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Abstract

In 1919 A. S. Besicovitch’s interest in plane integration led him to construct an integrable
function defined in the plane that is not integrable as an iterated integral for any pair of
mutually orthogonal directions. Later, in 1928 he noticed that this construction could be
modified in such a manner that would suffice as a counterexample to S. Kakeya’s conjecture
that the smallest area required to rotate a unit line segment continuously in a plane is π/8,
by constructing a set that allowed for this continual rotation in arbitrarily small area. In
this paper we reconstruct both Besicovitch’s integration example and his counterexample
to Kakeya’s conjecture.

This paper will investigate two questions, each posed in the first part of the twentieth century.

The first, asked by A. S. Besicovitch, is a problem in Riemann integration and reads

I) ’Given a function of two variables, Riemann integrable on a plane domain, does there

always exist a pair of mutually perpendicular directions such that repeated simple integra-

tion along these two directions exists and gives the value of the integral over the domain?’

[3]

The second was inspired by S. Kakeya in 1917. Kakeya was considering the question

II) Given a unit line segment in a plane, what is the figure having smallest area in which

the segment is able to completely rotate within the figure?

For example a circle having diameter 1 would suffice by simply allowing the line segment to rotate

about its fixed center. However, the rotation of a segment is also possible within an equilateral

triangle of unit height. Kakeya conjectured that if the figure were required to be convex then

the figure of smallest area that allowed for the rotation of a unit segment would in fact be an
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equilateral triangle with unit height. In 1921 J. Pál proved this to be correct [5]. Kakeya also

noted that if the convexity restriction was not imposed then there exists a figure with area smaller

even than the equilateral triangle, namely the three-cusped hypocycloid with area π/8 pictured

below in Figure 1 [5]. Convexity is however a very strong assumption and lifting this requirement

allows for many other possible figures in which a unit line segment can be completely rotated,

thus establishing the conjecture in II), which became known as the Kakeya Conjecture.

Figure 1: The hypocycloid with an area of π/8 allows for the continuous rotation of a unit

segment.

In the year 1919 Besicovitch provided a solution to his integration question in I). He was able

to show that the answer to I) is a resounding No [2], thus reinforcing that plane integration and

iterated integration are inherently (although subtly) different objects. To do this, Besicovitch

constructed a set of Jordan measure zero that contained a unit line segment in each direction.

He then manipulated this set and cleverly defined a function that is integrable in the plane but

is not as an iterated integral for any pair of mutually orthogonal directions. It was using this

set that Besicovitch was later able to construct a set that would supply an answer to II), that is

that there exists such a set with arbitrarily small area! Our objective here is to reproduce the

answers to I) and II) which we will do by first constructing a set of arbitrarily small area that

contains a unit line segment in each direction as Besicovitch originally did in 1919. However,

the downside of this is that the resulting set was arbitrarily large, multiply-connected and rather

difficult to construct. However, in past years there have been vast improvements on Besicovitch’s

original construction. For instance, Cunningham constructs a simply-connected Kakeya set with

arbitrarily small area that is contained in a ball of diameter 1 [4]! Due to its simplicity however,

we will follow a construction by Falconer [5] to demonstrate the solution to II) that there exists

such a figure with arbitrarily small area. Upon creating this set we will then diverge from

Falconer’s construction and follow that of Besicovitch in [2] to obtain an answer to the question

in I). It is interesting to note that Besicovitch also constructed a function that is integrable as
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an iterated integral for every pair of orthogonal directions but is not integrable in the plane [2],

which further strengthens the notion plane and iterated integration are not innately the same.

We will examine Besicovitch’s construction of this function.

For ease of reference we will adopt the term Kakeya Set to denote a set in a plane in

which a unit line segment can be turned through 180◦ by a continuous movement, where by

continuous movement of the segment we mean that the endpoints of the segment follow paths

that are images of continuous functions in one parameter [1]. Furthermore, recall that when

dealing with compact sets the notions of Jordan measure and Lebesgue measure are equivalent.

Hence, we may unambiguously refer to the Jordan/Lebesgue measure of a compact set S as its

measure or its area and denote it by A(S). Lastly, all integrals considered are Riemann integrals.

