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Suppose R → S4 is a real vector bundle over S4 of rank r. The main question
I want to dive into here is the following: When is R the underlying real vector
bundle ER of a complex vector bundle E → S4? Obviously a necessary condition
is that the rank r needs to be even. Is this also a sufficient condition? I will
show that the answer is “yes”, unless r = 4, where it is more complicated. The
main thing I like about this question is that in seeking out its answer we get
to see some fun machinery. It also shows that classification question for vector
bundles can be surprisingly sensitive to rank, even for bundles over the 4-sphere.

Let’s start by classifying the real vector bundles on S4. Arguably the easiest
way to do this on spheres is via the clutching function construction. In our case,
this construction shows that real rank-r vector bundles on S4 are classified by

π3(SO(r)) = π3(Spin(r)) ∼=


0 if r ≤ 2
Z if r = 3
Z2 if r = 4
Z if r ≥ 5

(1)

For those unfamiliar with this construction, it goes as follows: Since H1(S4) =
0, any real vector bundle R → S4 is automatically orientable. This means
we can trivialize R in a way that all transition maps take values in SO(r).
Since the upper- and lower-hemispheres of S4 are contractible, we can trivialize
R over each hemisphere to get a single transition map S3 → SO(r), where
the S3 appearing here should be viewed as the equator where the upper and
lower hemispheres intersect. This transition map is what is often referred to
as the “clutching function”. The key feature is that this clutching function
construction produces a one-to-one correspondence between real rank-r vector
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bundles over S4 and homotopy class of maps from S3 into SO(r). It is in this
sense that (1) classifies rank-r real vector bundles over S4. I should also mention
that the isomorphism in (1) is only canonical up to a sign. This sign ambiguity
comes from the transition map construction: do you go from the boundary of
the upper hemisphere to the lower, or vice versa? It doesn’t really matter, but
we will pin down a convention shortly.

The classification in (1) makes the answer to our question relatively straight-
forward...for the most part. I will start by analyzing the easiest case r ≤ 2, then
the “typical case” r ≥ 5 and finally the r = 4 case. In something of an epilogue I
will wrap up some residual questions pertaining to the r = 3 case, even though it
isn’t directly relevant to the initial question from the introduction. Interestingly,
the r = 3 case has some hidden surprises not appearing in the r ≥ 5 case, even
though Z classifies bundles in both cases.

1 Rank ≤ 2

If r ≤ 2, and R has rank r, then R ∼= S4 ×Rr is trivializable. Thus R admits a
complex structure if and only if Rr admits a complex structure, and this is the
case if and only if r is even (still assuming r ≤ 2).

2 Rank ≥ 5

In this case our real vector bundles are classified by an element of π3(SO(r)) ∼= Z.
This integer is roughly the Pontrjagin class p1(R) ∈ H4(S4) ∼= Z. The reasons
I say “roughly” are two-fold. First, there is this matter of this sign ambiguity
I mentioned above, but we could establish some convention to pin that down
(I will do this shortly). Second, it turns out that the Pontrjagin class p1(R) is
always even (for all ranks). To see this, recall that p1(R) = −c2(R ⊗ C) and
that c(E) ≡ w(ER) mod 2 (see Milnor–Stasheff Exercise 14-B). Now use the
Whitney product formula w(R ⊕ R′) = w(R)w(R′) and (R ⊗ C)R ∼= R ⊕ R to
get

p1(R) ≡ −c2(R⊗ C) mod 2
≡ w4(R⊕R) mod 2
≡ w2(R)2 mod 2.

Since w2(R) ∈ H2(S4,Z2) = 0, this implies that p1(R) is even, as claimed.
Conversely, I will show the following.

Lemma 2.1. For any rank r ≥ 4 and any even number 2n, there is a real vector
bundle R of rank r and with p1(R) = −2n.

The reason for the negative sign in the statement of the lemma is to undo
the negative sign in p1(R) = −c2(R ⊗ C) (I prefer my conventions to work out
well for the Chern classes, with the Pontrjagin classes getting the scraps; sorry
Pontrjagin). This lemma will allow me to pin down the aforementioned problem
with the sign ambiguity (for r ≥ 5): I want the isomorphism (1) to have the
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sign such that a bundle R with clutching function function f : S3 → SO(k)
sends [f ] ∈ π3(SO(k)) to the integer − 1

2p1(R) ∈ Z under (1).
To prove the lemma, let’s construct some bundles: Consider the Hopf fibra-

tion S7 → S4. This is a principal SU(2)-bundle with c2 = 1. It follows that the
associated complex vector bundle E1 := S7 ×SU(2) C2 has complex rank 2 and
c2(E1) = 1. Let n be any integer and fix a map fn : S4 → S4 of degree n. Then
En := f∗

nE1 is a vector bundle over S4 with complex rank 2 and c2(En) = n.
It follows that the underlying real vector bundle Rn := (En)R has real rank 4
and p1(Rn) = −2n. Since the Pontrjagin classes are stable invariants, it follows
that for each r ≥ 4 the bundle Rn × Rr−4 has real rank r and p1 = −2n. This
proves the lemma.

