Toroiding a prism: When does this preserve volume?

David Duncan

One of my Calculus II students was trying to compute the volume of a solid torus in \mathbb{R}^{3} obtained by rotating a circle of radius r around an axis a distance $R \geq r$ away. He tried to compute this by visualizing it as a cylinder with height $2 \pi R$ and base a disk of radius r. Of course, these two are not isometric, even locally but, interestingly, they have the same volume. This note describes a way to see why (see Theorem 1.4), and explores some of the surrounding ideas.

1 Volumes of revolution

Let's work a little more broadly to start: Let B be a closed and bounded region in the plane \mathbb{R}^{2}. Given a positive real number h, we can create a prism $P_{B, h}$ with base B and height h : View $P_{B, h}$ as being a subset of \mathbb{R}^{3}, with $\mathbb{R}^{2} \subseteq \mathbb{R}^{3}$ the $x y$-plane and the height of $P_{B, h}$ along the z-axis.

Next, let $a \subseteq \mathbb{R}^{2}$ be a line in the plane. We will always assume that B lies entirely on one side of this line. Let $T_{B, a} \subseteq \mathbb{R}^{3}$ be the volume of revolution obtained by rotating B about a. Call this the toroid associated to B and a.

With these definitions, my student's observation can be articulated as in the following example.
Example 1.1. Suppose D is a disk in the right-half plane and R is the distance from the center of D to the y-axis. Then $P_{D, 2 \pi R}$ is a cylinder and $T_{D, y \text {-axis }}$ is a torus, and these have the same volume:

$$
\operatorname{Vol}\left(P_{D, 2 \pi R}\right)=\operatorname{Vol}\left(T_{D, y \text {-axis }}\right)=2 \pi^{2} r^{2} R .
$$

Motivated by this, from now on I will assume that h is 2π times the distance from a to the center of mass (centroid) of B. Under such an assumption, the value of h is uniquely determined by a and B and, to emphasize this dependence, I will set

$$
P_{B, a}:=P_{B, h} .
$$

In general, the volumes of $P_{B, a}$ and $T_{B, a}$ need not be equal, as most Calculus II students could detect. Here is a specific example that you can work out by hand, if you feel so inclined.

Example 1.2. Suppose I is the isosceles triangle with vertices $(1,4),(3,5),(3,3)$, and a is the y-axis. Then $P_{I, y \text {-axis }}$ and $T_{I, y \text {-axis }}$ do not have the same volume.

Interestingly, if we take the same triangle from the previous example, but use the x-axis instead of the y-axis, then we do recover the same volume!
Example 1.3. Suppose I is as in Example 1.2 Then

$$
\operatorname{Vol}\left(P_{I, x-a x i s}\right)=\operatorname{Vol}\left(T_{I, x-a x i s}\right)
$$

The following theorem sheds light on what is going on here and gives a framework for understanding my student's observation:
Theorem 1.4. Suppose B is reflection-symmetric with symmetry line given by a_{B}, and let a be a second line. Assume B lies entirely on one side of a. If a is parallel to a_{B}, then the volumes

$$
\operatorname{Vol}\left(P_{B, a}\right)=\operatorname{Vol}\left(T_{B, a}\right)
$$

are equal.
Examples 1.1 and 1.3 are special cases, but Example 1.2 is not (indeed, it must not be).

Proof of Theorem 1.4 For each $x \in a$, define A_{x} to be the intersection of $T_{B, a}$ and the plane in \mathbb{R}^{3} containing x and perpendicular to a; I will call A_{x} a cross-section. The volume of $T_{B, a}$ can be written as the integral

$$
\operatorname{Vol}\left(T_{B, a}\right)=\int_{a} \operatorname{Area}\left(A_{x}\right) d x
$$

of these cross-sections. Note that A_{x} is an annulus; let $r_{1}(x)$ and $r_{2}(x)$ be the inner radius and outer radius of A_{x}, respectively. Then the area of A_{x} is given by

$$
\begin{equation*}
\operatorname{Area}\left(A_{x}\right)=\pi r_{2}(x)^{2}-\pi r_{1}(x)^{2}=\pi\left(r_{2}(x)+r_{1}(x)\right)\left(r_{2}(x)-r_{1}(x)\right) \tag{1}
\end{equation*}
$$

Our symmetry assumption on B implies that

$$
h=\pi\left(r_{2}(x)+r_{1}(x)\right)
$$

is independent of x. The difference $r_{2}(x)-r_{1}(x)$ is the length of the line segment given by the intersection of $B \subseteq \mathbb{R}^{2}$ and the line in \mathbb{R}^{2} passing through x perpendicular to a. Since

$$
\operatorname{Area}(B)=\int_{a} r_{2}(x)-r_{1}(x) d x
$$

we have

$$
\begin{aligned}
\operatorname{Vol}\left(T_{B, a}\right) & =\int_{a} \operatorname{Area}\left(A_{x}\right) d x \\
& =h \int_{a} r_{2}(x)-r_{1}(x) d x \\
& =h \operatorname{Area}(B)
\end{aligned}
$$

which is the volume of $T_{B, a}$.

