
A proof that TS2 has c1 = 2 (with some
pictures!)

David L. Duncan

The goal of this note is to show that the tangent bundle TS2 → S2 has first
Chern number equal to 2 using a geometric approach. The first step reduces the
computation to that of computing the degree of a transition map (the clutching
function), and the second step computes the degree via parallel transport.

Think of S2 as embedded in R3 in the usual way, and write R2 = R2 ⊕ 0 ⊆
R3 for the xy-plane. Denote the equator by S1

eq = S2 ∩ (R2 ⊕ 0), and let n ∈ S2

and s ∈ S2 be the North and South Poles, respectively. Let Hn ⊆ S2 be a closed
neighborhood of the Northern Hemisphere, and Hs a closed neighborhood of
the Southern. Take these to be closed subsets diffeomorphic to a disk, so the
intersection

Hn ∩ Hs ∼= S1
eq × [−ϵ, ϵ] (1)

is a collar neighborhood of the equator. Orient this equatorial circle to have
the usual orientation when viewed as a subset of the xy-plane; this makes the
identification (1) orientation-preserving.

Suppose P → S2 is a principal S1-bundle; in the end this will be the unit
tangent bundle S(TS2) ⊆ TS2. For x ∈ S2, write Px for the fiber in P over x.
Fix trivializations

ϕn : P|Hn

∼=−→ Hn × S1, ϕs : P|Hs

∼=−→ Hs × S1.

These will be refined in our case P = S(TS2) shortly. From any two such
trivializations, we obtain a transition function

τ : S1
eq −→ S1

by using ϕ−1
s first, then ϕn:

ϕn ◦ ϕ−1
s (b, g) = (b, τ(b)g) (2)

for b ∈ S1
eq and g ∈ S1. It is well-known that the isomorphism class of P is

uniquely determined by the homotopy class of τ; this is the clutching function
construction (τ is the clutching function). More specifically, the map sending P
to the homotopy class of τ descends to give a bijection{

principal S1-bundles over S2}
isomorphism

∼= [S1
eq, S1] ∼= Z. (3)
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The integer obtained this way can be viewed either as the first Chern number

c1(P)[S2] ∈ Z

of the bundle, of as the degree deg(τ) ∈ Z of the transition map τ : S1
eq → S1.

It doesn’t really matter which because these two integers are equal:

Theorem 0.1.
c1(P)[S2] = deg(τ).

Proof. I will use the Chern–Weil formula

c1(P)[S2] =
i

2π

∫
S2

FA

where A is any connection on P and FA is its curvature. To create a convenient
connection for computation, write Atriv for the trivial connection and set

An := ϕ∗
n Atriv, As := ϕ∗

s Atriv

which are connections on P|Hn and P|Hs , respectively. Recall the collar neigh-
borhood N := [−ϵ, ϵ] × S1

eq of S1
eq ⊆ S2 and define a connection A on P as

follows:

• A should equal An on Hn\N;

• A should equal As on Hs\N;

• on N = [0, 1]× S1
eq, the connection A should interpolate between As and

An by

A|[0,1]×S1
eq
= As +

1
2ϵ

(t + ϵ)(At − As)

where t is the parameter on [0, 1].

Then FA = 0 on the complement of N, since A equals the pullback of a trivial
(flat) connection there. This implies

c1(P)[S2] =
i

2π

∫
N

FA.

On N use ϕn to trivialize the bundle P. Then A pulls back under ϕ−1
s : N ×

S1 → P|N to the connection

Atriv +
1
2ϵ

(t + ϵ)(τ∗Atriv − Atriv).

Now, the formula τ∗Atriv = Atriv + dτ gives

(ϕ−1
s )∗A

∣∣
N = Atriv +

1
2ϵ

(t + ϵ)τ−1dτ.
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Then
FA

∣∣
N = d

(
ϕ−1

s )∗A
∣∣

N

)
= d

( 1
2ϵ

(t + ϵ)τ−1dτ
)

.

is exact on N and so Stokes’ theorem gives

c1(P)[S2] = i
2π

∫
N

FA

= i
2π

∫
∂N

1
2ϵ

(t + ϵ)τ−1dτ.

Since N ∼= S1
eq × [−ϵ, ϵ] is orientation-preserving, it follows that

∂N ∼=
(

S1
eq × {−ϵ}

)
⊔
(

S1
eq × {ϵ}

)
where the overline in S1

eq means the circle S1
eq equipped with the opposite ori-

entation. The integrand vanishes on S1
eq × {−ϵ} and picks up a minus sign on

S1
eq × {ϵ} due to the orientation-reversal to give

c1(P)[S2] = i
2π

∫
S1

eq

τ−1dτ

= − i
2π

∫
S1

eq

τ−1dτ.