1 Preliminaries.

The following will be needed to construct solutions to both I) and II); these results are slight

modifications of those made by Falconer in [5]. The idea in this section is to take a triangle, slice

it up into a sufficiently large amount of smaller triangles, then to translate these smaller triangles

in such a manner that the resulting figure has as small of an area as we please. We will do this

so that if the original triangle allows for the complete revolution of a unit segment then the

resulting figure will too. This process however will take a number of steps and this first lemma

will provide us with some useful estimates on these ’slicing up’ and ’translating’ operations.

Lemma 1. Let T1 and T2 be adjacent triangles with bases on a line L, each having base

length b and height h. Take α ∈ (1
2
, 1) and consider the new figure T̃2, which is the translation

of T2 a distance 2(1 − α)b along L in the direction of T1. Denote by S the union of T1 and T̃2.

Then:

i) The figure S = T1 ∪ T̃2 consists of a triangle, T , having base on line L, and two smaller

triangles, t1 and t2, which we will call auxiliary triangles. The triangle T is similar to

T1 ∪ T2 and is positioned in a similar manner.

ii) A(T ) = α2A(T1 ∪ T2).

iii) The difference in area between T1 ∪ T2 and S is given by

A(T1 ∪ T2)− A(S) = A(T1 ∪ T2)(1− α)(3α− 1)

where A is plane area.
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Proof. Consider Figures 2 and 3; we will prove i-iii each in turn.

Figure 2:

i) Clearly m 6 1 = m 6 1′ and m 6 2 = m 6 2′, hence T ≈ T1 ∪ T2 (the symbol ≈ is used here to

denote similarity). The latter assertion in i) regarding the positioning of the triangles is obvious.

Figure 3: The triangle in (a) is similar to the triangle in (b) that has a base on L.

ii) We see that T has a base of length 2b − 2(1 − α)b = 2αb; whereas T1 ∪ T2 has base of

length 2b. So the ratio of similitude between T and T1 ∪ T2 is α, hence A(T ) = α2A(T1 ∪ T2).

iii) Let l be the line parallel to L and passing through the common vertex shared by t1 and

t2, as in Figure 4. Consider first the triangle t1. l divides t1 into two triangles, call them t1,1

and t1,2 where t1,2 is between l and L. Let x be the length of line segment l ∩ t1. x depends

linearly on α, so treating x as a function in α and noting that x(α = 1) = 0 and x(α = 1
2
) = b

2

we see that x = b(1 − α). Notice that t1,1 ≈ T1 and t1,2 ≈ T2, each having a ratio of similitude
x
b

= 1− α. Hence A(t1,1 ∪ t1,2) = (1− α)2A(T1 ∪ T2).

For t2 let y = t2 ∩ l. Just as above we get y = b(1− α), so x = y and we can conclude that

t1 is congruent to t2. Now the total area of S is given by
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Figure 4: Lines L and l are parallel. Notice that t1,2 ≈ T1 and t1,1 ≈ T2 (see Figure 2)

A(S) = A(T ) + A(t1) + A(t2)

= α2A(T1 ∪ T2) + 2(1− α)2A(T1 ∪ T2)

and, after a little algebra, we arrive at

A(T1 ∪ T2)− A(S) = A(T1 ∪ T2)(1− α)(3α− 1).

Q.E.D.

Now we will use the estimates from the previous lemma to perform the aforementioned ’slic-

ing up’ and ’translating’ of a triangle to form a new figure with arbitrarily small area.

Lemma 2. Consider a triangle, T , having base on a line L. Partition the base of T into

2k congruent segments and join each of the endpoints of these segments to the vertex opposite

the base, forming 2k triangles, T1, . . . , T2k . Then for every ε > 0 there exists K so that when

k > K it is possible to translate these 2k triangles along L to form a new figure, S, in such a

manner that A(S) < ε.

Remark. The translation of each triangle Ti as described in Lemma 2 is applied to the tri-

angle and its boundary. That is, the image of each Ti under the translation is a closed figure.

Thus the resultant figure, S, is compact. Notice that since some boundaries are shared by two

triangles we have ’added in’ 2k − 1 more line segments. This however does not effect area since
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there are only finitely many of these new segments.

