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1 Introduction

This paper is meant to serve as an introduction and reference guide to the Loewner equation

and Stochastic Loewner Evolution (SLE). We begin by discussing various forms of Loewner’s

differential equation and some of the technical language of the surrounding mathematics. After

proving the ability for the equation to generate slits in the upper-halfplane we investigate some

properties and theorems that will be beneficial when we deal with SLE. Our attention is then

turned to the realm of stochastic processes as we introduce Brownian motion and how it is used

as a driving term to generate SLE. Since modeling SLE is (at the time of this publication)

our primary endeavor, I have tried to use the mathematics developed in the previous sections to

explain how this can be achieved both theoretically and in practice. Finally, we look at a specific

example of a simple program that generates SLE for various values of κ. It is this program that

serves as a base for modeling SLE via Mathematica. Although the more recent programs have

made a number of developments, they all still use the same basic idea so it will be beneficial to

understand how it works.

This paper was targeted toward those who have an understanding of real and complex analy-

sis. However, an introduction to probability would also be beneficial. Beyond this I have tried

to make it as self-contained as possible and have included two appendices to supplement some

of the more specific background information.

2 Loewner equations

The heart of our focus is on the Loewner equation. This equation was studied extensively by

Czech mathematician Charles Loewner. You may come across various spellings of his names

including any combination of Karl, Karel, Charles for his first name and Löwner or Loewner for

his last. He attended Charles University of Prague and received his Ph.D. in geometric function

theory in 1917. In the years to follow he was employed at the German Technical University

in Prague, the University of Berlin, the University of Cologne and the Charles University of

Prague. In 1923 Loewner used the equation bearing his namesake to prove a special case of the
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Bieberbach conjecture. The Loewner equation appeared again in de Branges’ 1984 proof of the

complete Bieberbach conjecture. Due to the Nazi influence in Germany, Loewner and his family

were forced to emigrate to America where Loewner took a position at Louisville University. He

finally moved on to Brown in 1944 where he worked on a program related to the war. [11]

There are a quite a few versions of Loewner’s differential equation depending on which domain

we are interested in. For example there are versions in the disk, the upper-halfplane, various

annular domains and other even more obscure ones. Our primary focus is on the chordal Loewner

equation, which is the Loewner equation in the upper half complex plane. However in some

contexts it may be beneficial to use the radial Loewner equation, which takes the disk as its

domain, so we will briefly discuss this as well.

2.1 Radial Loewner equation

As stated above, the radial Loewner equation generates a function that takes a subset of the disk

to the whole disk. The equation has the form:

∂

∂t
g(t, z) = −g(t, z)g(t, z) + λ(t)

g(t, z)− λ(t)
, g(0, z) = z, (1)

where λ : [0, T ] → R is a continuous function of t and z ∈ {z : |z| < 1}.

2.2 Chordal Loewner equation

There are two ways of looking at the chordal (half-plane) Loewner equation: i) by running time

forwards and ii) by running time backwards. We investigate both below.

2.2.1 Forward Loewner equation

The forward version of the chordal Loewner equation is a differential equation having the form:

∂

∂t
g(t, z) =

2

g(t, z)− λ(t)
, g(0, z) = z, (2)

where λ : [0, T ] → R is continuous and the domain for z is the upper half plane denoted

H={z ∈ C : Im(z) > 0}. The Existence and Uniqueness Theorem from differential equations

(see Appendix A1) tells us that every z ∈ H corresponds to some time interval [0, t0) such that

a unique solution of (2) exists.

Now we develop an idea for the geometry of our domain. Suppose z0 is a point such that the

denominator of the right side of (2) is zero, i.e. g(t, z0) = λ(t). This results in the derivative,

∂tg(t, z), experiencing a singularity at that point; we can therefore conclude that z0 is not in our

domain. Under certain condition on λ (which we will look into later) we can guarantee that the
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set of all such points produces a curve extending from the real axis. However, the curve may

even be space filling, depending on the function λ. We will call this curve γ. To formalize this

we set Tz = sup{t0 ∈ [0, T ] : g(t, z) exists on [0, t0)}. This gives us the largest possible value for

t such that a solution, g(t, z), makes sense. We now define Gt = {z ∈ H : t < Tz} which omits

only the points in H that for some time t < Tz cause ∂tg to become singular. Gt is now our

domain for (2), see figure 1. It can be shown that Gt is actually a simply connected subdomain

of H regardless of λ [10]. Below we will supply the conditions on λ such that the domain Gt is

a quasislit-halfplane.1 Since λ continuously generates a new map Gt for each subsequent value

of t it follows that γ is also continuous in t. We can further define γ(t) to be a curve in H∪ 0

where γ(0) = 0 and t∈ [0, T ]. In general however, we can think of γ as a curve of singularities.

It is interesting to note that since λ is real each point z ∈ γ corresponds to a real valued g, thus

γ is mapped to the real axis as can be seen in figure 1.

Figure 1: Forward Version. The slit γ is mapped to the real axis under gt. The compliment of γ and the real

axis in the left picture is Gt.

Since putting different driving terms into (2) (i.e. different functions in the place of λ)

would result in a different function g we say that λ generates g(t, z) and the corresponding

domain Gz. Furthermore, λ is often called the driving term. You will also encounter the use of

the notation gt(z) rather than g(t, z), but they represent the same function. By the Riemann

Mapping Theorem (see Appendix A1) it can be shown that gt is a conformal map from Gz onto

H. This map can be made unique by specifying certain conditions on points in our domain.

We usually think of this as having three degrees of freedom from which we can make the map

unique. For our purposes we use choose these three degrees of freedom as follows: i) to map

∞ to ∞, ii) to map the real line to the real line and iii) to have the derivative evaluated at ∞
be 1. This is usually called the hydrodynamic normalization and more precisely states that:

1Technically this paper presents the conditions necessary in the backwards Loewner equation (see below);
however the two results are equivalent [9].
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limz→∞ gt(z)− z=0, thus our map will look like the identity map when z is far away from the

origin. Looking at the expansion of gt we notice that all coefficients of zn for n ≥ 2 and the

constant term must be zero, similarly the coefficient of z would have to be 1. So near infinity gt

has the form:

gt(z) = z +
c(t)

z
+ O

(
1

z2

)
2 (3)

Often times the c(t) term is referred to as the halfplane capacity and can be shown to be

continually increasing in t (for more information see [8]). For those with a background in complex

analysis, c is just the residue of gt. Furthermore, since g0(z) = z it follows that c(0) = 0. We will

find it useful to parameterize γ such that c(t) is linear in t, so we choose c(t) = 2t. The reasoning

behind this latter, seemingly arbitrary choice, is that in the radial version (which is the version

that Loewner himself worked in) it is natural to parameterize γ such that c(t) = et. However,

when we convert back over to the chordal version this et turns into 2t. So it is more or less for

historical purposes that we maintain the 2 in the parameterization. The halfplane capacity will

play a large roll later when we model SLE.

Another term that you may come across is the hull. A hull in the upper half-plane is defined

as a compact set K ⊂ H so that H\K is simply connected. As a technicality we need to further

specify that K = K ∩H which guarantees that K contains no intervals of R that are ’sticking

out’ to the left or right [8]. You can think of the hull as being, more or less, the generated curve

γ. The term ’more or less’ is used because the hull will not necessarily be a curve, it could be

any set of points that satisfy the above definition like a space filling set. Notice that Gt = H\K.

