The osculating helix

David L. Duncan

1 Helixes, or helices, or whatever

View \mathbb{R}^{3} as consisting of column vectors, so matrix multiplication works out as we like it to. Let's say that a helix in standard form is a curve $\mathbf{h}_{a, b}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ of the form

$$
\mathbf{h}_{a, b}(s)=\left(\begin{array}{c}
a \cos \left(\frac{s}{\sqrt{a^{2}+b^{2}}}\right) \\
a \sin \left(\frac{s}{\sqrt{a^{2}+b^{2}}}\right) \\
b \frac{s}{\sqrt{a^{2}+b^{2}}}
\end{array}\right)
$$

where $(a, b) \in[0, \infty) \times \mathbb{R}$ is fixed and non-zero. When a and b are clear from context, they will be dropped from the notation: $\mathbf{h}:=\mathbf{h}_{a, b}$.

Note that

$$
\mathbf{h}^{\prime}(s)=\left(\begin{array}{c}
-\frac{a}{\sqrt{a^{2}+b^{2}}} \sin \left(\frac{s}{\sqrt{a^{2}+b^{2}}}\right) \\
\frac{a}{\sqrt{a^{2}+b^{2}}} \cos \left(\frac{s}{\sqrt{a^{2}+b^{2}}}\right) \\
\frac{b}{\sqrt{a^{2}+b^{2}}}
\end{array}\right)
$$

has unit norm, so this helix is parametrized by arclength, and thus this is the unit tangent vector

$$
\mathbf{T}_{\mathbf{h}}(s):=\mathbf{h}^{\prime}(s)
$$

The other terms of the Frenet frame are given by

$$
\begin{aligned}
& \mathbf{N}_{\mathbf{h}}(s):=\frac{\mathbf{T}_{\mathbf{h}}^{\prime}(s)}{\| \mathbf{T}_{\mathbf{h}}^{\prime}(s)} \|=\binom{-\cos \left(\frac{s}{\sqrt{a^{2}+b^{2}}}\right)}{-\sin \left(\frac{s}{\sqrt{a^{2}+b^{2}}}\right)}, \\
& \mathbf{B}_{\mathbf{h}}(s):=\mathbf{T}_{\mathbf{h}}(s) \times \mathbf{N}_{\mathbf{h}}(s)=\left(\begin{array}{c}
0 \\
\frac{b}{\sqrt{a^{2}+b^{2}}} \sin \left(\frac{s}{\sqrt{a^{2}+b^{2}}}\right) \\
-\frac{b}{\sqrt{a^{2}+b^{2}}} \cos \left(\frac{s}{\sqrt{a^{2}+b^{2}}}\right) \\
\frac{a}{\sqrt{a^{2}+b^{2}}}
\end{array}\right) .
\end{aligned}
$$

At $s=0$ this frame takes the from

$$
\begin{align*}
\mathbf{T}_{\mathbf{h}}(0) & =\left(\begin{array}{c}
0 \\
\frac{a}{\sqrt{a^{2}+b^{2}}} \\
\frac{b}{\sqrt{a^{2}+b^{2}}}
\end{array}\right), \\
\mathbf{N}_{\mathbf{h}}(0) & =\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right) \tag{1}\\
\mathbf{B}_{\mathbf{h}}(0) & =\left(\begin{array}{c}
0 \\
-\frac{b}{\sqrt{a_{a}^{2}+b^{2}}} \\
\sqrt{a^{2}+b^{2}}
\end{array}\right) .
\end{align*}
$$

The curvature κ and torsion τ of \mathbf{h} are both constant in s and given by

$$
\begin{equation*}
\kappa=\frac{a}{a^{2}+b^{2}}, \quad \text { and } \quad \tau=\frac{b}{a^{2}+b^{2}} . \tag{2}
\end{equation*}
$$