The degree of τ : S1
eq → S1 is its winding number. That is, using eiθ to

parametrize S1
eq

∼= S1, we can write τ(eiθ) = eiw(θ) for some real-valued func-
tion w : [0, 2π] → R satisfying w(2π) = w(0) + 2π deg(τ). Then τ−1dτ =
iw′(θ) and so we can continue the above to get

c1(P)[S2] = − i
2π

∫
S1

eq

τ−1dτ

= 1
2π

∫ 2π

0
w′(θ)dθ

= deg(τ).

With this in hand, let’s specialize to the case where P = S(TS2) is the unit
tangent bundle to S2. A nice thing about this is that I can be very explicit
about defining the trivializations ϕn, ϕs. To pin these down, first fix vn ∈ Pn
and vs ∈ Ps to be unit vectors parallel to the positive y-axis; that is, viewed as
vectors in R3, vn and vs should be (0, 1, 0) but rooted at n and s, respectively.
The choices of vn and vs canonically induce S1-equivariant maps Pn ∼= S1 and
Ps ∼= S1 by sending vn and vs to i ∈ S1. See Figure 1. Then define ϕn, ϕs
by parallel translating unit tangent vectors along North-to-South meridians on
S2.
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Figure 1: Parallel transport of the vector vs at the South Pole along the meridian
through b = (1, 0, 0) produces the vector vn at the North Pole.

To compute the transition function, let b ∈ S1
eq ⊆ Hn ∩ Hs and g ∈ S1.

Write PTb
s : Ps → Pb for parallel transport along the meridian from s to b. The

definition of ϕs gives

ϕ−1
s (b, g) = PTb

s (vsg) = PTb
s (vs)g ∈ Pb

where concatenation with g means the S1 action on P. A similar formula holds
for ϕn:

ϕ−1
n (b, g) = PTb

n(vng) = PTb
n(vn)g ∈ Pb.

By the defining formula (2) of τ(b) ∈ S1, we then have

PTb
s (vs) = ϕ−1

s (b, 1) = ϕ−1
n (b, τ(b)) = PTb

n(vn)τ(b).

That is, τ(b) ∈ S1 is the unique circle element taking PTb
n(vn) ∈ Pb to PTb

s (vs) ∈
Pb. Equivalently, τ(b) is the unique circle element taking vn ∈ Pn to the vector
(PTb

n)
−1 ◦ PTb

s (vs) ∈ Pn. The operation (PTb
n)

−1 ◦ PTb
s is parallel transport

from the South to the North Pole, along the meridian passing through b. Thus,
to determine τ(b), we parallel transport vs through this meridian and compare
its position relative to vn.

We can get a feel for how this works for specific values of b ∈ S1
eq. First, let’s

take b = (1, 0, 0) to lie on the positive x-axis. Since vn and vs are both parallel
to the y-axis, they are orthogonal to the meridian through b and remain so
throughout the parallel translation along that line. As such we have PTb

s (vs) =
PTb

n(vn) by construction, and so vn = (PTb
n)

−1 ◦ PTb
s (vs), which gives

τ(1, 0, 0) = 1.
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Now let’s work out the case where b = (0, 1, 0) lies on the positive y-axis. In
this case, vn and vs are both parallel to the meridian through b, but PTb

s (vs) =
−PTb

n(vn). This gives
τ(0, 1, 0) = −1.

See Figure 2.

Figure 2: Parallel transport of the vector vs at the South Pole along the meridian
through b = (0, 1, 0) produces the vector −vn at the North Pole.

In general, suppose b = (cos(θ), sin(θ), 0). Note that vs makes an angle
of π/2 − θ relative to the meridian from s to n through b (oriented from s to
n). Since parallel transport preserves angles, this implies that PTb

s (vs) makes
an angle of π/2 − θ relative to this same meridian (still oriented from s to n).
Likewise, PTb

n(vn) makes an angle of π/2 − θ relative to the meridian oriented
from n to s. To compare, we should stick with the same orientation of this
meridian for both: Orienting our meridian from s to n it follows that PTb

n(vn)
makes an angle of −(π/2 − θ) = θ − π/2 with this meridian. This requires an
angle of 2θ − π to get from PTb

s (vs) to PTb
n(vn), which implies

τ(cos(θ), sin(θ), 0) = e(2θ−π)i = −e2θi.

Identifying S1
eq = S1 via

(x, y, 0) 7−→ x + iy,

the map τ is the squaring map τ(b) = −b2 (with a minus sign). This map has
degree 2, which is what we were after (it is 2-1 and orientation-preserving).

Thanks to GeoGebra for the pictures!
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