Sometimes you may see the K subscripted with a t. This is just there as a reminder that the

hull is dependent on time.

2.2.2 Backward Loewner equation

We can think of the forward version of the Loewner equation as taking our curve γ and moving

it down to the real axis as time moves forward. So we might infer that starting at our ending

time T and progressing backwards to time 0 will result in the appearance of some curve γ from

the previously ’empty’ (at time T ) upper-halfplane as in figure 2. Such functions are generated

by the equation:

∂

∂t
ft(z) =

−2

ft(z)− ξ(t)
, f0(z) = z (4)

where ξ is real and continuous. We call this the backward Loewner equation. One particularly

nice part about equation (4) is that it has the whole upper half plane as a domain for every

2This last symbol is called a Landau symbol and denotes that the rate at which O
(

1
z2

)
decreases is at least as

fast as 1
z2 .
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generated function ft. This contrasts from the relatively obscure domain observed in the forward

version, which was the upper-half plane minus a curve γ (See figures 1 and 2).

Figure 2: Backward Version. The bolded interval on the real axis is being mapped to γ under ft.

Besides the obvious appearance of the negative sign in the numerator, equation (4) and

equation (2) are related in another way in that if T is the largest possible value for t, then letting

λ(T − t) = ξ(t) brings us from one equation to the other. Although it seems entirely possible for

the function ft generated by (4) to be the inverse of gt generated from (2), this is generally not

true. Thus the curve γ generated by (4) is not necessarily the same curve γ generated by (2).

However it is true that

fT (z) = g−1
T (z),

where T is the final time [10].

Subjecting our generated functions ft to the same hydrodynamic normalization at infinity as

we did above we get an expansion similar to that appearing in (3) except that the half-plane

capacity term, c(t), now has a sign opposite what had previously been observed. This can be

thought of as a result of ’running time backwards’ and replacing all t’s with −t’s. Similarly, if γ

is parameterized in the same way as in (2), then the expansion of f has the form:

ft(z) = z +
−c(t)
z

+ O
(

1

z2

)
(5)

As stated above for the forward version we observe that γ is mapped to the real axis. In the

backward version we observe this same phenomenon in the opposite direction: part of the real

axis is mapped to γ. In fact this mapping is two-to-one in nature, i.e. two points on from the

real axis are mapped to one point on γ under ft. This called welding and is easily observed by

setting the driving term, ξ, equal to a constant. Letting ξ(t) = A we can easily solve equation

(4) by the method of separation of variables. Upon separating the variables in (4) we get:
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(f − A)∂f = −2∂t.

Integrating and moving all terms to one side yields

1
2
f 2 − Af + 2t+ C = 0,

where C is a constant of integration. Now we turn to our companion the quadratic formula and

solve for f

f = A±
√
A2 − 2(2t+ C).

The initial value f0(z) = z tells us that −2C = (z − A)2 − A2, so we get

ft(z) = A±
√

(z − A)2 − 4t. (6)

Now we look to see where the singular point z = A is mapped to, we see that ft(A) = A+ i2
√
t.

This result and the continuity of ξ make it clear that the ’±’ in (6) must be in fact a ’+’ to ensure

that our image is in the upper half plane. It is interesting to note that as time moves forward

this singular point moves upward along the line Re (z) = A; thus γ is perpendicular to the real

axis. We can now easily observe the welding phenomenon. This describes how two real-valued

curves, one on either side of z = A, are ’welded’ together to form γ. To see this we set ft(z) = A,

then solving for z in (6) gives z = A± 2
√
t. Since t is positive these values are on the real axis

and are centered symmetrically around A. Thus we see the two-to-one correspondence between

the real axis and γ.

In general, the solutions for nonconstant driving terms are implicit and in the rare case that

they are not the derivation of an explicit formula is rather involved. In light of this, we will

refrain from direct calculation of formulas and merely state the result. We refer the reader to [6]

for these derivations. If we set ξ(t) = 2
√
κ(1− t) we observe some very interesting features. The

value of κ has a direct relation with the geometry of γ. When κ < 4 we get a simple curve that

resembles a logarithmic spiral. However, when κ = 4 γ hits the real line. It is quite interesting to

note that the measure of the angle at which this intersection occurs is 0! As κ grows to be greater

than 4 we continue to observe contact with the real axis and the point of contact approaches -∞
as κ→∞.

Now we will jump back to the forward version in (2). If we set λ = 3
2
− 3

2

√
1− 8t then our

line of singularities begins to trace out a semicircle centered at 1
2

with a radius of 1
2
. It is easy
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Figure 3: The welding property is easily observed in this example. We notice that ft maps A to A + i2
√

t and

both of the points A + 2
√

t and A− 2
√

t to the point A resulting in a line segment perpendicular to the point A

with a length of 2
√

t.

Figure 4: Here we see the behavior of the driving function ξ(t) = 2
√

κ(1− t) for various values of κ.

to see that at time t = 1
8

the generated curve contacts the real line. See [9] for a more thorough

derivation.

One particularly interesting case is when the driving term causes a spiral to generate. The

curve is simple until t reaches infinity and the curve hits back on itself and closes off the disk

in the center. When a curve touches back on itself, the points completely enclosed by the curve

all reach a singularity at the same time and thus the whole enclosed set is no longer part of the

domain (see figure 5).

The last case to take note of is when the driving function is linear. In this case the generated

curve emanates orthogonally from the real axis but as time moves forward it develops a slight

curve. See figure 6.
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Figure 5: At t=∞ the disk inside of the spiral becomes closed off from the rest of the upper half plane. At this

time every point within the disk results in a singularity.

3 Deriving the Loewner Equation

In this section we verify that upon correct parameterization gt satisfies (2). We will state this

more formally as a theorem below but for now we will investigate a few preliminary topics.

3.1 The scaling and summation rules

The scaling rule. For r > 0 consider the normalized, and thus unique, conformal map grt. The

notation represents a hull at time t being scaled by a parameter r to yield a new hull at time

rt. To visualize how this works take for example a hull, K0, which is the vertical line segment

extending from 0 to i, let t0 denote the corresponding time. Now the hull rK0 will represent the

vertical segment from 0 to ri and is mapped by the function grt0 (see figure 7).

So in general the multiplication of r simply scales all points of K by r. The function grt(z)

then takes H\rK to H. However, the function gt(z/r) also takes H\rK to H. To understand

this refer again to our example hull, K0. The conformal map taking H\rK0 to H\K0 is z/r. So

if we take the composition: gt0(z) ◦ (z/r) = gt0(z/r) we get a conformal map from H\ rK0 to

H\ K0 and then to H. This reasoning can be applied to any hull K.

Let us now look again at our composite function gt(z/r). Examining the series expansion we

see that this function no longer satisfies the hydrodynamic normalization3:

gt(z/r) = z/r + −c(t)
(z/r)

+ O
(

1
(z/r)2

)
= z/r + −c(t)r

z
+ O

(
1

(z)2

)
.

3It is important to remember here that this does not mean our results are invalid, it just means that we need
to make some corrections to gt(z/r) to ensure that it is unique and satisfies the Loewner equation.
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Figure 6: The above figure illustrates the curve generated by a linear driving function. Notice the bend toward

the top.