Proof. Fix some ε > 0. We would like to employ Lemma 1, however in doing so we must

specify a value for α ∈ (1
2
, 1). To attain the desired result, the value α must be chosen so that

1 + (1− ε
A(T )

)1/2

3− (1− ε
A(T )

)1/2
< α < 1. (1)

In order to justify that it is even possible to pick an α satisfying (1) we must show that the

quantity
1+(1− ε

A(T )
)1/2

3−(1− ε
A(T )

)1/2 in (1) is indeed less than 1. By assumption

0 <
ε

A(T )
,

1 > 1− ε

A(T )
.

Taking the square root of both sides and multiplying by 2 gives

2 > 2

(
1− ε

A(T )

)1/2

,

hence

3−
(

1− ε

A(T )

)1/2

> 1 +

(
1− ε

A(T )

)1/2

.

Dividing both sides by 3−
(
1− ε

A(T )

)1/2
yields the desired result.

Our other preliminary is to specify a value for K. Although at the moment the motivation

may seem ambiguous, let

K > logα2

[
1− (1− ε

A(T )
)1/2

]
, (2)

and choose k > K. With this value of k, construct the 2k triangles in the manner indicated in

the hypotheses. By the following repeated application of the previous lemma we will construct

the desired set, S.

Step 1. Consider two consecutive triangles T2i−1 and T2i. Translate T2i along L in the direction

of T2i−1, a distance of 2(1− α)b, where b is the length of the base (the base lying on L) of each

Tj. This translation forms a new figure, which we will call S1
i . By Lemma 1 the figure S1

i is the

union of two auxiliary triangles and a triangle T 1
i that is similar to T2i−1 ∪ T2i and positioned

in a similar manner; furthermore A(T 1
i ) = α2A(T2i ∪ T2i−1). The reduction in area in replacing
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T2i−1∪T2i with the new figure S1
i is A(T2i∪T2i−1)(1−α)(3α−1). Repeating for each 1 ≤ i ≤ 2k−1

yields a collection, {S1
i }, of new figures. Figures 5 and 6 illustrate the collection {S1

i } for k = 3.

Figure 5: Translating the Ti to form the S1
i when k = 3.

Figure 6:

Step 2. We will now perform a similar operation with consecutive S1
i . Let 1 ≤ i ≤ 2k−2 and

translate S1
2i along L in the direction of S1

2i−1. Call this new figure S2
i . See Figure 7. Restricting

our attention to the action of T 1
2i−1 relative to T 1

2i in this translation we notice that one side of

T 1
2i−1 is parallel and congruent to the opposite side of T 1

2i. Hence, Lemma 1 allows us to perform

this translation so that S2
i contains some triangle T 2

i where A(T 2
i ) = α2

(
A(T 1

2i−1) + A(T 1
2i)
)

and

the reduction of area achieved by replacing T 1
2i−1 ∪ T 1

2i by S2
i is at least

(1− α)(3α− 1)
(
A(T 1

2i−1) + A(T 1
2i)
)

= (1− α)(3α− 1)α2A(T4i−3 ∪ T4i−2 ∪ T4i−1 ∪ T4i).

Step 3. Inductively, let j ≤ k and suppose we have j collections of figures {Sm
i }

2k−m

i=1 for each

m ≤ j, satisfying the following conditions:

i) each Sm
i lies on L,

ii) each Sm
i contains some triangle Tm

i that also lies on L,
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Figure 7: Here S1
2i+1 is being translated to overlap S1

2i, thus forming S2
i .

iii) for a fixed m the Tm
i are disjoint ,

iv) for a fixed m consecutive Tm
i have one pair of congruent, parallel sides,

v) A(Tm−1
2i−1 ∪ Tm−1

2i )− A(Sm
i ) ≥ (1− α)(3α− 1)

(
A(Tm−1

2i−1 ) + A(Tm−1
2i )

)
,

vi) A(Tm
i ) = α2A(Tm−1

2i−1 ∪ Tm−1
2i ).

With 1 ≤ i ≤ 2k−j translate Sj
2i along L to overlap Sj

2i−1 obtaining a new figure Sj+1
i . Lemma 1

tells us that this can be done so that each of the six conditions above are satisfied for m = j+1,

thus completing the inductive step.