Along the way to proving Lemma 2.1, we have mostly answered our initial
question in this case: By construction, the bundle Rn = (En)R admits a complex
structure. Thus, Rn×Rr−4 admits a complex structure if and only if Rr−4 does,
and this is the case if and only if r is even. Because of our classification in (1),
this proves the following.

Theorem 2.2. Suppose R → S4 is a real vector bundle of rank not equal to 4.
Then R is the underlying real vector bundle of a complex vector bundle if and
only if the rank is even.

Let’s linger on this k ≥ 5 case a bit longer. Here I will take the principal
bundle perspective, by passing to the frame bundle and realizing R as a principal
SO(r)-bundle. Let GSO(3) ⊆ SO(r) be the subgroups diag(A, 1, . . . , 1) where
A ∈ SO(3). Then the map SU(2) → SO(3) → SO(r) given by sending x ∈
SU(2) to diag(Adx, 1, . . . , 1) generates π3(SO(r)). What this implies is that the
SO(r)-bundle R has structure group reducible to SU(2) (e.g., take the clutching
function for R and homotope it so it has image in G). That is, there is a
principal SU(2)-bundle P → S4 with

R ∼= P ×SU(2) SO(r)

where the group homomorphism SU(2) ↪→ SO(r) is as above. This is a principal
bundle version of the construction of Rn,r used in the proof of Theorem 2.2.

3 Rank 4

Our proof of Theorem 2.2 breaks down for r = 4 only because π3(SO(4)) is Z2

and not Z, so the Pontrjagin class (a single integer) couldn’t possibly capture the
richness of bundles in this setting. Interestingly, there is another characteristic
class floating around, and this is the Euler class e(R). In general, the Euler
class lives in Hr(S4) and it is only when r = 4 that the Euler class has a chance
of being non-zero. This makes for an interesting dynamic: The Pontrjagin
class fails to classify rank 4 bundles, but it is only for rank 4 bundles that the
Euler class produces a useful invariant. As you might have guessed, these two
characteristic classes taken together classify rank-4 bundles over S4:

3



Theorem 3.1. Suppose R,R′ → S4 are real vector bundles of rank 4. Then
R ∼= R′ if and only if p1(R) = p1(R

′) and e(R) = e(R′).

I will give something of a circuitous proof of this, extracted from Milnor’s
lovely little paper [2]. Let’s go back to the clutching function construction in
(1). The spin group Spin(4) ∼= S3 ×S3 is a product of spheres. Since Spin(4) is
a double cover of SO(4), we have

π3(SO(4)) = π3(Spin(4)) ∼= π3(S
3)× π3(S

3).

The isomorphism π3(S
3) ∼= Z gives (1). Given (h, j) ∈ Z2 my present goal is to

create a real rank-4 vector bundle Rh,j → S4 with clutching function given by
(h, j) ∈ Z2 under (1). To do this, view S3 ⊆ H as the group of unit quaternions.
Note that if u ∈ S3, then the map v 7→ uhvuj is linear on the real vector space
H ∼= R4. Thus, we have a map

fh,j : S
3 −→ SO(4), u 7−→ (v 7→ uhvuj).

(I’m using Milnor’s notation, for those who choose to look up his paper, which
I highly recommend.) The homotopy class of fh,j produces an element of the
group π3(SO(4)) ∼= Z2 and one can check that this corresponds to (h, j) ∈ Z2,
up to a sign depending on our transition function choices referenced above. (If
you want to check this, it is predicated on the observation that the map u 7→ uh

on S3 has degree h.) By using this function fh,j in the clutching construction,
then we can produce a bundle Rh,j with clutching function fh,j ; this has the
desired property. I’m going to skip this part, but Milnor [2] also shows that

p1(Rh,j) = ±2(h− j), e(Rh,j) = h+ j (2)

for some sign ±. This sign ambiguity is the r = 4 version of the same one
discussed above and so, by possibly redefining our clutching function, we can
assume ± = − in (2). The reason for this sign choice is the same as above: I
want the conventions arranged so that the appropriate second Chern number
has no minus sign.

Since the function (h, j) 7→ (2(j−h), h+ j) is injective, Theorem 3.1 follows
from our classification (1).

We have made significant progress in our exploration of rank-4 real vector
bundles over S4. However, our initial question still remains in this case: Given
a rank-4 real vector bundle R → S4, when does it admit a complex structure?
The following example shows that this may not be as straight-forward as a
parity question for the Euler class.

Example 3.2. The tangent bundle TS4 has p1(TS
4) = 0 and e(TS4) = 2, but

has no complex structure (which would be an almost complex structure on S4).
Let’s take these claims one at a time. Since p1 is stable, we have p1(TS

4) =
p1(TS

4 ×R). The normal bundle to S4 is trivializable, so TS4 ×R ∼= (TR5)|S4

is the restriction to S4 of the tangent bundle to R5. Clearly TR5 is trivializable,
so its restriction to S4 is as well. This implies p1(TS

4) = 0.
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The claim about the Euler class is one of those fun Euler characteristic
games: The identification H4(S4) ∼= Z is given by pairing with the fundamental
class [S4]. Pairing with the fundamental class of S4 we have the Euler charac-
teristic

e(TS4)[S4] = χ(S4) = 2.