Figure 7: On the right is the hull K0. The left is rK0, the image of K0 after scaling by a factor of r.

The presence of the r in the last two terms does not affect the behavior of gK(z/r) near ∞, the

only place where it is a bother is its appearance as a coefficient of the linear term (recall that the

hydrodynamic normalization requires our function have no constant term near ∞). The solution

to this problem is simple: multiply by r. We now have two functions that map H\rK0 to H

and since they have each been made unique via normalization it follows that they are equal:

grt(z) = rgt(z/r). Similarly we get that their respective capacities are unique, thus giving us the

scaling rule:

c(rt) = r2c(t).

The summation rule. For the purposes of this derivation we will resort to a slightly

different notation. Consider two hulls J and K such that J ⊂ K. Define their respective

normalized conformal maps to be gJ and gK . The subscripted notation can be thought of as
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Figure 8: The figure above gives a schematic for the composition gt0(z) ◦ (z/r) = gt0(z/r) applied to rK0.

Figure 9: (a) represents the domain that gL takes to H. In (b) gJ takes the filled in curve to the real axis. In

(c) gK represents the composition of gJ and gL and takes the filled in curve to the real axis.

representing the times, t1 and t1 + t2, it takes to run gt such that we get the respective hulls

J and K. We then construct a new hull L := gJ(K\J). L is then the image of the part of K

that is not in J under gJ and can be thought of as corresponding to time t2. Now if we compose

gJ with gL and apply it to the hull K, then gJ will map the ’J part of K’ to the real axis and

gL will map everything that is left over to the real axis. We now have two functions that map

H\K to H, namely gL ◦ gJ and gK . We already know that gK has the correct normalization. To

see that gL ◦ gJ also satisfies the hydrodynamic normalization we note that since there are no

constant terms in either gL or gJ (they were both assumed to be hydrodynamically normalized

at infinity) and since the only linear term appearing in their composition comes from composing

the linear terms in each, we are done. So by uniqueness gL ◦ gJ = gK . Looking at the capacities

of these we recover the summation rule:

c(K) = c(J) + c(L).

So if we have two hulls J ⊂ K we can create another hull L as defined above and the capacity

of the larger hull, K, is the sum of the capacities of the two smaller hulls, J and L. In terms of

t, this result can also be written as:

c(t2 + t1) = c(t2) + c(t1).
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3.2 Derivation

Suppose that γ(t) ∈ H is continuous such that γ(0) ∈ R. Furthermore, impose the condition

that if γ hits back on itself or on the real line then it immediately ’bounces back’ into H\K (for

a more precise statement see [8]). It then follows that the associated capacity, c(t), is continuous.

Similarly, λ(t) := gt(γ(t)) is also continuous. Remark: This definition of λ differs than the one

presented in the Section 1 because the functions gt may not have the correct normalization yet.

For more information see [8]. The important attribute of the continuity of c is that we can

now parameterize γ in virtually any continuous fashion. Now we can prove that gt satisfies the

Loewner equation and that λ is the driving term.

Theorem. Let γ(t) be parameterized such that c(t) = 2t. Then for all z ∈ H\Kt, where

Kt is the hull associated with γ(t), then gt(z) satisfies

∂
∂t
gt(z) = 2

gt(z)−λ(t)
, g0(z) = z,

Proof: We will proceed in the manner suggested by Karl Fredrickson and begin with the

Poisson integral formula in the upper-halfplane (see Appendix A3):

W (z) =
1

π

∫ ∞

−∞

1

s2 + 1

sz + 1

s− z
Im W (s)ds+ C. (7)

Now consider the function hτt := gτ ◦ g−1
t for τ < t. Notice that as a consequence of the

summation rule when t− τ is small, hτt maps H to H\δτt, where δτt is some small slit emanating

from the real axis. The function hτt(z)−z satisfies the requirements for Poisson integral formula,

so we now have:

hτt(z)−z =
1

π

∫ ∞

−∞

1

s2 + 1

sz + 1

s− z
Im (hτt(s)− s) ds+C =

1

π

∫ ∞

−∞

1

s2 + 1

sz + 1

s− z
Im (hτt(s)) ds+C.

(8)

The extra s on the right side of (8) evaluated to zero because Im s = 0 on the real line. Using

the hydrodynamic normalization we can solve for C. Since hτt(z) − z should be zero at ∞ it

follows that

0 =
1

π

∫ ∞

−∞

s

s2 + 1
Im hτt(s)ds + C, (9)

which gives

hτt(z)− z =
1

π

∫ ∞

−∞

(
1

s2 + 1

sz + 1

s− z
− s

s2 + 1

)
Im hτt(s)ds. (10)

Combining the fractions simplifies this expression to
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hτt(z)− z =
1

π

∫ ∞

−∞

Im hτt(s)

s− z
ds. (11)

Everywhere except for on the slit δτt, h maps to the real line and thus the imaginary part is

zero. We can now change our bounds of integration from all of R to just over δτt. Since λ(t) is

assumed to be continuous we can take t− τ to be as small as we want and thus we can make δτt

into an arbitrarily small interval containing λ(t).

In Appendix A3 the following expression is formulated:

c =
1

π

∫ ∞

−∞
Im W−1(t)dt, (12)

where c is the halfplane capacity of W . Since we have assumed the capacity of gt to be 2t, by

the summation rule we get that the capacity of h−1
τt is the sum of the capacities of gτ and g−1

t ,

namely 2(τ − t). Putting hτt into (12) gives:

τ − t =
1

2π

∫ ∞

−∞
Im hτt(s)ds. (13)

By the same argument as above the bounds of integration on (13) can be reduced to the interval

δτt. Now divide equation (11) by equation (13):

hτt(z)− z

τ − t
=

2
∫
δτt

Im hτt(s)
z−s

ds∫
δτt
Im hτt(s)ds

. (14)

Since the integration is with respect to s we can substitute gt(z) in for z, giving

gτ (z)− gt(z)

τ − t
=

2
∫
δτt

Im hτt(s)
gt(z)−s

ds∫
δτt
Im hτt(s)ds

. (15)

We can think of the denominator of (15) as normalizing the integral so that as we allow τ−t→ 0

we are essentially integrating the function 2/(gt(z)− s) against the Dirac delta function centered

at λ(t) (see Appendix A3). This just gives the value of 2/(gt(z) − s) evaluated at s = λ(t).

Finally we come to

limτ→t
gτ (z)− gt(z)

τ − t
=

∂

∂t
gt(z) =

2

gt(z)− λ(t)
. (16)

Q.E.D.

12



4 SLE

This section is designed to supply basic information pertaining to Brownian motion and SLE.

4.1 Probability and Brownian Motion

First we review some basic concepts of probability. If f(x) is a given probability density function,

then we define the expectancy of a continuous random variable X as E[X] =
∫∞
−∞ xf(x). We

can further define the variance as V ar(X) = E[X2] − (E[X])2. In less technical terms,

the expectancy, E, is nothing more than the mean and the variance is the standard deviation

squared. Furthermore, for any real-valued function g we get: E[g(X)] =
∫∞
−∞ g(x)f(x). It is

beneficial to note that E[aX + b] = aE[X] + b and V ar(aX + b ) = a2V ar(X), where a

and b are constants (we leave the proof as an exercise for the reader). If an event occurs with

a probability of 1 then they are said to occur almost surely, often abbreviated a.s.. This is

analogous to saying that the probability of the event not happening has measure 0.

