The Hodge star on the 3-sphere

David L. Duncan

Consider the 3-sphere $S^3 \subseteq \mathbb{R}^4$ with the standard metric and coordinates p = (x, y, z, w). Write $*_{S^3} : \Lambda^k T^* S^3 \to \Lambda^{3-k} T^* S^3$ for the Hodge star. The goal of this document is to show that

$$*_{S^3}(dx \wedge dy) = \sqrt{(1-x^2)(1-y^2)} \ \frac{zdw - wdz}{\sqrt{z^2 + w^2}} \in T_p^* S^3.$$
(1)

There are plenty of examples floating around for computing the Hodge star of forms on vector spaces, and also of 0-, 1-, and top-degree-forms on manifolds, but far fewer of a middle-dimensional form on a (non-vector space) manifold. The broader point of this note is to illustrate some techniques for computing the Hodge star of a higher degree form on a manifold that isn't a vector space.

Remark 0.1. (a) The formula in (1) has extensions to other spheres. For example, using standard coordinates (x, y, z) on S^2 we have

$$*_{S^2}dx = zdy - ydz$$

while on S^1 we have

$$*_{S^1} 1 = x dy - y dx.$$

More generally, using coordinates $x_1, \ldots, x_n, x_{n+1}$ on S^n , we have

$$*_{S^n}(dx_1 \wedge \ldots \wedge dx_{n-1}) \\ = (-1)^{n+1} \sqrt{(1-x_1^2)(1-x_2^2)\dots(1-x_{n-1}^2)} \ \frac{x_n dx_{n+1} - x_{n+1} dx_n}{\sqrt{x_n^2 + x_{n+1}^2}}$$

I will leave it up to you to verify this formula for $n \neq 3$.

(b) Note that the 2-form $dx \wedge dy$ is smooth, so $*_{S^3}(dx \wedge dy)$ should be smooth as well. However, the right side of (1) sure seems like it has a serious issue when z = w = 0. But fret-not dear reader: this is just an artifact of the coordinates, as I will now try to convince you. Write r, θ for the typical polar coordinates in the zw-plane (so $r^2 = z^2 + w^2$). In terms of these coordinates, we have $(z^2 + w^2)^{-1/2}(zdw - wdz) =$ $rd\theta$ extends continuously across r = 0. Thus, the right side of (1) is continuous when z = w = 0. It is in fact smooth too, and passing to local coordinates would show this more clearly. (c) On T^*S^3 we have

$$xdx + ydy + zdz + wdw = 0$$

which is a consequence of differentiating the defining equation $x^2 + y^2 + z^2 + w^2 = 1$. Using these equations, the right side of (1) can be written in many different ways. One benefit of the way it is currently written is that it treats the variables z and w (anti-)symmetrically.

Before getting to the proof, I will briefly recall the a few facts about the Hodge star. Suppose *E* is an *n*-dimensional real vector space equipped with an orientation and an inner product $\langle \cdot, \cdot \rangle$. This data determines a volume form $dvol_E$ as well as an inner product (also denoted $\langle \cdot, \cdot \rangle$) on the alternating product $\Lambda^k E$ for each *k*. Then the *Hodge star* on *E* is the linear map $* : \bigoplus_k \Lambda^k E \to \bigoplus_k \Lambda^k E$ with the property that if $v \in \Lambda^k E$, then $*v \in \Lambda^{n-k}E$ is the unique multivector satisfying

$$w \wedge *v = \langle w, v \rangle d\text{vol} \tag{2}$$

for all $w \in \Lambda^k E$.

Now suppose *M* is an oriented *n*-manifold with a Riemannian metric. Then each cotangent space T_p^*M is an oriented vector space with an inner product and so admits a Hodge star. This varies smoothly with the basepoint *p* and so the pointwise Hodge star determines a bundle map

$$*_M : \Lambda^k T^* M \longrightarrow \Lambda^{n-k} T^* M$$

covering the identity. This bundle map is called the *Hodge star* on *M*.