Note that for any non-zero tuple $(\kappa, \tau) \in[0, \infty) \times \mathbb{R}$, there is a unique non-zero tuple $(a, b) \in[0, \infty) \times \mathbb{R}$ so that (2) holds; indeed,

$$
\begin{equation*}
a=\frac{\kappa}{\kappa^{2}+\tau^{2}}, \quad b=\frac{\tau}{\kappa^{2}+\tau^{2}} . \tag{3}
\end{equation*}
$$

More generally, a helix is a function of the form

$$
\mathbf{H}:=\mathbf{H}_{a, b, L}:=L \circ \mathbf{h}_{a, b}
$$

where $\mathbf{h}_{a, b}$ is a helix in standard form, and $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is an orientationpreserving affine-linear isometry. This latter condition means that L is of the from

$$
L(\mathbf{v})=\mathbf{v}_{0}+R \mathbf{v}
$$

for some fixed vector $\mathbf{v}_{0} \in \mathbb{R}^{3}$ and some linear transformation $R: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ satisfying $R^{T}=R$ and $\operatorname{det}(R)>0$ (from which it follows that $\operatorname{det}(R)=1$). The helix $\mathbf{H}_{a, b, L}$ is also parametrized by arclength, and the Frenet frame is given by

$$
R \mathbf{T}_{\mathbf{h}}(s), \quad R \mathbf{N}_{\mathbf{h}}(s), \quad R \mathbf{B}_{\mathbf{h}}(s)
$$

The curvature and torsion of $\mathbf{H}_{a, b, L}$ are also constant in s and given by (2).

2 The osculating helix

Let $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be a curve parametrized by arclength. Assume that the curvature κ and torsion τ of \mathbf{r} are not both zero at time $s=0$. We will show that
there is a helix $\mathbf{H}=\mathbf{H}_{a, b, L}$ so that, at $s=0$, the helix \mathbf{H} (nearly) agrees with \mathbf{r} to third order in the following sense:

$$
\begin{align*}
\mathbf{r}(0) & =\mathbf{H}(0) \tag{4}\\
\mathbf{r}^{\prime}(0) & =\mathbf{H}^{\prime}(0) \tag{5}\\
\mathbf{r}^{\prime \prime}(0) & =\mathbf{H}^{\prime \prime}(0) \tag{6}\\
\operatorname{proj}_{\mathbf{N}(0)^{\perp}}\left(\mathbf{r}^{\prime \prime \prime}(0)\right) & =\mathbf{H}^{\prime \prime \prime}(0) . \tag{7}
\end{align*}
$$

Here $\operatorname{proj}_{\mathbf{N}(0)^{\perp}}$ is the orthogonal projection to the plane normal to $\mathbf{N}(0)$; thus, part of the claim of 77 is that $\mathbf{H}^{\prime \prime \prime}(0)$ lies in this plane.

To carry this out, we need to define a, b, and L, and then check that the above properties hold. Define a, b in terms of $\kappa(0), \tau(0)$ by

$$
a=\frac{\kappa(0)}{\kappa(0)^{2}+\tau(0)^{2}}, \quad b=\frac{\tau(0)}{\kappa(0)^{2}+\tau(0)^{2}} .
$$

Of course, this is just (3). From these, construct the standard form helix $\mathbf{h}=$ $\mathbf{h}_{a, b}$. To define $L(\mathbf{v})=\mathbf{v}_{0}+R \mathbf{v}$, write $\mathbf{T}, \mathbf{N}, \mathbf{B}$ for the Frenet frame of \mathbf{r}. Define R to be the linear transformation associated to the change of basis from $\mathbf{T}_{\mathbf{h}}(0), \mathbf{N}_{\mathbf{h}}(0), \mathbf{B}_{\mathbf{h}}(0)$ to $\mathbf{T}(0), \mathbf{N}(0), \mathbf{B}(0)$; thus

$$
\begin{equation*}
R\left(\mathbf{T}_{\mathbf{h}}(0)\right)=\mathbf{T}(0), \quad R\left(\mathbf{N}_{\mathbf{h}}(0)\right)=\mathbf{N}(0), \quad R\left(\mathbf{B}_{\mathbf{h}}(0)\right)=\mathbf{B}(0) \tag{8}
\end{equation*}
$$