Brownian motion. Brownian motion is a phenomenon named after Scottish biologist

Robert Brown, who in 1827 was observing particles in fluid and noticed very erratic behav-

ior. This behavior appeared to be completely random and puzzled many people for some time.

In 1905 Einstein showed that this motion of the particles was due to their interference with

the molecules in the fluids. Later, in 1927 Norbert Wiener gave a mathematical description of

Brownian motion.

To model Brownian motion we need to first understand its behavior. We begin by imagining

a random walk. A one-dimensional random walk can be constructed in the following manner.

Suppose that we begin at the origin at time 0. Now suppose that every time one minute has

passed we flip a coin. If the coin lands on heads then we take a step forward, if the coin lands on

tails we take a step backwards. Our motion is now a random walk. At any given point in time we

have an equal probability of stepping forwards or backwards, thus our future path is not affected

by where we came from. Upon scaling this random walk as illustrated below in figure 104 we can

allow the time in between coin flips to approach 0. As this happens our motion approaches the

process we call Brownian motion, denoted Bt (sometimes authors use W rather than B to pay

tribute to Wiener, but they both represent the same process).

To reiterate, let {µj} be a sequence of independent, identically distributed random variables

with mean 0 and variance 1. For n > 0 define the following sequence of functions

Bn(t) :=
1√
n

bntc∑
j=1

µj. (17)

4This scaling is to ensure that random walk converges to Brownian motion as δ → 0.
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Figure 10: The red line represents a random walk. Notice how the time axis is scaled.

Thus Bn(t) is a random variable that increases µj/
√
n for every increment in time where. Since

the µj’s are independent it follows that the time increments of Bn(t) are also independent. In

accordance with the above example we can choose the µj’s to give either +1 or -1. This is a

mathematical description of taking a step forward or backward at given time intervals and will

be denoted by
∑±1. With a little more work (which we do not include here), it can be shown

that Bn(t) → Bt as n→∞. It also follows that Brownian motion is a continuous process. More

surprisingly however, it can also be shown that it is nowhere differentiable! It has sharp cusps

at every point on every scale! Now we state the three properties that characterize Brownian

motion:

1. the manner in which we increment is independent of time,

2. the initial point is arbitrary (Bt −Bs, for t ≥ s, is independent of s) and

3. it has a mean of 0 (if B0 = 0) and a variance of t when the time change is t unit and when

the motion is normally distributed.

Scaling Property of Bt. The scaling property of Brownian motion states that

Bt =D aBt/a2 . (18)

The =D notation denotes an equivalence in distribution. This property follows from our initial

scaling of Bt. If we substitute na2 for n into equation (17) then we see that

Bna2(t) =
1

a2
√
n

bna2tc∑
j=1

µj. (19)
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Now define a new variable s = a2t and substitute

Bna2(s/a2) =
1

a2
√
n

bnsc∑
j=1

µj. (20)

Since this last expression is just 1
a
Bn(s) letting n→∞ gives us the scaling property.5

4.2 Brownian motion and SLE

SLE stands for Stochastic Loewner Equation (although you may also see it referred to as

Schramm Loewner Evolution) and is created by allowing the driving in the Loewner equation

to be Brownian motion. More explicitly we set the driving term to be ξ(t) =
√
κBt, where κ

is taken to be positive and real valued. It turns out that different values of κ give us different

families of generated curves. When κ is small the curves are simple (meaning they do not touch

back on themselves or the real line). However when κ ranges between 4 and 8 we begin to see

the curve coming into contact with itself and the real line. When κ ≥ 8 then the generated curve

is space filling! On a side note, there are two things that may prove to be beneficial to point

out. The first is that Var[
√
κBt] = κV ar[Bt] = κt, which follows directly from the properties of

variance. The second is that the Hausdorff dimension of SLEκ for κ < 8 is 1+κ
8
.

O. Schramm and others have used SLE to aid in the study of a variety of physical phenomena

including DLA (diffusion limited aggregation), the theory of random walks and percolation [7].

Listed below are some values for κ whose resulting SLE is the converging limit for the given

random walk:

• LERW or Loop Erase Random Walk → SLE2

• SAW or Self Avoiding Walk6 → SLE8/3

• Harmonic Explorer7 → SLE4

• Percolation → SLE6

• Peano Curve or Uniform Spanning Tree → SLE8

5To prove this in a more formal setting we would need to use some more machinery and look into what is
actually meant to ’converge to Brownian motion.’ However these calculations illustrate the basic idea behind the
derivation.

6This is the only result listed that has not been proven, however it has been shown that if SLE8/3 is the
converging limit of a process then the process must be SAW. SAW is a process that is used to describe polymers
[7].

7Presently this process has no physical interpretation however since SLE4 is so essential this random walk was
constructed.
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SLEκ allows us a way to model these random physical processes (e.g. LERW, SAW, etc.) which

have been observed in many areas of the physical sciences, but have proven to be very difficult

to understand.

5 Approximation

In the above section we discussed how the composition of different maps generated by the Loewner

equation have some nice properties. In this section we examine how these properties can be

exploited to generate virtually any function we want and then we will look into exactly how this

can be used in approximating SLE.

5.1 Composition and the construction of maps

This section contains material which the reader may be unfamiliar with, in which case we refer

them to Appendix A2. Furthermore, this section is structured toward the proof of the following

theorem taken from [9]:

Theorem 1. If ξ ∈ Lip
(

1
2

)
with ‖ξ‖ 1

2
< 4, then ft(H) is a quasislit-halfplane for all t, where ft

are the maps generated by ξ.

Keeping this in the back of our minds let us continue on our path of functional creation!

5.1.1 General idea

What we want to do is approximate the generated function f by a series of functions fn such

that fn → f as n → ∞. We do this by first approximating the driving function ξ. Take

for instance an arbitrary ξ(t) (see the blue curve in figure 11). We must necessitate that ξ be

continuous in t, however it does not have to be differentiable (recall that Brownian motion is

nowhere differentiable). Now divide the time axis into equal n equal intervals located a distance

of δ2 apart and sample the ξ at each point. In other words, pick out the points on ξ corresponding

to each time increment. We now connect these points with straight lines as illustrated by the

red curve in figure 11. What we have done is approximated ξ by linear terms.8 Let ξδ denote

this new function made up of the straight line segments. Notice that as δ → 0 these linear

approximations approach the function ξ.

8This approximation is linear because consecutive points are connected by lines and not curves. When we
model SLE we will use square roots instead. However both ways work just the same as δ → 0, so we are free to
use which ever method best fits the circumstances.
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Figure 11: The blue line is ξ(t) and the red line approximates it by connecting the points of ξ evaluated at nδ.

Let f be the function generated by ξ and let the blue curve in figure 12 be the generated

hull. Due to our continuity assumptions, if we use ξδ as a driving function we notice that the

corresponding generated map, fδ, approximates f ; and furthermore, since ξδ → ξ it is reasonable

to believe that fδ → f as δ → 0 (we will prove this below). Notice how the image of the straight

approximating lines of figure 11 now appear as curved lines in figure 12. This is because a linear

driving function generates a curve with a slight bend to it (see figure 6).

