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Consider the 3-sphere S3 ⊆ R4 with the standard metric and coordinates
p = (x, y, z, w). Write ∗S3 : ΛkT∗S3 → Λ3−kT∗S3 for the Hodge star. The goal
of this document is to show that

∗S3(dx ∧ dy) =
√
(1 − x2)(1 − y2)

zdw − wdz√
z2 + w2

∈ T∗
p S3. (1)

There are plenty of examples floating around for computing the Hodge star
of forms on vector spaces, and also of 0-, 1-, and top-degree-forms on man-
ifolds, but far fewer of a middle-dimensional form on a (non-vector space)
manifold. The broader point of this note is to illustrate some techniques for
computing the Hodge star of a higher degree form on a manifold that isn’t a
vector space.

Remark 0.1. (a) The formula in (1) has extensions to other spheres. For example,
using standard coordinates (x, y, z) on S2 we have

∗S2 dx = zdy − ydz

while on S1 we have
∗S1 1 = xdy − ydx.

More generally, using coordinates x1, . . . , xn, xn+1 on Sn, we have

∗Sn(dx1 ∧ . . . ∧ dxn−1)

= (−1)n+1
√
(1 − x2

1)(1 − x2
2) . . . (1 − x2

n−1)
xndxn+1 − xn+1dxn√

x2
n + x2

n+1

.

I will leave it up to you to verify this formula for n ̸= 3.

(b) Note that the 2-form dx ∧ dy is smooth, so ∗S3(dx ∧ dy) should be smooth
as well. However, the right side of (1) sure seems like it has a serious issue when
z = w = 0. But fret-not dear reader: this is just an artifact of the coordinates, as I will
now try to convince you. Write r, θ for the typical polar coordinates in the zw-plane (so
r2 = z2 + w2). In terms of these coordinates, we have (z2 + w2)−1/2(zdw − wdz) =
rdθ extends continuously across r = 0. Thus, the right side of (1) is continuous when
z = w = 0. It is in fact smooth too, and passing to local coordinates would show this
more clearly.
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(c) On T∗S3 we have

xdx + ydy + zdz + wdw = 0

which is a consequence of differentiating the defining equation x2 + y2 + z2 +w2 = 1.
Using these equations, the right side of (1) can be written in many different ways. One
benefit of the way it is currently written is that it treats the variables z and w (anti-
)symmetrically.

Before getting to the proof, I will briefly recall the a few facts about the
Hodge star. Suppose E is an n-dimensional real vector space equipped with
an orientation and an inner product ⟨·, ·⟩. This data determines a volume form
dvolE as well as an inner product (also denoted ⟨·, ·⟩) on the alternating product
ΛkE for each k. Then the Hodge star on E is the linear map ∗ :

⊕
k ΛkE →⊕

k ΛkE with the property that if v ∈ ΛkE, then ∗v ∈ Λn−kE is the unique
multivector satisfying

w ∧ ∗v = ⟨w, v⟩dvol (2)

for all w ∈ ΛkE.
Now suppose M is an oriented n-manifold with a Riemannian metric. Then

each cotangent space T∗
p M is an oriented vector space with an inner product

and so admits a Hodge star. This varies smoothly with the basepoint p and so
the pointwise Hodge star determines a bundle map

∗M : ΛkT∗M −→ Λn−kT∗M

covering the identity. This bundle map is called the Hodge star on M.

Finally, before getting to the proof of (1), I want to highlight a subtlety that
is hidden in the way I have written (1). The 1-forms dx, dy, dz, dw appearing
in are technically 1-forms on R4, so the forms dx, dy etc., that appear in (1)
really mean their pull back (restriction) to S3. That is, letting ι : S3 → R4

be the inclusion, we are really looking to compute a formula for the 1-form
∗S3(ι∗(dx ∧ dy)) in terms of ι∗dx, ι∗dy, ι∗dz, and ι∗dw. For many purposes, the
extra baggage of this pullback ι∗ is unnecessarily cumbersome. However, there
are a few places where its absence can lead to crucial errors. For example,
the 2-form dx ∧ dy on R4 never vanishes, while we will see that the 2-form
ι∗(dx ∧ dy) on S3 vanishes whenever x = ±1 or y = ±1 (this will come out of
the computation below). For this reason, I will keep track of ι throughout this
proof.

Proof of (1). Given the conversation of the previous paragraph, the goal is to
show

∗S3(ι∗(dx ∧ dy)) =

√
(1 − x2)(1 − y2)

z2 + w2 ι∗(zdw − wdz),

where ι : S3 → R4 is the inclusion. It suffices to assume we are working at a
point p = (x, y, z, w) where ι∗(dx ∧ dy) does not vanish; this implies that ι∗dx
and ι∗dy are linearly independent.
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Write π : R4 → TpS3 for the orthogonal projection onto the tangent space.
Then the pullback π∗ : T∗

p S3 → (R4)∗ is an isometric embedding with image
the 3-plane having normal vector

ν := xdx + ydy + zdz + wdw.