Since both Frenet frames (the one for the helix in standard form, and the one for r) are orthonormal and oriented, it follows that R is symmetric with positive determinant, as required. Next, take

$$
\mathbf{v}_{0}:=\mathbf{r}(0)-R(\mathbf{h}(0))
$$

This defines our helix $\mathbf{H}=\mathbf{H}_{a, b, L}$, so it suffices to verify that it satisfies (4)-7).
Verification of (4): The definition of our helix is that $\mathbf{H}=\mathbf{v}_{0}+R \circ \mathbf{h}$. Then the definition of \mathbf{v}_{0} gives

$$
\mathbf{r}(0)=R(\mathbf{h}(0))+\mathbf{v}_{0}=\mathbf{H}(0)
$$

Verification of (5): Since \mathbf{r} and \mathbf{H} are both parametrized by arclength, we have

$$
\mathbf{r}^{\prime}(0)=\mathbf{T}(0)=R\left(\mathbf{T}_{\mathbf{h}}(0)\right)=R\left(\mathbf{h}^{\prime}(0)\right)=\left.\frac{d}{d s}\right|_{s=0} \mathbf{v}_{0}+R(\mathbf{h}(s))=\mathbf{H}^{\prime}(0) .
$$

Verification of (6): The quick version is that \mathbf{r} and \mathbf{H} have the same normal vector at $s=0$, by construction. They also have the same curvature by construction. Then (6) follows because the second derivative of a unit-speed curve is the curvature times the normal vector.

For those who prefer equations over words, here are some of the former:

$$
\begin{aligned}
\mathbf{r}^{\prime \prime}(0) & =\mathbf{T}^{\prime}(0) \\
& =\kappa(0) \mathbf{N}(0) \\
& =\frac{a}{a^{2}+b^{2}} \mathbf{N}(0) \\
& =\frac{a}{a^{2}+b^{2}} R\left(\mathbf{N}_{\mathbf{h}}(0)\right) \\
& =R\left(\frac{a}{a^{2}+b^{2}} \mathbf{N}_{\mathbf{h}}(0)\right) \\
& =R\left(\mathbf{T}_{\mathbf{h}}^{\prime}(0)\right) \\
& =R\left(\mathbf{h}^{\prime \prime}(0)\right) \\
& =\mathbf{H}^{\prime \prime}(0) .
\end{aligned}
$$

Verification of (7): Differentiate

$$
\mathbf{r}^{\prime \prime}=\kappa \mathbf{N}
$$

in s to get

$$
\mathbf{r}^{\prime \prime \prime}=\kappa^{\prime} \mathbf{N}+\kappa \mathbf{N}^{\prime}=\kappa^{\prime} \mathbf{N}-\kappa^{2} \mathbf{T}+\kappa \tau \mathbf{B} .
$$

where we used the Frenet-Serret formula $\mathbf{N}^{\prime}=-\kappa \mathbf{T}+\tau \mathbf{B}$. Similarly,

$$
\mathbf{H}^{\prime \prime \prime}=-\frac{a^{2}}{\left(a^{2}+b^{2}\right)^{2}} R\left(\mathbf{T}_{\mathbf{h}}\right)+\frac{a b}{\left(a^{2}+b^{2}\right)^{2}} R\left(\mathbf{B}_{\mathbf{h}}\right)
$$

since the curvature of the helix is constant. At time $s=0$, we have therefore obtain

$$
\begin{array}{rlr}
\mathbf{r}^{\prime \prime \prime}(0) & = & \kappa^{\prime} \mathbf{N}(0)-\kappa(0)^{2} \mathbf{T}(0)+\kappa(0) \tau(0) \mathbf{B}(0) \\
\mathbf{H}^{\prime \prime \prime}(0) & = & -\kappa(0)^{2} \mathbf{T}(0)+\kappa(0) \tau(0) \mathbf{B}(0)
\end{array}
$$

The claim of (7) now follows.

