The Hodge star on the 3-sphere

David L. Duncan

Consider the 3-sphere $3 C R* with the standard metric and coordinates
p = (x,y,z,w). Write g3 : AFT*S3 — A3~KT*S3 for the Hodge star. The goal
of this document is to show that

kgs (dx Ady) =1/ (1 — x2)( Z% T;‘S3. 1)

There are plenty of examples floating around for computing the Hodge star
of forms on vector spaces, and also of 0-, 1-, and top-degree-forms on man-
ifolds, but far fewer of a middle-dimensional form on a (non-vector space)
manifold. The broader point of this note is to illustrate some techniques for
computing the Hodge star of a higher degree form on a manifold that isn't a
vector space.

Remark 0.1. (a) The formula in (I) has extensions to other spheres. For example,
using standard coordinates (x,y,z) on S* we have

xgdx = zdy — ydz

while on S we have
*g11 = xdy — ydx.

More generally, using coordinates x1, ..., Xy, X,4+1 on S", we have
*gn (dX1 VARV dxn,1>

= (—1)"*1 \/(1 —2)(1-x3)...(1-22_))

XndXpi1 — Xpp1dXy

/12 2
xn+xn+1

(b) Note that the 2-form dx A dy is smooth, so xg3(dx A dy) should be smooth
as well. However, the right side of (1) sure seems like it has a serious issue when
z = w = 0. But fret-not dear reader: this is just an artifact of the coordinates, as I will
now try to convince you. Write r, 0 for the typical polar coordinates in the zw-plane (so
12 = 2%+ w?). In terms of these coordinates, we have (2> + w*)~V/2(zdw — wdz) =
rdf extends continuously across v = 0. Thus, the right side of (1)) is continuous when
z = w = 0. It is in fact smooth too, and passing to local coordinates would show this
more clearly.

I will leave it up to you to verify this formula for n # 3.



(c) On T*S3 we have
xdx +ydy + zdz + wdw = 0

which is a consequence of differentiating the defining equation x* + y* + z> + w? = 1.
Using these equations, the right side of (1) can be written in many different ways. One
benefit of the way it is currently written is that it treats the variables z and w (anti-
Jsymmetrically.

Before getting to the proof, I will briefly recall the a few facts about the
Hodge star. Suppose E is an n-dimensional real vector space equipped with
an orientation and an inner product (-, -). This data determines a volume form
dvolg as well as an inner product (also denoted (-, -)) on the alternating product
AKE for each k. Then the Hodge star on E is the linear map * : @; A'E —
@ AFE with the property that if v € AXE, then xv € A" FE is the unique
multivector satisfying

w A xv = (w,v)dvol ()

forallw € AFE.

Now suppose M is an oriented n-manifold with a Riemannian metric. Then
each cotangent space Ty M is an oriented vector space with an inner product
and so admits a Hodge star. This varies smoothly with the basepoint p and so
the pointwise Hodge star determines a bundle map

sy AKT*M — A" KT*M
covering the identity. This bundle map is called the Hodge star on M.

Finally, before getting to the proof of (I), I want to highlight a subtlety that
is hidden in the way I have written (I). The 1-forms dx, dy, dz, dw appearing
in are technically 1-forms on R*, so the forms dx,dy etc., that appear in
really mean their pull back (restriction) to S3. That is, letting ¢ : S3 — R
be the inclusion, we are really looking to compute a formula for the 1-form
g3 (1" (dx N dy)) in terms of *dx, 1*dy, 1*dz, and *dw. For many purposes, the
extra baggage of this pullback /* is unnecessarily cumbersome. However, there
are a few places where its absence can lead to crucial errors. For example,
the 2-form dx A dy on R* never vanishes, while we will see that the 2-form
1*(dx A dy) on S® vanishes whenever x = 41 or y = =1 (this will come out of
the computation below). For this reason, I will keep track of : throughout this
proof.

Proof of (I). Given the conversation of the previous paragraph, the goal is to
show

xg3 (1" (dx Ndy)) = \/Wl* (zdw — wdz),

where ¢ : $3 — R* is the inclusion. It suffices to assume we are working at a
point p = (x,y,z,w) where (*(dx A dy) does not vanish; this implies that /*dx
and (*dy are linearly independent.



