheimer’s flow from [3]. This
gives the following zero locus:

−2 0 0
0 2 0
0 0 2

 ,
2 0 0
0 −2 0
0 0 2

 ,
2 0 0
0 2 0
0 0 −2

 ,
−2 0 0

0 −2 0
0 0 −2

 ,
0 0 0
0 0 0
0 0 0

1.4 Solutions of the flow

Let αi > 0 and β ̸= 0. The following three diagonal trajectories can be verified
to solve the flow and converge to (0, 0, 0) as t→ ∞:

(x0e
−2α1t, 0, 0) , (0, y0e

−2α2t, 0) , (0, 0, z0e
−2α3t)

While there are no general methods for finding trajectories that converge to
nontrivial zeros, assuming local symmetries of the vector field can lead to ansätz
solutions.

Example 1.4.1. Let g = R3, and each of αi = β = 1. This is the flow analyzed
in [3]. We restrict to diagonal trajectories. The goal is to find a trajectory that
converges to a non-trivial zero as t → ∞. We focus specifically on trajectories
converging to diag(−2, 2, 2). Assuming a symmetry of the y and z components
about this critical point, the flow reduces to:

ẋ = −2x− y2

ẏ = −2y − xy

It may be shown that with the additional yz symmetry and as a result of
the above equations, x and y are forced to satisfy the following relation:

x2 − y2 = Ce−4t

7

Substituting y2 in the equation for ẋ gives a Ricatti ODE which may be
solved directly. This leads to the following solution which converges to (−2, 2, 2)
as t→ ∞:

x = −2µ
e2µ + 1

e2µ − 1
y =

4eµµ

e2µ − 1
z =

4eµµ

e2µ − 1

where µ = e−2t.

8

Chapter 2

Implementation in Matlab

The primary focus of chapter 2 is on the numerical implementation of the theory
developed in chapter 1. Using the result of lemma 1.2.1 that diagonal trajec-
tories are preserved under the flow for g = R3, computer visualization in three
spacial dimensions is possible. This was used to provide insight into the ana-
lytic behavior of these flows, particularly in the case of Kronheimer’s flow with
αi = β = 1.

Gradient flows are in many ways nicely behaved as ODE’s. This is a result
of the fact that a standard discretization scheme already exists in the form of
gradient descent, meaning that typical ODE approximation schemes such as
Runge-Kutta methods are not necessary to analyze these flows numerically. For
this reason, the numerical implementation throughout this project was largely
done with gradient descent.

This chapter is divided into three sections, each of which are paired with a
Matlab .m file that provides implementation of the topic at hand. These files
are included in a .zip formatted download of this project and labelled with the
corresponding section number.

2.1 Revisited: Visualizing the exact solution to
Kronheimer’s flow

We now provide a visualization of the exact solution to Kronheimer’s flow with
αi = β = 1 presented in example 1.4.1. We first plot the diagonal zero locus
from example 1.3.1 in cyan, and connect these points by lines as a visual aid.
The trivial zero (0, 0, 0) is plotted in pink. The exact solution trajectory is
then plotted in red, and we may see that this trajectory indeed converges to
(−2, 2, 2).

9

2.2 Gradient descent

Various numerical methods are used in the literature to approximate solutions
to gradient flows. Gradient descent is a standard discretization given by:

An+1 = An − h∇φ̂(An) (2.1)

where n denotes the iteration number and h is a fixed step size.

Remark 2.2.1. Floating point error tends to accumulate as these iterations
approach a zero, and inaccurate approximations may be obtained even for ex-
ceedingly small step sizes.

Implementation of the standard gradient descent algorithm is provided. We
again use the example of Kronheimer’s flow, with the zero locus plotted in
cyan as a visual aid. Even with a starting point on the exact trajectory found
in example 1.4.1, notice that round-off error may cause the approximation to
either diverge or converge to (0, 0, 0). This occurs even for exceedingly small
step-sizes.

2.3 Velocity based gradient descent

To avoid the issue outlined in remark 2.2.1, we define a velocity metric V as
follows:

V =
∥An+1 −An∥

h
= ∥∇φ̂(An)∥

Notice that V → 0 as the iterates An approach a zero of the flow. By setting
a “velocity tolerance” Vtol, we can detect when the gradient descent iterations
enter a sufficiently small neighborhood of a zero. This gives a stopping criterion
for the iterations to avoid accumulation of floating point error. We recommend
a starting velocity tolerance of Vtol = 1/2.

Implementation of this algorithm is included. In the unedited script’s exam-
ple, notice that starting along the exact trajectory found in example 1.4.1 no
longer diverges or converges to (0, 0, 0) as seen with standard gradient descent.
This script also outputs the maximum time before the velocity tolerance is met.

10

Bibliography

[1] N. J. Hitchen, On the construction of monopoles. (1983).

[2] S. Donaldson, Nahm’s Equations and the Classification of Monopoles.
(1984).

[3] P. Kronheimer, Instantons and the Geometry of the Nilpotent Variety.
(1990).

[4] J. Liu, A First Course in the Qualitative Theory of Differential Equations.
(2003).

[5] B. Charbonneau et al, Construction of Nahm data and BPS monopoles with
continuous symmetries. (2022).

11

