The Hodge star on the 3-sphere

David L. Duncan

Consider the 3-sphere $S^3 \subseteq \mathbb{R}^4$ with the standard metric and coordinates $p = (x, y, z, w)$. Write $*_S^3$: $\Lambda^k T^* S^3 \to \Lambda^{3-k} T^* S^3$ for the Hodge star. The goal of this document is to show that

$$
*_{S^3}(dx \wedge dy) = \sqrt{(1 - x^2)(1 - y^2)} \frac{zdw - wdz}{\sqrt{z^2 + w^2}} \in T_p^*S^3.
$$
 (1)

There are plenty of examples floating around for computing the Hodge star of forms on vector spaces, and also of 0-, 1-, and top-degree-forms on manifolds, but far fewer of a middle-dimensional form on a (non-vector space) manifold. The broader point of this note is to illustrate some techniques for computing the Hodge star of a higher degree form on a manifold that isn't a vector space.

Remark 0.1. *(a) The formula in [\(1\)](#page-0-0) has extensions to other spheres. For example, using standard coordinates* (*x*, *y*, *z*) *on S*² *we have*

$$
*_S2dx = zdy - ydz
$$

*while on S*¹ *we have*

$$
*_S11 = xdy - ydx.
$$

*More generally, using coordinates x*1, . . . , *xn*, *xn*+¹ *on Sⁿ , we have*

$$
*_{S^n}(dx_1 \wedge \ldots \wedge dx_{n-1})
$$

= $(-1)^{n+1}\sqrt{(1-x_1^2)(1-x_2^2)\ldots(1-x_{n-1}^2)}\frac{x_ndx_{n+1}-x_{n+1}dx_n}{\sqrt{x_n^2+x_{n+1}^2}}.$

I will leave it up to you to verify this formula for $n \neq 3$ *.*

(b) Note that the 2-form dx ∧ dy is smooth, so $*_{S^3}(dx \wedge dy)$ should be smooth *as well. However, the right side of [\(1\)](#page-0-0) sure seems like it has a serious issue when* $z = w = 0$. But fret-not dear reader: this is just an artifact of the coordinates, as I will *now try to convince you. Write r*, *θ for the typical polar coordinates in the zw-plane (so* $r^2 = z^2 + w^2$). In terms of these coordinates, we have $(z^2 + w^2)^{-1/2} (z dw - w dz) =$ *rd* θ *extends continuously across* $r = 0$ *. Thus, the right side of [\(1\)](#page-0-0) is continuous when* $z = w = 0$ *. It is in fact smooth too, and passing to local coordinates would show this more clearly.*

(c) On T∗*S* ³ *we have*

$$
xdx + ydy + zdz + wdw = 0
$$

which is a consequence of differentiating the defining equation $x^2 + y^2 + z^2 + w^2 = 1$ *. Using these equations, the right side of [\(1\)](#page-0-0) can be written in many different ways. One benefit of the way it is currently written is that it treats the variables z and w (anti-)symmetrically.*

Before getting to the proof, I will briefly recall the a few facts about the Hodge star. Suppose *E* is an *n*-dimensional real vector space equipped with an orientation and an inner product $\langle \cdot, \cdot \rangle$. This data determines a volume form *dvol_E* as well as an inner product (also denoted $\langle \cdot, \cdot \rangle$) on the alternating product $\Lambda^k E$ for each *k*. Then the *Hodge star* on *E* is the linear map $*$: $\bigoplus_k \Lambda^k E$ \to $\bigoplus_k \Lambda^k E$ with the property that if $v \in \Lambda^k E$, then $\ast v \in \Lambda^{n-k} E$ is the unique multivector satisfying

$$
w \wedge *v = \langle w, v \rangle dvol \tag{2}
$$

for all $w \in \Lambda^k E$.

Now suppose *M* is an oriented *n*-manifold with a Riemannian metric. Then each cotangent space T_p^*M is an oriented vector space with an inner product and so admits a Hodge star. This varies smoothly with the basepoint *p* and so the pointwise Hodge star determines a bundle map

$$
*_M: \Lambda^k T^*M \longrightarrow \Lambda^{n-k} T^*M
$$

covering the identity. This bundle map is called the *Hodge star* on *M*.