Then P∗ := (ι ◦π)∗ : (R4)∗ → (R4)∗ is the orthogonal projection operator with
image T∗

p S3; that is,

P∗ ◦ P∗ = P∗, P∗|π∗(T∗
p S3) = Idπ∗(T∗

p S3).

We will see that this is a useful operator to have around.
Consider the covector

β′ := ∗(ν ∧ P∗dx ∧ P∗dy)

where the Hodge star is on R4. This is normal to ν, P∗dx and P∗dy. Since it is
normal to ν, it follows that β′ lies in π∗T∗

p S3. The map π∗ is injective, so we can
therefore write β′ as

β′ = π∗β

for a unique β ∈ T∗
p S3. Now let’s use the fact that β′ = π∗β is normal to

P∗dx = π∗(ι∗dx) and P∗dy = π∗(ι∗dy). This observation and the fact that π∗

is an isometric embedding combine to imply that β is orthogonal to ι∗dx and
ι∗dy. Likewise, the covector ∗S3(ι∗(dx ∧ dy)) is orthogonal, in T∗

p S3, to ι∗dx and
ι∗dy. Since T∗

p S3 is 3-dimensional, it follows that β and ∗S3(ι∗(dx ∧ dy)) are
colinear; thus, there is some scalar c ∈ R so that

∗S3(ι∗(dx ∧ dy)) = cβ.

We can use the identity (2) to compute c:

cν ∧ dvolS3 = cdvolR4

(by (2)) = c
|β′ |2 ν ∧ P∗dx ∧ P∗dy ∧ β′

(def. of P∗ and β′) = c
|β′ |2 ν ∧ π∗ι∗dx ∧ π∗ι∗dy ∧ π∗β

= 1
|β′ |2 ν ∧ π∗(ι∗(dx ∧ dy) ∧ cβ

)
(def. of c) = 1

|β′ |2 ν ∧ π∗(ι∗(dx ∧ dy) ∧ ∗S3(ι∗(dx ∧ dy))

(by (2)) = |ι∗(dx∧dy)|
|β′ |2 ν ∧ dvolS3 .

This shows

c =
|ι∗(dx ∧ dy)|

|β′| . (3)

Thus, to compute ∗S3(ι∗(dx ∧ dy)), we need to compute β′ = ∗(ν ∧ P∗dx ∧
P∗dy). We begin by computing P∗dx and P∗dy. Recall that P∗ is the orthogonal
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projection operator onto the 3-plane with normal vector ν. It follows that P∗ is
given by the usual vector calculus formula for projection:

P∗α = α − ⟨α, ν⟩ν.

(Note that ν is a unit vector since p = (x, y, z, w) ∈ S3.) Thus

P∗dx = (1 − x2)dx − xydy − xzdz − xwdw
P∗dy = −xydx + (1 − y2)dy − yzdz − ywdw.

(4)

Taking the wedge, we find

P∗dx ∧ P∗dy = (1 − x2 − y2)dx ∧ dy − yzdx ∧ dz − ywdx ∧ dw
+xzdy ∧ dz + xwdy ∧ dw

and so
ν ∧ P∗dx ∧ P∗dy = wdx ∧ dy ∧ dw + zdx ∧ dy ∧ dz

which gives
β′ = ∗(ν ∧ P∗dx ∧ P∗dy) = zdw − wdz.

From this we can immediately read that

|β′| =
√

z2 + w2

which is the denominator on the right of (3). The formula for β′ also allows us
to compute β. Indeed, it follows from the construction above that zdw − wdz is
normal to ν, and so zdw−wdz ∈ π∗(T∗

p S3) lies in the space on which P∗ = π∗ι∗

acts as the identity. Thus

π∗β = β′ = zdw − wdz = π∗ι∗(zdw − wdz).

Since π∗ is injective, this implies

β = ι∗(zdw − wdz).

To finish the computation, we return to our formula (3) for c; we need to
compute the numerator |ι∗(dx ∧ dy)|. The operator π∗ is an isometric embed-
ding, so we have

|ι∗(dx ∧ dy)| = |π∗ι∗(dx ∧ dy)| = |P∗dx ∧ P∗dy|.

Since dx and dy are orthogonal, and P∗ is an orthogonal projection operator, it
follows that P∗dx and P∗dy are orthogonal. This gives

|ι∗(dx ∧ dy)| = |P∗dx||P∗dy|.

Using the formulas in (4), we find

|P∗dx| =
√

1 − x2, |P∗dy| =
√

1 − y2.
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Putting this all together, our desired formula follows:

∗S3(ι∗(dx ∧ dy)) = cβ

= |ι∗(dx∧dy)
|β′ | ι∗(zdw − wdz)

=
√

(1−x2)(1−y2)
z2+w2 ι∗(zdw − wdz).
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