A proof that TS^2 has $c_1 = 2$ (with some pictures!)

David L. Duncan

The goal of this note is to show that the tangent bundle $TS^2 \rightarrow S^2$ has first Chern number equal to 2 using a geometric approach. The first step reduces the computation to that of computing the degree of a transition map (the clutching function), and the second step computes the degree via parallel transport.

Think of S^2 as embedded in \mathbb{R}^3 in the usual way, and write $\mathbb{R}^2 = \mathbb{R}^2 \oplus 0 \subseteq \mathbb{R}^2$ \mathbb{R}^3 for the *xy*-plane. Denote the equator by $S^1_{eq} = S^2 \cap (\mathbb{R}^2 \oplus 0)$, and let $n \in S^2$ and $s \in S^2$ be the North and South Poles, respectively. Let $H_n \subseteq S^2$ be a closed neighborhood of the Northern Hemisphere, and *H^s* a closed neighborhood of the Southern. Take these to be closed subsets diffeomorphic to a disk, so the intersection

$$
H_n \cap H_s \cong S^1_{eq} \times [-\epsilon, \epsilon]
$$
 (1)

is a collar neighborhood of the equator. Orient this equatorial circle to have the usual orientation when viewed as a subset of the *xy*-plane; this makes the identification [\(1\)](#page-0-0) orientation-preserving.

Suppose $P \to S^2$ is a principal S^1 -bundle; in the end this will be the unit tangent bundle $S(TS^2) \subseteq TS^2$. For $x \in S^2$, write P_x for the fiber in P over *x*. Fix trivializations

$$
\phi_n: P|_{H_n} \stackrel{\cong}{\longrightarrow} H_n \times S^1, \qquad \phi_s: P|_{H_s} \stackrel{\cong}{\longrightarrow} H_s \times S^1.
$$

These will be refined in our case $P = S(TS^2)$ shortly. From any two such trivializations, we obtain a transition function

 $\tau : S^1_{eq} \longrightarrow S^1$

by using ϕ_s^{-1} first, then ϕ_n :

$$
\phi_n \circ \phi_s^{-1}(b, g) = (b, \tau(b)g)
$$
 (2)

for $b \in S^1_{eq}$ and $g \in S^1$. It is well-known that the isomorphism class of *P* is uniquely determined by the homotopy class of τ ; this is the clutching function construction (*τ* is the *clutching function*). More specifically, the map sending *P* to the homotopy class of *τ* descends to give a bijection

{principal
$$
S^1
$$
-bundles over S^2 }
isomorphism $\cong [S^1_{eq}, S^1] \cong \mathbb{Z}$. (3)

The integer obtained this way can be viewed either as the first Chern number

$$
c_1(P)[S^2] \in \mathbb{Z}
$$

of the bundle, of as the degree $\deg(\tau) \in \mathbb{Z}$ of the transition map $\tau: S^1_{eq} \to S^1.$ It doesn't really matter which because these two integers are equal:

Theorem 0.1.

$$
c_1(P)[S^2] = \deg(\tau).
$$

Proof. I will use the Chern–Weil formula

$$
c_1(P)[S^2] = \frac{i}{2\pi} \int_{S^2} F_A
$$

where *A* is any connection on *P* and *F^A* is its curvature. To create a convenient connection for computation, write A_{triv} for the trivial connection and set

$$
A_n := \phi_n^* A_{\text{triv}}, \qquad A_s := \phi_s^* A_{\text{triv}}
$$

which are connections on $P|_{H_n}$ and $P|_{H_s}$, respectively. Recall the collar neighborhood $N := [-\epsilon, \epsilon] \times S^1_{eq}$ of $S^1_{eq} \subseteq S^2$ and define a connection *A* on *P* as follows:

- *A* should equal A_n on $H_n \backslash N$;
- *A* should equal A_s on $H_s \backslash N$;
- on $N = [0, 1] \times S^1_{eq}$, the connection *A* should interpolate between A_s and A_n by

$$
A|_{[0,1]\times S^1_{eq}} = A_s + \frac{1}{2\epsilon}(t+\epsilon)(A_t - A_s)
$$

where t is the parameter on $[0, 1]$.

