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One of my Calculus II students was trying to compute the volume of a solid
torus in R3 obtained by rotating a circle of radius r around an axis a distance
R ≥ r away. He tried to compute this by visualizing it as a cylinder with height
2πR and base a disk of radius r. Of course, these two are not isometric, even
locally but, interestingly, they have the same volume. This note describes a way
to see why (see Theorem 1.4), and explores some of the surrounding ideas.

1 Volumes of revolution

Let’s work a little more broadly to start: Let B be a closed and bounded region
in the plane R2. Given a positive real number h, we can create a prism PB,h
with base B and height h: View PB,h as being a subset of R3, with R2 ⊆ R3 the
xy-plane and the height of PB,h along the z-axis.

Next, let a ⊆ R2 be a line in the plane. We will always assume that B lies
entirely on one side of this line. Let TB,a ⊆ R3 be the volume of revolution
obtained by rotating B about a. Call this the toroid associated to B and a.

With these definitions, my student’s observation can be articulated as in the
following example.

Example 1.1. Suppose D is a disk in the right-half plane and R is the distance from
the center of D to the y-axis. Then PD,2πR is a cylinder and TD,y-axis is a torus, and
these have the same volume:

Vol(PD,2πR) = Vol(TD,y-axis) = 2π2r2R.

Motivated by this, from now on I will assume that h is 2π times the dis-
tance from a to the center of mass (centroid) of B. Under such an assumption,
the value of h is uniquely determined by a and B and, to emphasize this de-
pendence, I will set

PB,a := PB,h.

In general, the volumes of PB,a and TB,a need not be equal, as most Calculus
II students could detect. Here is a specific example that you can work out by
hand, if you feel so inclined.
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Example 1.2. Suppose I is the isosceles triangle with vertices (1, 4), (3, 5), (3, 3), and
a is the y-axis. Then PI,y-axis and TI,y-axis do not have the same volume.

Interestingly, if we take the same triangle from the previous example, but
use the x-axis instead of the y-axis, then we do recover the same volume!

Example 1.3. Suppose I is as in Example 1.2. Then

Vol(PI,x-axis) = Vol(TI,x-axis).

The following theorem sheds light on what is going on here and gives a
framework for understanding my student’s observation:

Theorem 1.4. Suppose B is reflection-symmetric with symmetry line given by aB,
and let a be a second line. Assume B lies entirely on one side of a. If a is parallel to aB,
then the volumes

Vol(PB,a) = Vol(TB,a)

are equal.

Examples 1.1 and 1.3 are special cases, but Example 1.2 is not (indeed, it
must not be).

Proof of Theorem 1.4. For each x ∈ a, define Ax to be the intersection of TB,a and
the plane in R3 containing x and perpendicular to a; I will call Ax a cross-section.
The volume of TB,a can be written as the integral

Vol(TB,a) =
∫

a
Area(Ax) dx

of these cross-sections. Note that Ax is an annulus; let r1(x) and r2(x) be the
inner radius and outer radius of Ax, respectively. Then the area of Ax is given
by

Area(Ax) = πr2(x)2 − πr1(x)2 = π(r2(x) + r1(x))(r2(x)− r1(x)). (1)

Our symmetry assumption on B implies that

h = π(r2(x) + r1(x))

is independent of x. The difference r2(x)− r1(x) is the length of the line seg-
ment given by the intersection of B ⊆ R2 and the line in R2 passing through x
perpendicular to a. Since

Area(B) =
∫

a
r2(x)− r1(x) dx,

we have
Vol(TB,a) =

∫
a

Area(Ax) dx

= h
∫

a
r2(x)− r1(x) dx

= hArea(B),
which is the volume of TB,a.
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Exercise 1. In the statement of Theorem 1.4 we assumed that B is reflection-symmetric about
some line. Show that this is not a necessary condition: Show that there are B and a with

Vol(PB,a) = Vol(TB,a)

but where B is not reflection-symmetric about any line.

2 A 2-dimensional analogue

It is interesting to see what goes on one dimension lower. Let C ⊆ R2 be a
rectifiable curve that is compact and not self-intersecting (e.g., a finite union
of embedded circles and intervals). Write ` for the length of C. Let RC,ε be
the ε-neighborhood of C, where ε > 0 is any number small enough so that
this neighborhood is not self-intersecting (compactness at play here!). The first
observation is the following.

Proposition 2.1. The area of RC,ε is 2`ε.

Proof. First we prove the proposition under the assumption that C is smooth.
Let’s make a Riemann sum: Partition C into arcs i1, . . . , iN , each of length

`/N. Fix one of these arcs ij and consider the two line segments in RC,ε that
intersect C perpendicularly at the endpoints of ij (this is meaningful because C
is smooth). The convex hull of these line segments is a trapezoid tj. Then the
set t1, . . . , tN of trapezoids nearly covers RC,ε. Adding the areas of the ti is our
Riemann sum. Since C is smooth, the area of RC,ε equals the limit:

Area(RC,ε) = lim
N→∞

N

∑
j=1

Area(tj).

On the other hand, the area of tj is its height times the average of the lengths
of the bases. This average is exactly the length of ij, and this height is approxi-
mately 2ε (with the approximation getting better as N gets larger). This implies

N

∑
j=1

Area(tj) ≈ 2ε`.

Taking the limit in N proves the proposition.
If C is not smooth, then we can approximate it by a sequence C1, C2, . . . of

curves that are smooth, each of which has length `. Then we have

lim
i→∞

Area(RCi ,ε) = Area(RC,ε).

By the previous case, we have Area(RCi ,ε) = 2`ε, which finishes the proof.

This proposition says that the area of RC,ε is independent of how C curves:
all that matters is how long C is and how much you thickened it up. You
can think of this proposition as a curvy 2-dimensional version of Cavalieri’s
principle.
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Example 2.2. Consider the case where C is a circle in the plane of radius r. The
proposition implies

Area(RC,ε) = 4πrε. (2)

Incidentally, Example 2.2 gives another proof of the identity (1) used in the
proof of Theorem 1.4: Suppose A is an annulus of inner radius r1 and outer
radius r2. Then A = RC,ε where ε = 1

2 (r2 − r1), and C is a circle with radius
r = 1

2 (r2 + r1). Then (1) reduces directly to (2). In this sense, we can view
the 3-dimensional Theorem 1.4 as being a consequence of the 2-dimensional
Proposition 2.1.

One final comment: At the heart of Proposition 2.1 is the geometric fact that
the area of a trapezoid with a given height η and base lengths b1, b2 is the same
as the area of a rectangle with height η and base (b1 + b2)/2. Interestingly, the
corollary to Proposition 2.1 that is expressed in Example 2.2 gives something
of a curvy version of this: It says that the area of an annulus of inner radius r1
and outer radius r2 equals the area of the rectangle with height π(r2 + r1) and
width r2 − r1. This latter statement that is the true 2-dimensional analogue of
Theorem 1.4.
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