3 A more explicit formula for \mathbf{H}

In the above, we gave a general formula for the osculating helix of \mathbf{r} at time 0 . More generally, the osculating helix for \mathbf{r} at time t is given by

$$
\mathbf{H}(s, t):=\mathbf{r}(t)-R_{t}\left(\mathbf{h}_{a, b}(0)\right)+R_{t}\left(\mathbf{h}_{a, b}(s)\right)
$$

where a, b are computed via (3) from the curvature $\kappa(t)$ and $\tau(t)$ of \mathbf{r} at t, and R_{t} is defined by

$$
R_{t}\left(\mathbf{T}_{\mathbf{h}}(0)\right)=\mathbf{T}(t), \quad R_{t}\left(\mathbf{N}_{\mathbf{h}}(0)\right)=\mathbf{N}(t), \quad R_{t}\left(\mathbf{B}_{\mathbf{h}}(0)\right)=\mathbf{B}(t)
$$

which is just (8), but shifted to $s=t$ for the curve \mathbf{r}. The goal here is to give a more explicit formula for \mathbf{H}, and this comes down to giving a more explicit formula for R_{t}.

Let $R_{\mathbf{r}(t)}$ be the linear transformation taking the standard basis e_{1}, e_{2}, e_{3} to the Frenet frame $\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)$ for \mathbf{r} at t. Thus, the matrix for $R_{\mathbf{r}(t)}$ is

$$
\left[R_{\mathbf{r}(t)}\right]=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{T}(t) & \mathbf{N}(t) & \mathbf{B}(t) \\
\mid & \mid & \mid
\end{array}\right)
$$

Likewise, let $R_{\mathbf{h}(0)}$ be the linear transformation taking the standard basis e_{1}, e_{2}, e_{3} to the Frenet frame $\mathbf{T}_{\mathbf{h}}(0), \mathbf{N}_{\mathbf{h}}(0), \mathbf{B}_{\mathbf{h}}(0)$ for \mathbf{h} at time 0 . By (3), the matrix for $R_{\mathbf{h}(0)}$ is

$$
\left[R_{\mathbf{h}(0)}\right]=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{T}_{\mathbf{h}}(0) & \mathbf{N}_{\mathbf{h}}(0) & \mathbf{B}_{\mathbf{h}}(0) \\
\mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{ccc}
0 & -1 & 0 \\
\frac{a}{\sqrt{a^{2}+b^{2}}} & 0 & -\frac{b}{\sqrt{a^{2}+b^{2}}} \\
\frac{b}{\sqrt{a^{2}+b^{2}}} & 0 & \frac{a}{\sqrt{a^{2}+b^{2}}}
\end{array}\right)
$$

Note that this is orthogonal, so its inverse is given by its transpose.
Then $R_{t}=R_{\mathbf{r}(t)} \circ R_{\mathbf{h}}^{-1}$ and the matrix for R_{t} is given by

$$
\left[R_{t}\right]=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{T}(t) & \mathbf{N}(t) & \mathbf{B}(t) \\
\mid & \mid & \mid
\end{array}\right)\left(\begin{array}{ccc}
0 & \frac{a}{\sqrt{a^{2}+b^{2}}} & \frac{b}{\sqrt{a^{2}+b^{2}}} \\
-1 & 0 & 0 \\
0 & -\frac{b}{\sqrt{a^{2}+b^{2}}} & \frac{a}{\sqrt{a^{2}+b^{2}}}
\end{array}\right)
$$