Then $F_A = 0$ on the complement of *N*, since *A* equals the pullback of a trivial (flat) connection there. This implies

$$
c_1(P)[S^2] = \frac{i}{2\pi} \int_N F_A.
$$

On *N* use ϕ_n to trivialize the bundle *P*. Then *A* pulls back under ϕ_s^{-1} : *N* × $S^1 \to P|_N$ to the connection

$$
A_{\rm triv} + \frac{1}{2\epsilon} (t + \epsilon) (\tau^* A_{\rm triv} - A_{\rm triv}).
$$

Now, the formula $\tau^* A_{\text{triv}} = A_{\text{triv}} + d\tau$ gives

$$
(\phi_s^{-1})^* A\big|_N = A_{\text{triv}} + \frac{1}{2\epsilon} (t+\epsilon) \tau^{-1} d\tau.
$$

Then

$$
F_A|_N = d(\phi_s^{-1})^* A|_N = d\Big(\frac{1}{2\epsilon}(t+\epsilon)\tau^{-1}d\tau\Big).
$$

is exact on *N* and so Stokes' theorem gives

$$
c_1(P)[S^2] = \frac{i}{2\pi} \int_N F_A
$$

=
$$
\frac{i}{2\pi} \int_{\partial N} \frac{1}{2\epsilon} (t + \epsilon) \tau^{-1} d\tau.
$$

Since $N \cong S_{eq}^1 \times [-\epsilon, \epsilon]$ is orientation-preserving, it follows that

$$
\partial N \cong \left(S_{eq}^1 \times \{ -\epsilon \} \right) \sqcup \left(\overline{S_{eq}^1} \times \{ \epsilon \} \right)
$$

where the overline in S^1_{eq} means the circle S^1_{eq} equipped with the opposite orientation. The integrand vanishes on $S_{eq}^1\times \{-\epsilon\}$ and picks up a minus sign on $S_{eq}^1\times \{\epsilon\}$ due to the orientation-reversal to give

$$
c_1(P)[S^2] = \frac{i}{2\pi} \int_{S^1_{eq}} \tau^{-1} d\tau
$$

=
$$
-\frac{i}{2\pi} \int_{S^1_{eq}} \tau^{-1} d\tau.
$$

The degree of τ : S_{eq}^1 \rightarrow S^1 is its winding number. That is, using $e^{i\theta}$ to parametrize $S_{eq}^1 \cong S^1$, we can write $\tau(e^{i\theta}) = e^{iw(\theta)}$ for some real-valued function $w : [0, 2\pi] \to \mathbb{R}$ satisfying $w(2\pi) = w(0) + 2\pi \deg(\tau)$. Then $\tau^{-1}d\tau =$ $iw'(\theta)$ and so we can continue the above to get

$$
c_1(P)[S^2] = -\frac{i}{2\pi} \int_{S^1_{eq}} \tau^{-1} d\tau
$$

=
$$
\frac{1}{2\pi} \int_0^{2\pi} w'(\theta) d\theta
$$

=
$$
\deg(\tau).
$$

 \Box

With this in hand, let's specialize to the case where $P = S(TS^2)$ is the unit tangent bundle to *S* 2 . A nice thing about this is that I can be very explicit about defining the trivializations ϕ_n , ϕ_s . To pin these down, first fix $v_n \in P_n$ and $v_s \in P_s$ to be unit vectors parallel to the positive *y*-axis; that is, viewed as vectors in \mathbb{R}^3 , v_n and v_s should be $(0,1,0)$ but rooted at *n* and *s*, respectively. The choices of v_n and v_s canonically induce S^1 -equivariant maps $P_n \cong S^1$ and $P_s \cong S^1$ by sending v_n and v_s to $i \in S^1$. See Figure [1.](#page-3-0) Then define ϕ_n , ϕ_s by parallel translating unit tangent vectors along North-to-South meridians on *S* 2 .