Figure 12: The blue line is the curve generated by ξ and the red line is the curve generated by the approximating

function. Notice how the straight lines from figure 11 generate curved lines here.

Yet the question remains: How can we construct fδ? This is where the summation rule comes

in. Number each curve of ξδ from 1 to n as illustrated in 13. Recall that since this is the backward
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version what we see in figure 13 is at the final time T . Now just look at the curve labeled n.

Imagine rewinding time so that curves 1 through n−1 are on the real axis, but curve n is still in

the upper-halfplane, call this domain Dn. The Riemann Mapping Theorem (see Appendix A1)

tells us that there exists some conformal map from the upper-halfplane to Dn, call it φn.

Figure 13: (a) illustrates the generated curve from the approximating function. Each segment corresponding

to the numerical time increments at which ξ was sampled is numbered from 1 to n. Figure (b) is attained by

running time backwards and returning curves 1 through n− 1 to the real line. Only the nth curve is left.

Now move time forwards a step of δ2. We see both curves n and n− 1 in H, but the rest are

still on the real line, call this domain Dn−1. Again, we know that there exists a conformal map

from Dn to Dn−1, call it φn−1. Proceed in this manner until we have n maps: φn, φn−1, . . . , φ1

that each increment fδ a time step of δ2. Now by taking the composition of these maps the

summation rule tells us that the resulting function is exactly the function that we are looking

for. In other words: fδ = φn ◦ φn−1 ◦ . . . ◦ φ1. So as δ → 0 the φn ◦ φn−1 ◦ . . . ◦ φ1 → f !

5.1.2 Beneficial lemmas

We will use the same concepts of the previous section to prove Theorem 1. The notation is slightly

different at times, however it is the exact same idea as the general argument given above. Again,

this proof requires some background on a variety of concepts (Hölder continuity, quasiconformal

maps, etc.) which are all discussed in Appendix A2. We will begin by the statement of some

lemmas.

Suppose that the image of ft is a quasislit-halfplane, then γ(t) only intersects the real axis

once. This occurs when t = 0 so we can extend ft(z) to be continuous for all z ∈ H ∪R\ξ(0).

Thus x(t) := (ft(x) satisfies:

∂

∂t
x(t) =

−2

x(t)− ξ(t)
, x(0) = x0 (21)

where x0 ∈ R\ξ(0).

In reference to this ”real version” of the Loewner equation, J. Lind proceeds to prove the

following lemmas in [9].
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Lemma 1. Let ξ ∈ Lip
(

1
2

)
with ‖ξ‖ 1

2
< 4 and ξ(0) = 0. Suppose that x(t) is a solution

to (5), with x0 6= 0. Then C1x
2
0 ≤ T (x0) ≤ C2x

2
0, where C1 and C2 are positive, finite and

depend on the value of ‖ξ‖ 1
2
.

This says that for ‖ξ‖ 1
2
< 4 there exists some time T (x0) <∞ such that x(T ) = ξ(T ), where x

is a solution to (5), and thus resulting in a singularity at that point.

In Lemma 3 of [9], J. Lind shows that for each time T < ∞ there are exactly two initial

points x0 and y0, where x0 < ξ(0) < y0 such that their corresponding solutions to (1), x and y,

both equal ξ(T ) at the same time T .

From this we can define the welding homeomorphism ψ : R → R to be the orientation-

reversing map that satisfies ψ(x) = y if and only if x(T ) = y(T ) and thus interchanges the two

points that hit the singularity ξ at the same time. The following lemma supplies us with some

estimates on ψ.

Lemma 2. Let ξ ∈ Lip
(

1
2

)
with ‖ξ‖ 1

2
< 4 and ξ(0) = 0. There exists some constant A0 > 0,

depending only on ‖ξ‖ 1
2
, so that if 0 ≤ x < y < z with y − x = z − y, then

1

A0

≤ ψ(x)− ψ(y)

ψ(y)− ψ(z)
≤ A0 (22)

We will use the following lemma to tie in Lemmas 1 and 2 in the crux of the proof to The-

orem 1.

Lemma 3. H\γ[0, T ] is a quasislit-halfplane if and only if there is a constant 1 ≤ M <∞ such

that
1

M
≤ x− ξ(0)

ξ(0)− ψ(x)
≤M (23)

for all x > ξ(0) and

1

M
≤ ψ(x)− ψ(y)

ψ(y)− ψ(z)
≤M (24)

whenever ξ(0) ≤ x < y < z with y − x = x − y. Furthermore, the quasislit constant K of

H\γ[0, T ] depends on M only.

In the next section we repeat the argument outlined in Section 5.1.1 but in a more rigorous

manner.
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5.1.3 Proof of Theorem 1

Proof: First we will construct an approximation of the driving term and then show that the image

of this approximation is a slit-halfplane. Then we will show that this approximation satisfies the

hypothesis of Lemma 3 and thus the image is a K-quasislit-halfplane. But since the space of K-

quasislit-halfplanes is compact we know that the limiting function is also a K-quasislit-halfplane

and is therefore a slit-halfplane, thus completing the proof.

Due to the scaling invariance of ξ we have a large amount of freedom when it comes to

parameterizing γ, so if we can show that the image at time 1, f1(H), is a quasislit-halfplane,

then we will be done.9 We can approximate the Loewner equation by first taking the composition

of n infinitesimal conformal maps, φk, and then making an estimate [12]. In order to do this we

must first approximate our driving term ξ, which is assumed to be Lip
(

1
2

)
, by some functions

ξn ∈ Lip
(

1
2

)
which we already know generate quasislit-halfplanes. More precisely, we want

to construct ξn ∈ Lip
(

1
2

)
so that ξn(tk) → ξ(tk) as n → ∞, where n ∈ N, tk = k/n and

‖ξn‖1/2 ≤ ‖ξ‖1/2. This last inequality is necessary to ensure that our approximation of ξ has a

Lip
(

1
2

)
value that is less than or equal to the Lip

(
1
2

)
value of ξ. Otherwise we may exceed our

upper Lip
(

1
2

)
bound of 4. Furthermore, the n appearing in the above relations is a factor that

will be allowed to approach ∞ in order to yield our desired infinitesimal estimates.

We are going to construct linear driving functions (in contrast to the square root ones used

below for the program). To do this we setmk = n(ξ(tk+1)−ξ(tk)) and to incorporate a continuous

time parameter t ∈ [0, 1] let ξn(t) = mk(t − tk) + ξ(tk) = ξ(tk+1)(t − tk) + ξ(tk)(1 + n(tk − t)).

A key concept that we gather from this formulation is that as t → tk, ξ
n(t) → ξ(t); in other

words, our approximating functions approach our desired function. To verify that ‖ξn‖1/2 < 4

we choose (x, y) ∈ [tk, tk +1] for some nonnegative k. We now notice that |ξn(y)− ξn(x)| reduces

to
∣∣∣(y − x)(ξ

(
k+1
n

)
− ξ

(
k
n

)
)
∣∣∣, but when |y − x| ≤ 1 we have that |y − x| ≤

√
|y − x| and thus

|ξn(y)− ξn(x)| =
∣∣∣(y − x)(ξ

(
k+1
n

)
− ξ

(
k
n

)
)
∣∣∣ ≤ C

√
|y − x| for |y − x| ≤ 1 and some constant C.