Finally, before getting to the proof of (1), I want to highlight a subtlety that is hidden in the way I have written (1). The 1-forms dx, dy, dz, dw appearing in are technically 1-forms on \mathbb{R}^4 , so the forms dx, dy etc., that appear in (1) really mean their pull back (restriction) to S^3 . That is, letting $\iota : S^3 \to \mathbb{R}^4$ be the inclusion, we are really looking to compute a formula for the 1-form $*_{S^3}(\iota^*(dx \wedge dy))$ in terms of ι^*dx , ι^*dy , ι^*dz , and ι^*dw . For many purposes, the extra baggage of this pullback ι^* is unnecessarily cumbersome. However, there are a few places where its absence can lead to crucial errors. For example, the 2-form $dx \wedge dy$ on \mathbb{R}^4 never vanishes, while we will see that the 2-form $\iota^*(dx \wedge dy)$ on S^3 vanishes whenever $x = \pm 1$ or $y = \pm 1$ (this will come out of the computation below). For this reason, I will keep track of ι throughout this proof.

Proof of (1). Given the conversation of the previous paragraph, the goal is to show

$$*_{S^3}(\iota^*(dx \wedge dy)) = \sqrt{\frac{(1-x^2)(1-y^2)}{z^2+w^2}}\iota^*(zdw - wdz),$$

where $\iota : S^3 \to \mathbb{R}^4$ is the inclusion. It suffices to assume we are working at a point p = (x, y, z, w) where $\iota^*(dx \wedge dy)$ does not vanish; this implies that $\iota^* dx$ and $\iota^* dy$ are linearly independent.

Write $\pi : \mathbb{R}^4 \to T_p S^3$ for the orthogonal projection onto the tangent space. Then the pullback $\pi^* : T_p^* S^3 \to (\mathbb{R}^4)^*$ is an isometric embedding with image the 3-plane having normal vector

$$\nu := xdx + ydy + zdz + wdw.$$

Then $P^* := (\iota \circ \pi)^* : (\mathbb{R}^4)^* \to (\mathbb{R}^4)^*$ is the orthogonal projection operator with image $T_p^*S^3$; that is,

$$P^* \circ P^* = P^*, \qquad P^*|_{\pi^*(T^*_pS^3)} = \mathrm{Id}_{\pi^*(T^*_pS^3)}.$$

We will see that this is a useful operator to have around.

Consider the covector

$$\beta' := *(\nu \wedge P^* dx \wedge P^* dy)$$

where the Hodge star is on \mathbb{R}^4 . This is normal to ν , P^*dx and P^*dy . Since it is normal to ν , it follows that β' lies in $\pi^*T_p^*S^3$. The map π^* is injective, so we can therefore write β' as

$$\beta' = \pi^* \beta$$

for a unique $\beta \in T_p^*S^3$. Now let's use the fact that $\beta' = \pi^*\beta$ is normal to $P^*dx = \pi^*(\iota^*dx)$ and $P^*dy = \pi^*(\iota^*dy)$. This observation and the fact that π^* is an isometric embedding combine to imply that β is orthogonal to ι^*dx and ι^*dy . Likewise, the covector $*_{S^3}(\iota^*(dx \wedge dy))$ is orthogonal, in $T_p^*S^3$, to ι^*dx and ι^*dy . Since $T_p^*S^3$ is 3-dimensional, it follows that β and $*_{S^3}(\iota^*(dx \wedge dy))$ are colinear; thus, there is some scalar $c \in \mathbb{R}$ so that

$$*_{S^3}(\iota^*(dx \wedge dy)) = c\beta.$$

We can use the identity (2) to compute *c*:

$$c\nu \wedge d\operatorname{vol}_{S^{3}} = cd\operatorname{vol}_{\mathbb{R}^{4}}$$

$$(by (2)) = \frac{c}{|\beta'|^{2}}\nu \wedge P^{*}dx \wedge P^{*}dy \wedge \beta'$$