Notice that condition ii) provides us with countable additivity, hence by repeated application

of condition v) above we have

A(Sk
1 ) ≤

[
A(T k−1

1 ) + A(T k−1
2 )

]
− (1− α)(3α− 1)

[
A(T k−1

1 ) + A(T k−1
2 )

]

≤
[
A(Sk−1

1 ) + A(Sk−1
2 )

]
− (1− α)(3α− 1)

[
A(T k−1

1 ) + A(T k−1
2 )

]

≤
[
A(T k−2

1 ) + . . .+ A(T k−2
4 )

]
− (1− α)(3α− 1)

[
A(T k−2

1 ) + . . .+ A(T k−2
4 )

]
−

(1− α)(3α− 1)
[
A(T k−1

1 ) + A(T k−1
2 )

]
...

...

≤ [A(T1) + . . .+ A(T2k)]− (1− α)(3α− 1) [A(T1) + . . .+ A(Tk2)]−
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(1− α)(3α− 1)
[
A(T 1

1 ) + . . .+ A(T k−1
22(k−1))

]
− . . .− (1− α)(3α− 1)

[
A(T k−1

1 ) + A(T k−1
2 )

]
.

Now use condition vi) to get

= A(T )− (1− α)(3α− 1)(1 + α2 + . . .+ α2(k−1))A(T )

=

(
1− (3α− 1)(1− α2k)

1 + α

)
A(T ). (3)

This is our sought after estimate, so we will take Sk
1 to be our set S. We will now manipulate

equations (1) and (2) to complete the proof. Solving (1) for the quantity (1− ε
A(T )

)1/2 gives us

(
1− ε

A(T )

)1/2

<
3α− 1

1 + α
,

and by our choice of k in (2) we get

1− α2k <

(
1− ε

A(T )

)1/2

.1

So by putting these together with (3) we arrive at

A(S) < ε.

Q.E.D.

Remark. Notice that by fixing the position of the first subtriangle, T1, and performing the

above operations with respect to T1, each Ti will have moved no more than b along L. See Figure

8. We will use this idea in the theorem below.

Theorem 1. With the same notation as Lemma 2, given some open set V ⊃ T and ε > 0, the

construction of S can be done so that S ⊂ V and A(S) < ε.

Proof. Let V ⊃ T be an open set and fix ε > 0. Notice that the only part of V that we

are interested in is that which is very close to the triangle T , so since T is bounded we may as

1Since α < 1 we have that f(x) = α2x is a decreasing function, so the inequality in (2) is reversed when both
sides are raised to a power of α2.
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Figure 8: The blue triangles are the images of the gray triangles after translating. Notice that

all of the translating is done with respect to T1 and each triangle has been translated no more

than b.

well assume that V is bounded as well. Later on this will allow us the luxury of using compact-

ness. We want to be able translate the points in T to make its area very small, but we cannot

translate the points very far since we need to stay within V . So we first find an upper bound, δ,

exhibiting the property that if any point of T is translated a distance less than δ in any direction

then the point will still be in V .

To find δ we define a function φ : T → R so that

φ(p) = min {|p− x| : x ∈ ∂V } ,

where ∂V denotes the boundary of V . Note that by the extreme value theorem the distance

function achieves a minimum on ∂V , so φ is well defined. Furthermore, a calculation shows

that φ is continuous, so by the compactness of T and another application of the extreme value

theorem, φ achieves a minimum. This minimum will be our δ. Now choose n > b/δ, where b is

the length of the base of T . Divide up the base of T into n subtriangles, T1, . . . , Tn. We will now

apply Lemma 2 to these subtriangles (observe that we are not applying Lemma 2 to the larger

triangle T ). The case for n = 4 is shown in Figure 9.

Consider some Ti. By Lemma 2 we can divide Ti into smaller subsubtriangles, so that, upon

translation, we obtain a figure Si where A(Si) < ε/n. Furthermore, by the remark following

Lemma 2 this can be done so that each subsubtriangle has moved a distance less than the length

of the base of Ti. Or equivalently, the elements of Si have been moved no more than b/n < δ, so

the elements of Si are still contained in V . Repeating this for each of the Ti one obtains a new

collection of figures, {Si}. Let S = ∪n
i=1Si. We thus have

A(S) = A(∪n
i=1Si) ≤

n∑
i=1

A(Si) < ε,
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Figure 9: Illustrated above is the case for n = 4. (b) shows Lemma 2 applied to T3. (c) shows

Lemma 2 applied to all of the subtriangles.

and furthermore, in obtaining S from T the elements have been translated no more than δ, so

S ⊂ V as desired.