Finally, before getting to the proof of [\(1\)](#page-0-0), I want to highlight a subtlety that is hidden in the way I have written [\(1\)](#page-0-0). The 1-forms *dx*, *dy*, *dz*, *dw* appearing in are technically 1-forms on \mathbb{R}^4 , so the forms dx, dy etc., that appear in [\(1\)](#page-0-0) really mean their pull back (restriction) to S^3 . That is, letting $\iota : S^3 \to \mathbb{R}^4$ be the inclusion, we are really looking to compute a formula for the 1-form ∗*S* 3 (*ι* ∗ (*dx* ∧ *dy*)) in terms of *ι* [∗]*dx*, *ι* [∗]*dy*, *ι* [∗]*dz*, and *ι* [∗]*dw*. For many purposes, the extra baggage of this pullback *ι*[∗] is unnecessarily cumbersome. However, there are a few places where its absence can lead to crucial errors. For example, the 2-form $dx \wedge dy$ on \mathbb{R}^4 never vanishes, while we will see that the 2-form $\iota^*(dx\wedge dy)$ on S^3 vanishes whenever $x=\pm 1$ or $y=\pm 1$ (this will come out of the computation below). For this reason, I will keep track of *ι* throughout this proof.

Proof of [\(1\)](#page-0-0). Given the conversation of the previous paragraph, the goal is to show

$$
_{S^3}(t^(dx \wedge dy)) = \sqrt{\frac{(1-x^2)(1-y^2)}{z^2+w^2}}t^*(zdw - wdz),
$$

where $\iota: S^3 \to \mathbb{R}^4$ is the inclusion. It suffices to assume we are working at a point $p = (x, y, z, w)$ where $\iota^*(dx \wedge dy)$ does not vanish; this implies that $\iota^* dx$ and *ι* [∗]*dy* are linearly independent.

Write $\pi: \mathbb{R}^4 \to T_p S^3$ for the orthogonal projection onto the tangent space. Then the pullback $\pi^* : T_p^* S^3 \to (\mathbb{R}^4)^*$ is an isometric embedding with image the 3-plane having normal vector

$$
v := x dx + y dy + z dz + w dw.
$$

Then $P^* \mathrel{\mathop:}= (\iota \circ \pi)^* : (\mathbb{R}^4)^* \to (\mathbb{R}^4)^*$ is the orthogonal projection operator with image $T_p^*S^3$; that is,

$$
P^* \circ P^* = P^*, \qquad P^*|_{\pi^*(T^*_p S^3)} = \mathrm{Id}_{\pi^*(T^*_p S^3)}.
$$

We will see that this is a useful operator to have around.

Consider the covector

$$
\beta':=*(\nu\wedge P^*dx\wedge P^*dy)
$$

where the Hodge star is on **R**⁴ . This is normal to *ν*, *P* [∗]*dx* and *P* [∗]*dy*. Since it is normal to *ν*, it follows that $β'$ lies in $π$ ^{*} $T_p^*S^3$. The map $π$ ^{*} is injective, so we can therefore write $β'$ as

$$
\beta'=\pi^*\beta
$$

for a unique $\beta \in T_p^*S^3$. Now let's use the fact that $\beta' = \pi^*\beta$ is normal to $P^*dx = \pi^*(\iota^*dx)$ and $P^*dy = \pi^*(\iota^*dy)$. This observation and the fact that π^* is an isometric embedding combine to imply that *β* is orthogonal to *ι* [∗]*dx* and *ι*^{*}*dy*. Likewise, the covector $*_s$ ³(*ι*^{*}(*dx* ∧ *dy*)) is orthogonal, in $T_p^*S^3$, to *ι*^{*}*dx* and *ι*^{*}*dy*. Since $T_p^*S^3$ is 3-dimensional, it follows that *β* and $*_S^3(i^*(dx \wedge dy))$ are colinear; thus, there is some scalar $c \in \mathbb{R}$ so that

$$
_{S^3}(\iota^(dx \wedge dy)) = c\beta.
$$

We can use the identity [\(2\)](#page-1-0) to compute *c*:

$$
cv \wedge d\text{vol}_{S^3} = cd\text{vol}_{\mathbb{R}^4}
$$

\n(by (2)) = $\frac{c}{|\beta'|^2}v \wedge P^*dx \wedge P^*dy \wedge \beta'$
\n(def. of P^* and $\beta')$ = $\frac{c}{|\beta'|^2}v \wedge \pi^* \iota^*dx \wedge \pi^* \iota^*dy \wedge \pi^*\beta$
\n= $\frac{1}{|\beta'|^2}v \wedge \pi^* (\iota^*(dx \wedge dy) \wedge c\beta)$
\n(def. of c) = $\frac{1}{|\beta'|^2}v \wedge \pi^* (\iota^*(dx \wedge dy) \wedge *_{S^3} (\iota^*(dx \wedge dy)))$
\n(by (2)) = $\frac{1}{|\beta'|^2}v \wedge d\text{vol}_{S^3}$.

This shows

$$
c = \frac{|i^*(dx \wedge dy)|}{|\beta'|}.
$$
 (3)

Thus, to compute $*_{S^3}(\iota^*(dx \wedge dy))$, we need to compute $\beta' = *_(\nu \wedge P^*dx \wedge dy)$ *P*[∗]*dy*). We begin by computing *P*[∗]*dx* and *P*[∗]*dy*. Recall that *P*[∗] is the orthogonal

projection operator onto the 3-plane with normal vector *ν*. It follows that *P* ∗ is given by the usual vector calculus formula for projection:

$$
P^*\alpha=\alpha-\langle\alpha,\nu\rangle\nu.
$$

(Note that *ν* is a unit vector since $p = (x, y, z, w) \in S^3$.) Thus

$$
P^*dx = (1-x^2)dx - xydy - xzdz - xwdw
$$

\n
$$
P^*dy = -xydx + (1-y^2)dy - yzdz - ywdw.
$$
\n(4)

Taking the wedge, we find

$$
P^*dx \wedge P^*dy = (1 - x^2 - y^2)dx \wedge dy - yzdx \wedge dz - ywdx \wedge dw + xzdy \wedge dz + xwdy \wedge dw
$$

and so

$$
v \wedge P^*dx \wedge P^*dy = wdx \wedge dy \wedge dw + zdx \wedge dy \wedge dz
$$

which gives

$$
\beta' = *(\nu \wedge P^*dx \wedge P^*dy) = zdw - wdz.
$$

From this we can immediately read that

$$
|\beta'| = \sqrt{z^2 + w^2}
$$

which is the denominator on the right of [\(3\)](#page-2-0). The formula for *β* ′ also allows us to compute *β*. Indeed, it follows from the construction above that *zdw* − *wdz* is normal to *ν*, and so zdw – wdz $\in \pi^*(T_p^*S^3)$ lies in the space on which $P^* = \pi^* \iota^*$ acts as the identity. Thus

$$
\pi^*\beta = \beta' = zdw - wdz = \pi^*\iota^*(zdw - wdz).
$$

Since π^* is injective, this implies

$$
\beta = \iota^*(zdw - wdz).
$$

To finish the computation, we return to our formula [\(3\)](#page-2-0) for *c*; we need to compute the numerator $|i^*(dx \wedge dy)|$. The operator π^* is an isometric embedding, so we have

$$
|i^*(dx \wedge dy)| = |\pi^*i^*(dx \wedge dy)| = |P^*dx \wedge P^*dy|.
$$

Since *dx* and *dy* are orthogonal, and *P* ∗ is an orthogonal projection operator, it follows that *P* [∗]*dx* and *P* [∗]*dy* are orthogonal. This gives

$$
|\iota^*(dx \wedge dy)| = |P^*dx||P^*dy|.
$$

Using the formulas in [\(4\)](#page-3-0), we find

$$
|P^*dx| = \sqrt{1-x^2}, \qquad |P^*dy| = \sqrt{1-y^2}.
$$

Putting this all together, our desired formula follows:

$$
_{S^3}(\iota^(dx \wedge dy)) = c\beta
$$

= $\frac{|\iota^*(dx \wedge dy)|}{|\beta'|} \iota^*(zdw - wdz)$
= $\sqrt{\frac{(1-x^2)(1-y^2)}{z^2+w^2}} \iota^*(zdw - wdz).$