Figure 1: *Parallel transport of the vector v^s at the South Pole along the meridian through b* = $(1,0,0)$ *produces the vector* v_n *at the North Pole.*

To compute the transition function, let $b \in S_{eq}^1 \subseteq H_n \cap H_s$ and $g \in S^1$. Write $PT_s^b: P_s \to P_b$ for parallel transport along the meridian from *s* to *b*. The definition of *ϕs* gives

$$
\phi_s^{-1}(b,g) = PT_s^b(v_s g) = PT_s^b(v_s)g \in P_b
$$

where concatenation with *g* means the *S* ¹ action on *P*. A similar formula holds for ϕ_n :

$$
\phi_n^{-1}(b,g) = PT_n^b(v_n g) = PT_n^b(v_n)g \in P_b.
$$

By the defining formula [\(2\)](#page-0-1) of $\tau(b) \in S^1$, we then have

$$
PT_s^b(v_s) = \phi_s^{-1}(b,1) = \phi_n^{-1}(b,\tau(b)) = PT_n^b(v_n)\tau(b).
$$

That is, $\tau(b) \in S^1$ is the unique circle element taking $PT_n^b(v_n) \in P_b$ to $PT_s^b(v_s) \in P_b$ *P*^{*b*}. Equivalently, *τ*(*b*) is the unique circle element taking $v_n \in P_n$ to the vector $(PT_n^b)^{-1} \circ PT_s^b(v_s) \in P_n$. The operation $(PT_n^b)^{-1} \circ PT_s^b$ is parallel transport from the South to the North Pole, along the meridian passing through *b*. Thus, to determine *τ*(*b*), we parallel transport *v^s* through this meridian and compare its position relative to *vn*.

We can get a feel for how this works for specific values of $b \in S_{eq}^1$. First, let's take $b = (1, 0, 0)$ to lie on the positive *x*-axis. Since v_n and v_s are both parallel to the *y*-axis, they are orthogonal to the meridian through *b* and remain so throughout the parallel translation along that line. As such we have $PT_s^b(v_s)$ = *PT*^{*b*}</sup> (v_n) by construction, and so $v_n = (PT_n^b)^{-1} \circ PT_s^b(v_s)$, which gives

$$
\tau(1,0,0)=1.
$$

Now let's work out the case where $b = (0, 1, 0)$ lies on the positive *y*-axis. In this case, v_n and v_s are both parallel to the meridian through *b*, but $PT_s^b(v_s)$ = $-PT_n^b(v_n)$. This gives

$$
\tau(0,1,0)=-1.
$$

See Figure [2.](#page-4-0)

Figure 2: *Parallel transport of the vector v^s at the South Pole along the meridian through b* = $(0, 1, 0)$ *produces the vector* $-v_n$ *at the North Pole.*

In general, suppose $b = (\cos(\theta), \sin(\theta), 0)$. Note that v_s makes an angle of $\pi/2 - \theta$ relative to the meridian from *s* to *n* through *b* (oriented from *s* to *n*). Since parallel transport preserves angles, this implies that $PT_s^b(v_s)$ makes an angle of $\pi/2 - \theta$ relative to this same meridian (still oriented from *s* to *n*). Likewise, $PT_n^b(v_n)$ makes an angle of $\pi/2 - \theta$ relative to the meridian *oriented from n to s*. To compare, we should stick with the same orientation of this meridian for both: Orienting our meridian from *s* to *n* it follows that $PT_n^b(v_n)$ makes an angle of $-(\pi/2 - \theta) = \theta - \pi/2$ with this meridian. This requires an angle of $2\theta - \pi$ to get from $PT_s^b(v_s)$ to $PT_n^b(v_n)$, which implies

$$
\tau(\cos(\theta),\sin(\theta),0)=e^{(2\theta-\pi)i}=-e^{2\theta i}.
$$

Identifying $S_{eq}^1 = S^1$ via

$$
(x,y,0)\longmapsto x+iy,
$$

the map *τ* is the squaring map $\tau(b) = -b^2$ (with a minus sign). This map has degree 2, which is what we were after (it is 2-1 and orientation-preserving).

Thanks to GeoGebra for the pictures!