It then follows that ξn is Hölder continuous on [tk, tk +1]. Now, without loss of generality, assume

that ξn(y) ≥ ξn(x), then upon maximizing the function h(x, y) := ξn(y) − ξn(x) − D
√
|y − x|,

where we set D = ‖ξ‖1/2 and (x, y) ∈ [tj, tj+1]× [tk, tk+1], we find that h ≤ 0 and thus ‖ξn‖1/2 ≤
‖ξ‖1/2 as desired since ‖ξn‖1/2 is the smallest value that C can take on.

Now we create our maps φk. Let φk
t denote the maps generated by ξn(tk +t) = mk(t)+ξ(tk) =

n(ξ(tn+1)−ξ(tn))t+ξ(tn) where t ∈ [0, 1/n] and thus we have a linear driving term. This form of

driving term results in a curve emanating perpendicularly from the real axis and then beginning

to develop a curve as in figure 6. To ease up the notation a little, let φk := φk
1/n. Now if fn

t is

the map generated by ξn for t ∈ [0, 1], we have that fn
1 is the composition of n of our estimating

9For more information on scaling invariance see Proposition 2.1 in [13] and the comment before Lemma 1 in
[9].
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maps φki where ki 6= kj; in other words fn
1 = φn ◦ φn−1 ◦ . . . ◦ φ2 ◦ φ1. Since each φj yields a

slit-halfplane, we can conclude that fn
1 (H) is a slit-halfplane. Now we see that the hypothesis

for Lemmas 1 and 2 are satisfied. Lemma 2 yields exactly the second condition in Lemma 3

whereas, with a little algebra, Lemma 1 offers exactly the first condition in Lemma 3. Therefore,

by Lemma 3 fn
1 (H) is a K-quasislit-halfplane and the eccentricity parameter K is independent

of the value of n. Now if we impose the limit as n→∞ we get a sequence of functions, each of

which results in a K-quasislit-halfplane. Since the space of K-quasislit-halfplanes is compact, we

are guaranteed that this sequence has some subsequence which converges to a limit f1 that also

results in a K-quasislit-halfplane (which is slit-halfplane). This is our desired function. Q.E.D.

5.2 Composition and approximating SLE

Figure 14: The blue curve is a sample of Brownian motion and the red curve is an approximation consisting of

square root functions.

Now we will use the ideas from the previous section to construct a usable model for generating

SLE. Just as before we will begin by approximating the driving term, which in this case is
√
κBt,

where Bt is Brownian motion. Since Brownian motion is a random process each time we run

Brownian motion it looks different. Suppose that we have a sample of Brownian motion (see

figure 14). Again, divide the time into equal increments and note the corresponding points on the

curve. We are now going to connect these points, however this time we are going to use a square

root function to connect them, rather than the linear connection used above and in 11. The

reason for this will become clear in a moment. Again, we can put both the sample of Brownian

motion and the approximating function into the Loewner equation to develop two similar curves

in H (see figure 15). Now rewind time back to where the last approximating curve is the only
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one present in the upper-halfplane. We now have a map generated by a square root driving term.

We saw above that such a driving function results in a straight line emanating from the real axis

at a certain angle aπ. Now we want to find a conformal map from the upper-halfplane to this

new domain. Well it just so happens that such a conformal map has a fairly easy representation

and can be looked up in most tables. The map is:

f(z) = (z − a)a(z − (a− 1))1−a (25)

where a ∈ [0, 1/2] is the angle the line segment makes with the positive real axis divided by π.

This simple representation is precisely why we chose to approximate Brownian motion with the

square root function. Now all we need to do is gather the other n− 1 of these maps. So let time

run forward a little until the second to last approximating function is completely exposed. Now

we just use equation (25) again to get the conformal map that takes this slit to the real line.

Continue this same process n− 2 more times and then as we saw above the composition of these

maps results in an approximation of the generated curve. Letting n→∞ will finish the job.

Figure 15: The blue line represents an SLE (a curve generated by Brownian motion) and the red line is

approximating it. Notice how the approximations are straight lines. This enables us to use a known conformal

map to construct the red curve.

6 The Program

This section discusses how the mathematics of the previous section is implemented to model

SLEκ on a computer. We will examine the original program by S. Rohde. Equation (25) gives

us our desired conformal maps. The Taylor series of f at infinity looks like:
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Figure 16: Pictured above is a map generated by Mathematica for SLE3.

Figure 17: For κ > 8 we get a space filling curve. In this approximation of SLE8 we can begin to see this space

filling behavior. The shaded in regions denote areas that have been ’closed off’ and have simultaneously hit a

singularity. Notice the periods where long, straight lines have emerged. In actuality these lines would have the

sharper, more chaotic look that most of the other segments exhibit. The appearance of these lines increases with

the value of κ and illustrates a flaw in the validity of the program.

f(z) = z + (1− 2a) +
1
2
(a− 1)a

z
+ · · · (26)

Now we want to look at the composition of n maps. For simplicity we fix a and define two maps:

f1 := (z − a)a(z − (a− 1))1−a and f2 := (z − (1− a))1−a(z − ((1− a)− 1))1−(1−a). f1 is exactly

equation (25) and thus creates a map with an angle between 0 and π/2 from the positive real

axis. f2 replaces every a with 1− a in (25) and thus creates the same angle between 0 and π/2

but this time with the negative real axis. The two functions create slits that are symmetric

about the imaginary axis. Here is the expansion of f2 to contrast the that of f1 as given in (26):

f2(z) = z − (1− 2a) +
1
2
(a− 1)a

z
+ · · · (27)

As you can see the only places in the first three terms where equations (26) and (27) differ is

that the constant terms exhibit opposite signs. Now we make the approximating function, fn,
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out of n random compositions of these f1 and f2. In particular we take Fn = g1 ◦ g2 ◦ · · · ◦ gn,

where the gi’s are either f1 or f2 chosen with equal probability. It turns out that this function

converges to SLEκ. We can find the relation between κ and a in the following way. Let

g1(z) = z + c0 + c1
z

+ . . .

g2(z) = z + d0 + d1

z
+ . . .

be the expansions of two random gi’s, so g1 and g2 could each be either f1 or f2. When we

compose these two maps the constant terms and the coefficients of the 1/z terms add:

g1 ◦ g2(z) = z + (c0 + d0) +
c1 + d1

z
+ . . . (28)

If we continue to compose more gi’s the residues (i.e. the coefficients of the 1/z term) will keep

adding and since the residues of f1 and f2 are the same it follows that the residue of Fn is simply

n1
2
(a − 1)a. Since we want to parameterize our function Fn so that the halfplane capacity (or

residue) is −2t it follows that t = −n1
4
(a− 1)a.

Looking at the constant term of Fn we see that, although the constant terms of the gi have

added, they are not all the same in that they differ by minus signs. This is actually a blessing in

disguise. When we add n ±1’s together then we get a random walk with variance n. In fact this

random walk is exactly
∑±1 discussed above. So the constant term of Fn is now (1− 2a)

∑±1.

If we take the variance of Fn then every term is considered a constant except for the constant

term (kind of ironic) which is the only probabilistic element in Fn. Since V ar(a (
∑±1) + b) =

a2V ar(
∑±1) where a and b are constants, it follows that V ar(Fn) = n(1−2a)2 (see Section 4.1).

