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Set-up

X = a connected, oriented cylindrical end 4-manifold (with metric).

Let Y be the 3-manifold at infinity.

Assume X is equipped with a principal G -bundle that is
translationally-invariant down the ends.

Assume this is chosen so that the induced bundle on Y admits no
reducible flat connections.
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Set-up (cont’d)

A(X ) = space of connections on this bundle

The Yang-Mills functional is

YM : A(X )→ R, A 7→ 1

2
‖FA‖2

L2 .

If YM(A) <∞, then we expect A to be asymptotic on the cylindrical
ends to some flat connection a ∈ A(Y ).

Fix a ∈ A(Y ), and let A(X ; a) denote the space of W 1,2 connections on
X that are asymptotic to a.
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Set-up (cont’d)

The global minimizers of YM on A(X ; a) are the anti-self dual (ASD)
connections:

F+
A :=

1

2
(FA − ∗FA) = 0.

In general,
YM(A) = CS(a) + ‖F+

A ‖
2
L2 ,

so ‖F+
A ‖

2
L2 records how close you are to being minimal.

The Yang-Mills heat flow is the negative gradient flow of
YM : A(X ; a)→ R

∂τA = −d∗AFA, A(τ) = A0
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The flow

In the closed case, Struwe (’94) showed short-time existence and
uniqueness.

Everything is equivariant relative to the action of the gauge group G.
Otherwise, this flow is very similar to the 2-dim. harmonic map flow.

When taken modulo gauge, the linearization is ∂τV = −∆AV .

In this cylindrical end case, the operator ∆A is not Fredholm. The issue is
due to degenerate flat connections on Y .

Resolution: Introduce a perturbation to make it Fredholm.
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Perturbations

Fix a G-equivariant map H : A(X )→ Ω2(X , ad). This is the perturbation.

Replace FA with
FA,H := FA − H(A).

H can be chosen so that this satisfies the Bianchi identity dA,HFA,H = 0,
where dA,H is a perturbed version of dA.
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Perturbations (cont’d)

The perturbed Yang-Mills functional is

YMH(A) :=
1

2
‖FA,H‖2

L2

The analogue of ASD is H-ASD, which means F+
A,H = 0.

Assume H is translationally-invariant under the ends, and let h be the
induced perturbation on Y .

A connection a on Y is called h-flat if Fa − h(a) = 0.

Moreover, H can be chosen so all h-flat connections are non-degenerate
(and so we have a Fredholm problem).
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Short-time existence and uniqueness

Theorem (99% Struwe ’94, 1% D. ’14)

There is a suitable class of perturbations H so that if H ∈ H is such that
all h-flat connections are non-degenerate, then short-time existence and
uniqueness holds for the perturbed Yang-Mills heat flow.

Proof sketch: Note that W 1,2 ↪→ L4 holds on cylindrical end 4-manifolds
(this is a borderline Sobolev embedding).

In the absence of a perturbation (but assuming non-degeneracy), Struwe’s
proof goes through almost verbatim.

Check that the perturbation does not mess up the estimates.
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Long-time existence: Exploiting the perturbation

This theorem only places a restriction on the asymptotic behavior of H.

A connection A is regular if d+
A,H : Ω1(X , ad)→ Ω+(X , ad) is surjective.

Can assume all h-flat connections are non-degenerate, and all H-ASD
connections are regular. Say H is regular when this is the case.

(Roughly speaking, this means the absolute minima of YMH are Morse
critical points, when taken mod gauge.)
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Corollary (D. ’14)

Assume G = SO(3) and H is regular. Suppose a is an h-flat connection
with Ind(d+

A,H ⊕ d∗A,H) < 8, for A ∈ A(X ; a).

The energy gap for YMH is positive. Similarly, there is a positive
energy gap for YM on the trivial bundle on S4 (with the round
metric). Let η > 0 be the minimum of these values.

If A0 ∈ A(X ; a) has ‖F+
A0,H
‖2
L2 < η, then a solution A(τ) to the

perturbed Yang-Mills heat flow with A(0) = A0 exists for all
τ ∈ [0,∞).

The A(τ) converge exponentially to a unique H-ASD connection
A∞ ∈ A(X ; a).