The really fun part is the complex structure bit. Suppose TS4 = ER for some
complex vector bundle E, which is necessarily of complex rank 2. Then

p1(TS
4) = −c2(TS

4 ⊗ C) = −c2(E ⊕ E∗) = −2c2(E) = −2e(ER) = −4. (3)

This is a contradiction since p1(TS
4) = 0.

To figure this complex structure thing out, let’s go in the other direction:
Suppose E → S4 is a complex rank-2 bundle. The same type of argument used
for (3) shows

p1(ER) = −2e(ER).

This gives us another necessary condition. Is it sufficient? The answer here is
yes.

Theorem 3.3. Suppose R → S4 is a real vector bundle of rank 4. Then R
admits a complex structure if and only if p1(R) = −2e(R).

We have already proven one direction, so let’s assume p1(R) = −2e(R). It
suffices to work under the assumption that R = Rh,j is one of our representative
bundles. Then we are assuming

2(j − h) = −2(h+ j).

This implies j = 0. Our bundle Rh,0 is obtained from the clutching function
fh,0 that sends u ∈ S3 to the map v 7→

(
fh,0(u)

)
(v) := uhv. Let i =

√
−1 ∈ H,

and notice that fh,0(u) commutes with right multiplication by i for all u:(
fh,0(u)

)
(vi) =

((
fh,0(u)

)
(v)

)
i.

This implies that right multiplication by i on each trivialization used to define
Rh,0 descends to give a well-defined action of i on Rh,0, thus giving it a complex
structure. This proves the theorem.

Recall that there was a choice of convention of sign ± in (2) and we had
gone with ± = −. If we had gone with ± = +, then this would force h = 0
(not j) and left multiplication by i would descend to an action on R0,j . Either
way, the statement of Theorem 3.3 would continue to hold as stated, regardless
of our sign conventions, as it should.

5



4 Rank 3 — Divisibility of the Pontrjagin class

We have seen that the Pontrjagin class p1(R) of a real vector bundle on S4 is
always even. When the rank is at most 2 this class is zero, and Lemma 2.1
shows that for rank ≥ 4 the Pontrjagin class takes on all even numbers. What
about rank 3? Here is a challenge for the reader before reading on: Try to find
a rank-3 vector bundle on S4 with Pontrjagin class 2 (or -2, I don’t care).

[Spoiler Alert!]
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Here is a fun fact: If R is a rank-3 real vector bundle over a closed, connected,
oriented 4-manifold, then

P(w2(R)) ≡ p1(R) mod 4,

where P is the Pontrjagin square. This formula seems to go back to Wu in the
50’s but it is quoted in [1, (2.1.36)], among many other places. The usefulness
of this formula for us is that, if H2 = 0 (as is the case for us), then all rank-3
vector bundles R have p1(R) divisible by 4. What the hell? This is new! Is
there some other weird necessary condition lurking for rank-3 vector bundles on
S4, or is this the only remaining one?

Well, as it turns out, this is it.

Theorem 4.1. For every integer n, there is a real rank-3 vector bundle R → S4

with p1(R) = −4n.

Here’s a slick way to do it, which I am pulling right out of [1, Ch. 2]: Above
we constructed a complex vector bundle En → S4 of rank 4 and c2(En) =
n. Consider the endomorphism bundle Rn,3 := su(En) consisting of skew-
symmetric, trace zero endomorphisms of En. This has real rank 3 (since su(2) ∼=
so(3) ∼= R3), so we are in the ballpark by at least getting the rank right. More-
over, there is an isomorphism between Rn,3 and the symmetric, trace zero en-
domorphisms of En; this is given by multiplication by i, so the latter space is
iRn,3. The space of central endomorphisms of En is a trivial bundle of complex
rank 1. Thus, there is an isomorphism

Rn,3 ⊕ iRn,3 ⊕ R2 ∼= End(En)R

of real vector bundles. Since End(En) = En ⊗ E∗
n, this gives

2p1(Rn,3) = p1(End(En)R) = −c2(End(En)) = −c2(En ⊗ E∗
n).

To compute the right-hand side, let’s use the Chern character ch since it satisfies
the multiplicative formula ch(E ⊗ F ) = ch(E)ch(F ). Note also that

ch(E) = k − c2(E)

for complex rank-k vector bundles E → S4. This gives

4− c2(E ⊗E∗) = ch(En ⊗E∗
n) = ch(En)ch(E

∗
n) = (2− c2(En))

2 = 4− 4c2(En).

Thus c2(E ⊗ E∗) = 4c2(En). We therefore conclude that

p1(Rn,3) = −4c2(En) = −4n.

This proves the theorem.
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