Carrying out the multiplication, we find that the columns of this matrix $\left[R_{t}\right]$ are

$$
-\mathbf{N}(t), \quad \frac{a}{\sqrt{a^{2}+b^{2}}} \mathbf{T}(t)-\frac{b}{\sqrt{a^{2}+b^{2}}} \mathbf{B}(t), \quad \frac{b}{\sqrt{a^{2}+b^{2}}} \mathbf{T}(t)+\frac{a}{\sqrt{a^{2}+b^{2}}} \mathbf{B}(t)
$$

We thus arrive at a formula for \mathbf{H} :

$$
\begin{aligned}
\mathbf{H}(s, t)= & \mathbf{r}(t)+\frac{a^{2} \sqrt{a^{2}+b^{2}} \sin \left(\frac{s}{\sqrt{a^{2}+b^{2}}}\right)+b^{2} s}{a^{2}+b^{2}} \mathbf{T}(t) \\
& +a\left(1-\cos \left(\frac{s}{\sqrt{a^{2}+b^{2}}}\right)\right) \mathbf{N}(t)+a b \frac{s-\sqrt{a^{2}+b^{2}} \sin \left(\frac{s}{\sqrt{a^{2}+b^{2}}}\right)}{a^{2}+b^{2}} \mathbf{B}(t)
\end{aligned}
$$

The quantities a, b depend on κ and τ, and are thus t-dependent. Expressing \mathbf{H}
in terms of κ and τ, we get

$$
\begin{aligned}
\mathbf{H}(s, t)= & \mathbf{r}+\frac{1}{\left(\kappa^{2}+\tau^{2}\right)^{3 / 2}}\left(s \tau^{2} \sqrt{\kappa^{2}+\tau^{2}}+\kappa^{2} \sin \left(s \sqrt{\kappa^{2}+\tau^{2}}\right)\right) \mathbf{T} \\
& +\frac{\kappa}{\kappa^{2}+\tau^{2}}\left(1-\cos \left(s \sqrt{\kappa^{2}+\tau^{2}}\right)\right) \mathbf{N} \\
& +\kappa \tau \frac{s \sqrt{\kappa^{2}+\tau^{2}}-\sin \left(s \sqrt{\kappa^{2}+\tau^{2}}\right)}{\left(\kappa^{2}+\tau^{2}\right)^{3 / 2}} \mathbf{B}
\end{aligned}
$$

where the t-dependence has been suppressed in the right to save space.

4 Polynomial approximations

It is entertaining to consider successive Maclaurin polynomial approximations \mathbf{p}_{k} of \mathbf{H} in s, which we can readily read off from the Maclaurin approximations of sine and cosine. The first four approximations are as follows

$$
\begin{aligned}
& \mathbf{p}_{0}(s, t)=\mathbf{r}(t) \\
& \mathbf{p}_{1}(s, t)=\mathbf{r}(t)+s \mathbf{T}(t) \\
& \mathbf{p}_{2}(s, t)=\mathbf{r}(t)+s \mathbf{T}(t)+\frac{1}{2} \kappa(t) s^{2} \mathbf{N}(t) \\
& \mathbf{p}_{3}(s, t)=\mathbf{r}(t)+\left(s-\frac{1}{6} \kappa(t)^{2} s^{3}\right) \mathbf{T}(t)+\frac{1}{2} \kappa(t) s^{2} \mathbf{N}(t)+\frac{1}{6} \kappa(t) \tau(t) s^{3} \mathbf{B}(t)
\end{aligned}
$$

The quadratic \mathbf{p}_{2} is the osculating parabol2 ${ }^{1}$ The cubic \mathbf{p}_{3} is what we would expect an "osculating cubic" to be.

[^0]
[^0]: ${ }^{1}$ To match with the paper, take $u=\kappa(t) s$. This difference arises because I have parametrized my helix to be unit speed while, in the paper, the osculating circle has speed $1 / \kappa$.