Furthermore, we want Fn to approximate
√
κBt, so they both need to have the same variance.

The variance of
√
κBt is κt, so we get the expression: n(1− 2a)2 = κt = −κn1

4
(a− 1)a. Finally

we have our equation for a

a =
1

2
±
√
κ
√

16 + κ

32 + 2κ
. (29)

Both of these solutions are symmetric around 1/2 so just pick one: a = 1
2
−

√
κ
√

16+κ
32+2κ

=
1
2

(
1−

√
κ

16+κ

)
.

Using this and the code below, we are able to generate curves that approximate SLEκ.

\[Kappa] = 3.; a = 1/2 (1 - Sqrt[\[Kappa]/(16 + \[Kappa])]);

f1[x_] = (x - a)^a (x - (a - 1))^(1 - a);

f2[x_] = (x - (1 - a))^(1 - a) (x + a)^a;

Nr = 1000;
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data = {0.};

Do[

If [Random[Integer] == 0, data = Flatten[Append[{0.}, f1[data]]],

data = Flatten[Append[{0.}, f2[data]]]

],

{Nr}

];

h[z_] = {Re[z], Im[z]};

Map[h, data];

ListPlot[%, PlotJoined -> True, AspectRatio -> 1]

\[Kappa] designates the value or κ and the Nr variable tells the program how many slit maps

to compose. The composition is done in the Do loop and the variable data stores the points

where consecutive slits connect. ListPlot is what actually plots the points in Mathematica.

7 Appendix A1

The Existence and Uniqueness Theorem tells us that under certain hypothesis on a particular

initial value problem there exists a unique solution to that equation. Below we state it for a first

order differential equation (notice that the Loewner equation is first order in time).

Existence and Uniqueness Theorem. Let ψ and ∂ψ/∂g be continuous in some rectan-

gle R = {(t, g) : |t− t0| < α, |g − g0| < β}, then there is some interval |t| ≤ a ≤ α in which there

exists a unique solution g = φ(t) of the initial value problem:

dg

dt
= ψ(t, y), g(t0) = g0. (30)

This is also valid if g is a function of two variables as we encounter in the Loewner equation the

only difference is that we would change the d into a ∂. For more information see [3].

The Riemann Mapping Theorem is a very powerful tool of complex analysis. It states that

there to exists a conformal (one-to-one and analytic) map from virtually any simply-connected

region to the unit disk.

Riemann Mapping Theorem. Suppose D is a simply-connected domain with at least two

points in its boundary; let p be a point of D. Then there is a conformal function φ that maps D
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onto the open unit disk and φ(p) = 0. Furthermore, φ is uniquely determined by the requirement

that φ′(p) be positive.

Some texts give other variations on this last uniqueness guarantee, but in general we have

three degrees of freedom (i.e. three parameters which we can vary) on the function φ in order

to guarantee its uniqueness. For the purposes of the Loewner equation we have used the hy-

drodynamic normalization, which says that at ∞ the function looks like z. So you can think of

the point at ∞ as being the point p and the derivative there is 1 (which is positive) since the

derivative of z is 1. Since we are guaranteed that we can map just about any domain to the

unit disk by a one-to-one function it follows that we can map any simply-connected domain D

to any other simply-connected domain C by a one-to-one analytic map. This is because every

one-to-one function has an inverse. Let φD (resp. φC) be the function mapping D (resp. C)

to the unit disk. By taking the composition φD ◦ φ−1
C we get a one-to-one function from D to

C. Furthermore, since the composition of two analytic functions is itself analytic it follows that

φD ◦ φ−1
C is conformal.

8 Appendix A2

This Appendix is primarily used as a supplement to arguments presented in Section 5.

8.1 Compact Spaces

Our first steps deal with expanding our notion of compact sets in Rn to the more general notion

of compact spaces. Suppose S is a set such that given two points x and y in S there is an

associated distance function d(x, y) which yields a nonnegative real number and satisfies:

1. d(x, y) = 0 ⇐⇒ x = y,

2. d(x, y) = d(y, x) and

3. the triangle inequlality, d(x, y) + d(y, z) ≥ d(x, z),

then S is a metric space [15]. For instance Rn and C are two examples of metric spaces. Now we

can define S to be a compact space if every open cover of S has a finite subcover [5]. It follows

then (for metric spaces) that every sequence in S has a convergent subsequence in S [1], this is

often called sequential compactness and will play a role later.
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8.2 Homeomorphisms

Two geometric figures or topological spaces are said to be homeomorphically equivalent if one can

be distorted and deformed into the other in a continuous and one-to-one fashion. This distortion

must also be invertible. For example, a square is topologically equivalent to a circle. However

neither of these are topologically equivalent to an annulus because the annulus has a hole in it

and there is no way to create a hole in a square or a circle without tearing it or gluing it. We

call this type of mapping a homeomorphism.

8.3 Quasislit-halfplanes

To make precise the domains we will be considering we define the following:

Definition 1. A domain D is a slit-halfplane if it has the form D = H\γ[0, t], where γ(t) ∈
H ∪ γ(0) is some simple continuous curve with γ(0)∈ R.

We now ask the question: How do we know when the image of a function is a slit-halfplane?

To answer this we start by using techniques from complex analysis. Conformal maps are very

useful in the study of the Loewner equation, however, there exists a generalization of conformal

maps that we will also find useful. These are called quasiconformal maps . To get an idea of

what a quasiconformal map is, imagine a differentiable function mapping planer regions to planer

regions that carry tiny circles to tiny ellipses. In the study of ellipses one often comes across the

eccentricity value e =
√

1− b2

a2 of an ellipse, where a and b denote the lengths of the semimajor

and semimajor axis, respectively. This offers a way to determine how ”eccentric” the ellipse is.

With quasiconformal maps we associate a similar notion of eccentricity, which we will denote

by K and require that K be bounded. It must be understood that K 6= e; indeed even in the case

of when a quasiconformal map takes circles to circles the corresponding eccentricity value K is

1. However, when an ellipse is actually a circle (i.e. a = b) the corresponding elliptic eccentricity

e is 0.

Remark: When a quasiconformal map takes circles to circles, then the map is simply the

usual conformal maps we have come to know and love; so in this way a quasiconformal map

is a generalization of a conformal map. The boundedness of K implies that although angle

measures are distorted under a quasiconformal mapping, this distortion is not arbitrary and is

bounded throughout the domain [2]. To make this definition more precise we define the following:

Definition 2. Let f be a homeomorphism from C to C. The dilation of f at a point z is

given by

Df (z) :=
|fz|+ |fz̄|
|fz| − |fz̄|

≥ 1, (31)
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and the maximal dilation of f is

Kf := supzDf (z). (32)

The value for Df is essentially representing the length of the semimajor axis divided by the

length of the semiminor axis of the image of a circle under f–this image being an ellipse.

Definition 3. A homeomorphism f : C → C is said to be quasiconformal if Kf , as defined

above, is finite. f is called K − quasiconformal if the maximal dilation is equal to the eccentric-

ity value; thus Kf = K.

From this we easily construct the following:

Definition 4. A quasislit-halfplane is the image of H\[0, i] under a quasiconformal mapping

fixing H and ∞.

