Toroiding a prism:
When does this preserve volume?

David Duncan

One of my Calculus II students was trying to compute the volume of a solid
torus in IR? obtained by rotating a circle of radius r around an axis a distance
R > r away. He tried to compute this by visualizing it as a cylinder with height
27tR and base a disk of radius r. Of course, these two are not isometric, even
locally but, interestingly, they have the same volume. This note describes a way
to see why (see Theorem [I.4), and explores some of the surrounding ideas.

1 Volumes of revolution

Let’s work a little more broadly to start: Let B be a closed and bounded region
in the plane IR?. Given a positive real number /1, we can create a prism Pg),
with base B and height h: View Py j, as being a subset of R?, with R?> C RR® the
xy-plane and the height of Pg j, along the z-axis.

Next, let a C R? be a line in the plane. We will always assume that B lies
entirely on one side of this line. Let Tp, C R3 be the volume of revolution
obtained by rotating B about a. Call this the toroid associated to B and a.

With these definitions, my student’s observation can be articulated as in the
following example.

Example 1.1. Suppose D is a disk in the right-half plane and R is the distance from
the center of D to the y-axis. Then Pp g is a cylinder and Tp . 4yis is a torus, and
these have the same volume:

VOI(PD,ZHR) = VOI(TD,y—axis) = 27r°R.

Motivated by this, from now on I will assume that / is 277 times the dis-
tance from a to the center of mass (centroid) of B. Under such an assumption,
the value of & is uniquely determined by a and B and, to emphasize this de-
pendence, I will set

Ppg = Ppgj.

s

In general, the volumes of Py, and Tp , need not be equal, as most Calculus
II students could detect. Here is a specific example that you can work out by
hand, if you feel so inclined.



Example 1.2. Suppose I is the isosceles triangle with vertices (1,4), (3,5), (3,3), and
a is the y-axis. Then Py qyis and T}y qyis do not have the same volume.

Interestingly, if we take the same triangle from the previous example, but
use the x-axis instead of the y-axis, then we do recover the same volume!

Example 1.3. Suppose I is as in Example[1.2] Then
VOI(Py x-gxis) = VOI(T} x-qxis)-
The following theorem sheds light on what is going on here and gives a
framework for understanding my student’s observation:

Theorem 1.4. Suppose B is reflection-symmetric with symmetry line given by ap,
and let a be a second line. Assume B lies entirely on one side of a. If a is parallel to ap,
then the volumes

VOI(PB,a) = VOI(TB,H)

are equal.

Examples [1.1] and [1.3] are special cases, but Example [1.2]is not (indeed, it
must not be).

Proof of Theorem For each x € a, define A, to be the intersection of T , and
the plane in R® containing x and perpendicular to a; I will call A a cross-section.
The volume of T, can be written as the integral

Vol(Tg,) = / Area(Ay) dx
a

of these cross-sections. Note that Ay is an annulus; let r1(x) and r,(x) be the
inner radius and outer radius of Ay, respectively. Then the area of A, is given

by
Area(Ay) = mry(x)? — mtri (%)% = m(rp(x) 4 r1(x)) (r2(x) — r1(x)). (1)
Our symmetry assumption on B implies that
h = mt(ry(x) +r1(x))

is independent of x. The difference r,(x) — r1(x) is the length of the line seg-
ment given by the intersection of B C R? and the line in IR? passing through x
perpendicular to a. Since

Area(B) = [ rap(x) —ri(x) dx,
a
we have
Vol(Tp,) = Area(Ay) dx
a
= h [ rp(x)—ri(x)dx
Ja
= hArea(B),
which is the volume of T ,. O



Exercise 1.  In the statement of Theorem |1.4|we assumed that B is reflection-symmetric about
some line. Show that this is not a necessary condition: Show that there are B and a with

VOI(PB,,Z) = VOI(TB,,Z)

but where B is not reflection-symmetric about any line.

2 A 2-dimensional analogue

It is interesting to see what goes on one dimension lower. Let C C R? be a
rectifiable curve that is compact and not self-intersecting (e.g., a finite union
of embedded circles and intervals). Write ¢ for the length of C. Let Rc. be
the e-neighborhood of C, where € > 0 is any number small enough so that
this neighborhood is not self-intersecting (compactness at play here!). The first
observation is the following.

Proposition 2.1. The area of R ¢ is 2le.

Proof. First we prove the proposition under the assumption that C is smooth.

Let’s make a Riemann sum: Partition C into arcs iy, ..., iy, each of length
¢/N. Fix one of these arcs i; and consider the two line segments in Rc that
intersect C perpendicularly at the endpoints of i; (this is meaningful because C
is smooth). The convex hull of these line segments is a trapezoid ¢;. Then the
set t1,...,tN of trapezoids nearly covers Rc .. Adding the areas of the t; is our
Riemann sum. Since C is smooth, the area of R¢ ¢ equals the limit:

N
Area(Rce) = I\lllin ZArea(t]-).
oo].:1

On the other hand, the area of t]- is its height times the average of the lengths
of the bases. This average is exactly the length of i;, and this height is approxi-
mately 2e (with the approximation getting better as N gets larger). This implies

N
Z Area(t;) ~ 2el.
j=1

Taking the limit in N proves the proposition.
If C is not smooth, then we can approximate it by a sequence Cy,C, ... of
curves that are smooth, each of which has length ¢. Then we have
lim Area(Rc,¢) = Area(Rcj).
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By the previous case, we have Area(Rc, ) = 2fe, which finishes the proof. [

This proposition says that the area of R¢ ¢ is independent of how C curves:
all that matters is how long C is and how much you thickened it up. You
can think of this proposition as a curvy 2-dimensional version of Cavalieri’s
principle.



Example 2.2. Consider the case where C is a circle in the plane of radius r. The
proposition implies
Area(Rc) = 4rre. (2)

Incidentally, Example 2.2 gives another proof of the identity (I) used in the
proof of Theorem Suppose A is an annulus of inner radius r; and outer
radius rp. Then A = Rc where € = %(rz —11), and C is a circle with radius
r = %(rz +r1). Then H reduces directly to . In this sense, we can view
the 3-dimensional Theorem (1.4 as being a consequence of the 2-dimensional
Proposition

One final comment: At the heart of Proposition 2.1]is the geometric fact that
the area of a trapezoid with a given height 17 and base lengths by, b, is the same
as the area of a rectangle with height # and base (b1 + by) /2. Interestingly, the
corollary to Proposition [2.1] that is expressed in Example 2.2| gives something
of a curvy version of this: It says that the area of an annulus of inner radius r;
and outer radius r, equals the area of the rectangle with height 77(r, + r1) and
width ro — rq. This latter statement that is the true 2-dimensional analogue of

Theorem
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