Write 77 : R* — T,S for the orthogonal projection onto the tangent space.
Then the pullback 77* : T;,‘S3 — (R*)* is an isometric embedding with image
the 3-plane having normal vector

v = xdx + ydy + zdz + wdw.

Then P* := (1o r)* : (R*)* — (R*)* is the orthogonal projection operator with
image T;‘,‘ S3: that is,

P* o P* — P*’ P*|7r*(T;53) = Idﬂ*(T;S3)'

We will see that this is a useful operator to have around.
Consider the covector

B’ :=x(v A P*dx A P*dy)

where the Hodge star is on IR*. This is normal to v, P*dx and P*dy. Since it is
normal to v, it follows that g’ lies in 77*T}; S3. The map 7t* is injective, so we can

therefore write ' as

B =mp
for a unique 8 € T;,‘S3. Now let’s use the fact that p/ = 7*B is normal to
P*dx = m*(1*dx) and P*dy = 7*(1*dy). This observation and the fact that 77*

is an isometric embedding combine to imply that § is orthogonal to *dx and
1*dy. Likewise, the covector g3 (1" (dx A dy)) is orthogonal, in T}, S3, to 1*dx and

r*dy. Since T;S?’ is 3-dimensional, it follows that B and g (*(dx A dy)) are
colinear; thus, there is some scalar ¢ € R so that

xg3 (1" (dx Ndy)) = cp.

We can use the identity (2)) to compute c:

cv Advolgs = cdvolpa
by @) = lﬁ%‘zu/\P*dx/\P*dy/\ﬁ’
(def. of P*and B) = ﬁv A T rdx A Tt dy A Tt B
= Iﬁi’\zv A 7t* (% (dx A dy) A cB)
(def. of¢) = ﬁv AT (1 (dx A dy) A xgs (5 (dx Ady))
by @) = %v A dvolgs.
This shows o (dx A dy)|
f(dx A
= ©

Thus, to compute *g3 (¢*(dx A dy)), we need to compute ' = *(v A P*dx A
P*dy). We begin by computing P*dx and P*dy. Recall that P* is the orthogonal



projection operator onto the 3-plane with normal vector v. It follows that P* is
given by the usual vector calculus formula for projection:

Pra=oa— (av)v.
(Note that v is a unit vector since p = (x,y,z,w) € S®.) Thus

P*dx = (1-—x?)dx — xydy — xzdz — xwdw
P*dy = —xydx+ (1—y?)dy — yzdz — ywdw.

Taking the wedge, we find

P*dx AP*dy = (1—x*—y?)dx Ady — yzdx Adz — ywdx A dw
+xzdy A dz + xwdy N dw
and so
VAP*dx ANP*dy = wdxANdyAdw+zdx Ndy Ndz

which gives
B’ = x(v A P*dx A P*dy) = zdw — wdz.

From this we can immediately read that
B = V22 + w?

which is the denominator on the right of (3). The formula for g’ also allows us
to compute S. Indeed, it follows from the construction above that zdw — wdz is
normal to v, and so zdw — wdz € 7* (T} S3) lies in the space on which P* = 77*/*
acts as the identity. Thus

B = p = zdw — wdz = 1" (zdw — wdz).
Since 7t* is injective, this implies
B = 1" (zdw — wdz).

To finish the computation, we return to our formula for ¢; we need to
compute the numerator |*(dx A dy)|. The operator 77* is an isometric embed-
ding, so we have

|*(dx Ndy)| = | (dx ANdy)| = |P*dx A P*dy]|.

Since dx and dy are orthogonal, and P* is an orthogonal projection operator, it
follows that P*dx and P*dy are orthogonal. This gives

|*(dx Ndy)| = |P*dx||P*dy|.
Using the formulas in (@), we find

|P*dx| = \/1— %2, |P*dy| = /1 -y~



Putting this all together, our desired formula follows:

xg3 (1 (dx Ndy)) = B

—  |e(dxndy) « _
= i *(zdw — wdz)

= /U (2 — wiz).