$$(\text{def. of } P^{*} \text{ and } \beta') = \frac{c}{|\beta'|^{2}}\nu \wedge \pi^{*}\iota^{*}dx \wedge \pi^{*}\iota^{*}dy \wedge \pi^{*}\beta$$

$$= \frac{1}{|\beta'|^{2}}\nu \wedge \pi^{*}\left(\iota^{*}(dx \wedge dy) \wedge c\beta\right)$$

$$(\text{def. of } c) = \frac{1}{|\beta'|^{2}}\nu \wedge \pi^{*}\left(\iota^{*}(dx \wedge dy) \wedge *_{S^{3}}(\iota^{*}(dx \wedge dy))\right)$$

$$(by (2)) = \frac{|\iota^{*}(dx \wedge dy)|}{|\beta'|^{2}}\nu \wedge d\operatorname{vol}_{S^{3}}.$$

This shows

$$c = \frac{|\iota^*(dx \wedge dy)|}{|\beta'|}.$$
(3)

Thus, to compute $*_{S^3}(\iota^*(dx \wedge dy))$, we need to compute $\beta' = *(\nu \wedge P^*dx \wedge P^*dy)$. We begin by computing P^*dx and P^*dy . Recall that P^* is the orthogonal

projection operator onto the 3-plane with normal vector ν . It follows that P^* is given by the usual vector calculus formula for projection:

$$P^*\alpha = \alpha - \langle \alpha, \nu \rangle \nu.$$

(Note that ν is a unit vector since $p = (x, y, z, w) \in S^3$.) Thus

$$P^*dx = (1-x^2)dx - xydy - xzdz - xwdw$$

$$P^*dy = -xydx + (1-y^2)dy - yzdz - ywdw.$$
(4)

Taking the wedge, we find

v

$$P^*dx \wedge P^*dy = (1 - x^2 - y^2)dx \wedge dy - yzdx \wedge dz - ywdx \wedge dw + xzdy \wedge dz + xwdy \wedge dw$$

and so

$$\wedge P^* dx \wedge P^* dy = w dx \wedge dy \wedge dw + z dx \wedge dy \wedge dz$$

which gives

$$\beta' = *(\nu \wedge P^*dx \wedge P^*dy) = zdw - wdz$$

From this we can immediately read that

$$|\beta'| = \sqrt{z^2 + w^2}$$

which is the denominator on the right of (3). The formula for β' also allows us to compute β . Indeed, it follows from the construction above that zdw - wdz is normal to ν , and so $zdw - wdz \in \pi^*(T_p^*S^3)$ lies in the space on which $P^* = \pi^*\iota^*$ acts as the identity. Thus

$$\pi^*\beta = \beta' = zdw - wdz = \pi^*\iota^*(zdw - wdz).$$

Since π^* is injective, this implies

$$\beta = \iota^* (zdw - wdz).$$

To finish the computation, we return to our formula (3) for *c*; we need to compute the numerator $|\iota^*(dx \wedge dy)|$. The operator π^* is an isometric embedding, so we have

$$|\iota^*(dx \wedge dy)| = |\pi^*\iota^*(dx \wedge dy)| = |P^*dx \wedge P^*dy|$$

Since dx and dy are orthogonal, and P^* is an orthogonal projection operator, it follows that P^*dx and P^*dy are orthogonal. This gives

$$|\iota^*(dx \wedge dy)| = |P^*dx||P^*dy|.$$

Using the formulas in (4), we find

$$|P^*dx| = \sqrt{1-x^2}, \qquad |P^*dy| = \sqrt{1-y^2}.$$

Putting this all together, our desired formula follows:

$$\begin{aligned} *_{S^3}(\iota^*(dx \wedge dy)) &= c\beta \\ &= \frac{|\iota^*(dx \wedge dy)|}{|\beta'|}\iota^*(zdw - wdz) \\ &= \sqrt{\frac{(1-x^2)(1-y^2)}{z^2+w^2}}\iota^*(zdw - wdz). \end{aligned}$$

Г		
L		
L		