There is a constant C so ‖F+
A(τ),H‖L2 ≤ C‖d∗A(τ),HFA(τ),H‖L2 for all

τ ∈ [0,∞]. Moreover,

‖A0 − A∞‖L2 ≤ (1− e−2/C2
)−1‖F+

A0
‖L2 .
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An application

Y = a closed, connected, oriented 3-manifold with b1(Y ) > 0

P → Y , an SO(3)-bundle with w2(P) ∈ H2(Y ,Z2) in the image of a
generator of H2(Y ,Z)/torsion

X = R× Y , with cylindrical metric and induced bundle.
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The quilted Atiyah-Floer conjecture

Quilted Atiyah-Floer conjecture

HFASD(Y )

abelian group defined by
counting ASD connections on

R× Y with
Ind(d+

A,H ⊕ d∗A,H) = 1

?∼= HFholo(Y )

abelian group defined by
counting holomorphic strips
R× I → M, in a certain

symplectic manifold M with
Lagrangian boundary

conditions + index assumption

The equations need to be perturbed to get good counts.

The counts depend only on Y and the topological type of P.

David L. Duncan (McMaster University) The qAF conjecture and the YM heat flow 2015 SIAM Conference 11 / 16



The quilted Atiyah-Floer conjecture

Quilted Atiyah-Floer conjecture

HFASD(Y )

abelian group defined by
counting ASD connections on

R× Y with
Ind(d+

A,H ⊕ d∗A,H) = 1

?∼= HFholo(Y )

abelian group defined by
counting holomorphic strips
R× I → M, in a certain

symplectic manifold M with
Lagrangian boundary

conditions + index assumption

The equations need to be perturbed to get good counts.

The counts depend only on Y and the topological type of P.

David L. Duncan (McMaster University) The qAF conjecture and the YM heat flow 2015 SIAM Conference 11 / 16



The quilted Atiyah-Floer conjecture

Quilted Atiyah-Floer conjecture

HFASD(Y )

abelian group defined by
counting ASD connections on

R× Y with
Ind(d+

A,H ⊕ d∗A,H) = 1

?∼=

HFholo(Y )

abelian group defined by
counting holomorphic strips
R× I → M, in a certain

symplectic manifold M with
Lagrangian boundary

conditions + index assumption

The equations need to be perturbed to get good counts.

The counts depend only on Y and the topological type of P.
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A little more detail

For simplicity, ignore asymptotics. Assume H is regular.

MASD(g ,H) :=
{
A
∣∣∣ F+

A,H = 0
}/
G × R

Mholo(g ,H) := moduli space of perturbed holomorphic strips in M

If MASD(g ,H) and Mholo(g ,H) are in bijective correspondence, then the
conjecture would follow.

Theorem (D. ’14)

There are g ,H so that the H-perturbed Yang-Mills heat flow induces an
injection

Mholo(g ,H)→MASD(g ,H).
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Sketch of proof

Perturbed holomorphic strips lift to connections in on R× Y with the
right asymptotics.

For suitable g , these connections have near-minimal perturbed Yang-Mills
energy.

That is, there is a sequence of metrics gn so that ‖F+
A,H‖L2,gn → 0

uniformly for all lifts A of perturbed holomorphic strips.

Theorem

Let η(gn) > 0 be the constant from the perturbed Yang-Mills heat flow.
Then infn η(gn) > 0.
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Sketch of proof (cont’d)

Corollary

The for all n sufficiently large, the perturbed Yang-Mills heat flow restricts
to define a map

Mholo(g ,H)→MASD(g ,H).

Injectivity: Show the constant C = C (gn) (from the heat flow theorem)
can be taken independent of n. Then use the estimate

‖A0 − A∞‖L2 ≤ (1− e−2/C2
)−1‖F+

A0,H
‖L2
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Work in progress/future directions

Surjectivity?

Use the harmonic map flow? (On a surface with boundary and
cylindrical/strip-like ends.)
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Thank you for your attention!

David L. Duncan (McMaster University) The qAF conjecture and the YM heat flow 2015 SIAM Conference 16 / 16


	The (perturbed) Yang-Mills heat flow
	An application