Exercise 1. In the statement of Theorem 1.4 we assumed that B is reflection-symmetric about some line. Show that this is not a necessary condition: Show that there are B and a with

$$
\operatorname{Vol}\left(P_{B, a}\right)=\operatorname{Vol}\left(T_{B, a}\right)
$$

but where B is not reflection-symmetric about any line.

2 A 2-dimensional analogue

It is interesting to see what goes on one dimension lower. Let $C \subseteq \mathbb{R}^{2}$ be a rectifiable curve that is compact and not self-intersecting (e.g., a finite union of embedded circles and intervals). Write ℓ for the length of C. Let $R_{C, \epsilon}$ be the ϵ-neighborhood of C, where $\epsilon>0$ is any number small enough so that this neighborhood is not self-intersecting (compactness at play here!). The first observation is the following.
Proposition 2.1. The area of $R_{C, \epsilon}$ is $2 \ell \epsilon$.
Proof. First we prove the proposition under the assumption that C is smooth.
Let's make a Riemann sum: Partition C into arcs i_{1}, \ldots, i_{N}, each of length ℓ / N. Fix one of these arcs i_{j} and consider the two line segments in $R_{C, \epsilon}$ that intersect C perpendicularly at the endpoints of i_{j} (this is meaningful because C is smooth). The convex hull of these line segments is a trapezoid t_{j}. Then the set t_{1}, \ldots, t_{N} of trapezoids nearly covers $R_{C, \epsilon}$. Adding the areas of the t_{i} is our Riemann sum. Since C is smooth, the area of $R_{C, \epsilon}$ equals the limit:

$$
\operatorname{Area}\left(R_{C, \epsilon}\right)=\lim _{N \rightarrow \infty} \sum_{j=1}^{N} \operatorname{Area}\left(t_{j}\right)
$$

On the other hand, the area of t_{j} is its height times the average of the lengths of the bases. This average is exactly the length of i_{j}, and this height is approximately 2ϵ (with the approximation getting better as N gets larger). This implies

$$
\sum_{j=1}^{N} \operatorname{Area}\left(t_{j}\right) \approx 2 \epsilon \ell
$$

Taking the limit in N proves the proposition.
If C is not smooth, then we can approximate it by a sequence C_{1}, C_{2}, \ldots of curves that are smooth, each of which has length ℓ. Then we have

$$
\lim _{i \rightarrow \infty} \operatorname{Area}\left(R_{C_{i}, \epsilon}\right)=\operatorname{Area}\left(R_{C, \epsilon}\right)
$$

By the previous case, we have $\operatorname{Area}\left(R_{C_{i}, \epsilon}\right)=2 \ell \epsilon$, which finishes the proof.
This proposition says that the area of $R_{C, \epsilon}$ is independent of how C curves: all that matters is how long C is and how much you thickened it up. You can think of this proposition as a curvy 2-dimensional version of Cavalieri's principle.

Example 2.2. Consider the case where C is a circle in the plane of radius r. The proposition implies

$$
\begin{equation*}
\operatorname{Area}\left(R_{C, \epsilon}\right)=4 \pi r \epsilon \tag{2}
\end{equation*}
$$

Incidentally, Example 2.2 gives another proof of the identity 11 used in the proof of Theorem 1.4 Suppose A is an annulus of inner radius r_{1} and outer radius r_{2}. Then $A=R_{C, \epsilon}$ where $\epsilon=\frac{1}{2}\left(r_{2}-r_{1}\right)$, and C is a circle with radius $r=\frac{1}{2}\left(r_{2}+r_{1}\right)$. Then (1) reduces directly to (2). In this sense, we can view the 3-dimensional Theorem 1.4 as being a consequence of the 2 -dimensional Proposition 2.1.

One final comment: At the heart of Proposition 2.1 is the geometric fact that the area of a trapezoid with a given height η and base lengths b_{1}, b_{2} is the same as the area of a rectangle with height η and base $\left(b_{1}+b_{2}\right) / 2$. Interestingly, the corollary to Proposition 2.1 that is expressed in Example 2.2 gives something of a curvy version of this: It says that the area of an annulus of inner radius r_{1} and outer radius r_{2} equals the area of the rectangle with height $\pi\left(r_{2}+r_{1}\right)$ and width $r_{2}-r_{1}$. This latter statement that is the true 2-dimensional analogue of Theorem 1.4