Observe that since H\[0, i] is simply-connected every quasislit-halfplane is also simply-

connected. By a definition analogous to the one above we can construct a K-quasislit-halfplane

as the image under a K-quasiconformal-homeomorphism. There are a few other criteria for this

and the technicalities are presented in [12]. However, from their definition we can gather that

not only is the space of quasislit-halfplanes a subset of slit-halfplanes, but more importantly that

the space of K-quasislit-halfplanes (which is a subspace of quasislit-halfplanes) is compact [9].

8.4 Hölder Continuity

The concept of Hölder continuity will also play a role so we include the criteria: A function ξ(t)

defined on U is Hölder continuous if |ξ(t)− ξ(s)| ≤ C |t− s|a for all s, t ∈ U and where a and

C are positive constants. Lip
(

1
2

)
is the name we attribute to the space of Hölder continuous

functions such that a = 1
2
, and we let ‖ξ‖ 1

2
denote the smallest value of C satisfying the above

definition [9]. For the proof that the driving term is Hölder continuous in a quasislit-halfplane

see [12].

Remark: Hölder continuity implies uniform continuity.

9 Appendix A3

Poisson’s integral formula on the unit disk is given by:
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U(w) =
1

2π

∫ 2π

0

eiθ + w

eiθ − w
Re U(eiθ)dθ + C, (33)

where C ∈ R is a constant and U is analytic on D = {w : |w| < 1} and is extended to be piecewise

continuous on |w| = 1. We now want to carry this equation over to the upper-halfplane. To

do this we make use of the conformal map w = z−i
z+i

which takes the upper-halfplane to the unit

disk with the real line going to |w| = 1. Since we are now going to be working in the halfplane

instead of the disk we make the following definition: W (z) := U
(

z−i
z+i

)
and thus W is analytic

on H and continuous on H ∪∞. Now rewriting (33) gives:

W (z) =
1

2π

∫ ∞

−∞

( t−i
t+i

+ z−i
z+i

t−i
t+i

+ z−i
z+i

)
2

(t+ i)2

t+ i

t− i
Re W (t) dt + C, (34)

where we have made the substitution: eiθ = t−i
t+i

, whose derivative yields eiθdθ = 2
(t+i)2

dt and thus

dθ = 2
(t+i)2

t+i
t−i
dt. With some algebra equation (34) becomes the Poisson integral formula in the

upper-halfplane:

W (z) =
1

2π

∫ ∞

−∞

2

t2 + 1

tz + 1

i(t− z)
Re W (t)dt + C =

1

π

∫ ∞

−∞

1

t2 + 1

tz + 1

t− z
Im W (t)dt + C. (35)

We also take this time to point out another version Poisson’s half-plane integral formula which

is given by:

z −W−1(z) =
1

π

∫ ∞

−∞

Im W−1(t)

z − t
dt, (36)

where W is as defined above. Substitute W (z) for z to get:

W (z)− z =
1

π

∫ ∞

−∞

Im W−1(t)

W (z)− t
dt. (37)

Suppose that W has been subjected to the hydrodynamic normalization at infinity. Multiply-

ing both sides by z and sending z to infinity results in the following expression for the halfplane

capacity of W :

c =
1

π

∫ ∞

−∞
Im W−1(t)dt. (38)

This can also be thought of as integrating over a loop around the region where W−1 is not

analytic. This would give us the residue10 of W−1, which consequentially is −c.
10The residue at a pole is defined as the coefficient of the 1/z term in the Laurent series of W−1 expanded

around the given pole.
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9.1 The Dirac delta function

Conceptually we can think of the Dirac delta function as being an impulse which lasts for an

infinitesimally small amount of time, like the force created when you strike a hammer against

another object. Since we have a finite amount of ’force’ compressed to an infinitely small area, it

follows that the generating function must be infinite. On a similar note, we do not want our gen-

erating function to be too large other wise the ’force’ will no longer be finite (i.e. we would not be

able to stop the hammer after we swung it). In order to construct such a function we require that

the area between the x-axis and the function be 1. Suppose we want the ’force’ to be felt at the

point x′. Let δ1 be the step function of width ∆x1, height 1/∆x1 and centered at x′ as in figure 18.

Figure 18: The figure on the left illustrates the step function δ1. On the right are the δn’s as ∆xn → 0. The

area under the δn functions remains unitary.

Now construct the functions δn with width ∆xn, height 1/∆xn and centered at x′ such that

∆xn > ∆xn−1. Taking the limit as ∆xn → 0 gives a normalized function that is zero on the

whole real line and has a spike at the point x′.11 A function exhibiting these properties is called

the Dirac delta function centered at the point x′ and is denoted δ(x− x′).

Now suppose we have a function f defined on the whole line. If we look at
∫
f(x)δ(x− x′)dx

then the integrand is zero except arbitrarily close to x′. However, if we only look at that

infinitesimal interval of f surrounding x′ then f would appear to be constant there. Now we

have:
∫
f(x)δ(x−x′)dx ≈ f(x′)

∫
δ(x−x′)dx = f(x′) because the area under δ(x−x′) is unitary.

So under integration, the Dirac delta function picks out the point at which it is centered.

References

[1] Author unavailable, Compact Space-Absolute Astronomy Reference,

http://www.absoluteastronomy.com/encyclopedia/c/co/compact space.htm.

11This is not meant to be a rigorous construction of the Dirac delta function, it is only meant to serve as a
guide to understand its properties.

30



[2] Author unavailable, Quasiconformal Mapping-PlanetMath,

http://planetmath.org/encyclopedia/QuasiconformalMapping.html.

[3] W. Boyce, R. DiPrima, Elementary Differential Equations and Boundary Value Problems-

John Wiley and Sons, Inc., Hoboken, New Jersey, 2005.

[4] S. Fisher, Complex Variables: Secand Edition-Dover Publication, Inc., Mineola, 1990, 224-

241.

[5] G. Folland, Advanced Calculus-Prentice Hall, Upper Saddle River, New Jersey, 2002, 30-32.

[6] I. Gruzberg, L. Kadanoff, The Loewner Equation: Maps and Shapes-Journal of Statistical

Physics, Vol. 114, Nos. 516, March 2004.

[7] L. Kadanoff, W. Kager, and B. Nienhuis, Exact Solutions for Loewner Evolutions -

arXiv:math-ph/0309006.

[8] W. Kager, B. Nienhuis, A Guide to Stochastic Lowner Evolution and its Applications, Jour-

nal of Statistical Physics.

[9] J. Lind, A Sharp Condition For The Loewner Equation To Generate Slits- Preprint, 2005.

[10] J. Lind, Some notes on the Loewner equation in the halfplane-(private communication).

[11] The MacTutor History of Mathematics Archive,

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Loewner.html

[12] D. Marshall, S. Rohde, The Loewner Differential Equation and Slit Mappings-

http://www.math.washington.edu/m̃arshall/preprints/loewner/loewner9.pdf.

[13] S. Rohde, O. Schramm, Basic Properties of SLE-arXiv:math.PR/0106036.

[14] E. Weisstein, Homeomorphism-MathWorld–A Wolfram Web Resource,

http://mathworld.wolfram.com/Homeomorphism.html.

[15] E. Weisstein, Metric Space-MathWorld–A Wolfram Web Resource,

http://mathworld.wolfram.com/MetricSpace.html.

31


