A nontrivial sphere bundle in U(2) coming from the trace

David L. Duncan

1 Introduction

Let *X* be the set of $A \in U(2)$ with trace zero.

Theorem 1.1. The determinant map $X \to S^1$ is a non-trivial S^2 -bundle. More specifically, this bundle is isomorphic to the mapping torus of the map $\phi : S^2 \to S^2$ given by $\phi(x, y, z) = (x, y, -z)$.

Proof. View $S^3 \subseteq \mathbb{C}^2$ as a subset of \mathbb{C}^2 and consider the map

$$\begin{array}{ccc} \Phi: S^1 \times S^3 & \longrightarrow & \mathrm{U}(2) \\ (\delta, (\alpha, \beta)) & \longmapsto & \left(\begin{array}{cc} \delta \alpha & \delta \beta \\ -\overline{\beta} & \overline{\alpha} \end{array} \right) \end{array}$$

This map is a diffeomorphism with inverse given by

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto \left(\det(A), \left(\det(A)^{-1}a, \det(A)^{-1}b \right) \right).$$

It is clear also that Φ is a bundle isomorphism relative to the projection on $S^1 \times S^3$ to S^1 and the determinant map on U(2).

The trace map on U(2) pulls back under Φ to have the form

$$(\delta, (\alpha, \beta)) \longmapsto \delta \alpha + \overline{\alpha}$$

It follows that Φ identifies *X* with the subset *Y* of $(\delta, (\alpha, \beta)) \in S^1 \times S^3$ with $\delta \alpha + \overline{\alpha} = 0$. That is,

$$Y = \sqcup_{\delta \in S^1} S_{\delta}^2,$$

where $S^2_{\delta} := S^3 \cap \ell_{\delta} \times \mathbb{C}$, where

$$\ell_{\delta} := \left\{ \alpha \in \mathbb{C} \mid \delta \alpha + \overline{\alpha} = 0 \right\}.$$

Clearly S_{δ}^2 is an equatorial 2-sphere in S^3 , since ℓ_{δ} is a line through the origin in \mathbb{C} . Consider the bundle $\mathcal{L} \to S^1$ with fiber ℓ_{δ} over δ . This is the Möbius bundle (e.g., write $\delta = \eta^2$, then $\alpha \in \ell_{\eta^2}$ if and only if $\eta \alpha$ is purely imaginary; that is, ℓ_{δ} is obtained by from the imaginary axis by rotating by η^{-1}). Tracing through the identifications, the result follows.