Q.E.D.

Theorem 2. There exists a bounded set with zero area containing a unit line segment in

every direction from 0◦ to 90◦. Furthermore, given a line L this set can be constructed so that

each segment has an endpoint on L and all of the segments lie on the same side of L.

Proof. Let S1 be an isosceles right triangle with unit height and having its longest base on

a line L. S1 is measurable so there exists an open cover of S1 with measure as close to A(S1) as

we please. So let V1 ⊃ S1 be an open set such that A(V1) ≤ 2A(S1), where V1 denotes closure.

Notice that by taking an intersection if necessary, the set V1 is easily contained in a ball of radius

2, see Figure 10. Now applying Theorem 1 to S1 we obtain a new closed figure, S2 ⊂ V1, that is

the finite union of triangles, each having base on line L and with A(S2) ≤ 2−2.

Since S2 is measurable there exists an open set, V2, containing S2 and with measure as close

to A(S2) as we please. So choose V2 so that A(V2) ≤ 2A(S2). V1 contains S2 and is open so, by

taking an intersection if necessary, this can be done so that S2 ⊂ V2 ⊂ V1. By applying Theorem

1 again to each of the triangles that make up S2 we obtain a new set, S3 ⊂ V2, with A(S3) ≤ 2−3.

Repeating this process iteratively we obtain two collections of sets, {Vi} and {Si}, so that

each set satisfies the following properties:

i) each Vi is open,

ii) Si ⊂ Vi,
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Figure 10: Taking an intersection of V1 and a circle of radius 2 that contains S1 ensures that V1

is bounded.

iii) Vi ⊂ Vi−1,

iv) A(Vi) ≤ 2A(Si) ≤ 2−i+1,

v) each Si is the finite union of triangles having unit height and base on L; hence each Si has a

unit line segment in each direction between 0◦ and 90◦ that lies on one side of L and has

an endpoint on L.

Set

S =
∞⋂
i=1

Vi.

Notice that S is closed and S ⊂ V1, the latter of which is bounded so S is compact. Hence the

notions of Jordan measure and Lebesgue measure are equivalent. Property iv) above implies that

S has zero Lebesgue measure and hence A(S) = 0. It remains to show that S contains a line

segment in every direction between 45◦ and 135◦ (measured with respect to L) as this statement,

along with property v), implies that each line segment lies on one side of L and contains an

endpoint on L. So let θ be an angle in the range [45, 135]. By property v) for each i there exists

some line segment Mi ⊂ Si making an angle θ with L. Property ii) then tells us that Mi ⊂ Vi.

Let xi be the x-coordinate of the endpoint of Mi that lies on L, see Figure 11. It then follows from

property iii) that {xi} ⊂ V1. Compactness of V1 allows us to pass to a convergent subsequence

of {xi}, so let x be the limit of this subsequence and let M be the line segment corresponding

to this value of x, that is the line segment whose endpoint that lies on L has x-coordinate x.

Notice that if i ≥ j, then Mi ⊂ Vj by property 3. So since the Mi become arbitrarily close to M

and as each Vi is closed we get that M ⊂ Vi for each i. Hence M ⊂ S as desired.

Q.E.D.
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Figure 11: The bolded line segment is Mi and intersects the x-axis at x0, forming an angle θ. Si

is illustrated by the gray line segments and Vi is the open set containing Si.

2 Rotating Line Segments.

We will use the following lemma to construct a Kakeya set with arbitrarily small area.

Lemma 3. Let L1 and L2 be parallel lines. For any ε > 0 there exists a compact set E

with area less than ε in which a unit line segment can be moved continuously from L1 to L2.

Proof. Let ω be the distance between L1 and L2 and let x1 be any point on L1. Take x2

to be a point on L2 a distance D away from the projection of x1 onto L2, where

D >
ω

tan πε
.

Denote by M the linesegment connecting x1 with x2. The continuous movement we are

looking for will take the unit line segment from line L1, rotate it to M about the point x1. Then

slide the segment to x2 and rotate around x2 until it lies on L2. To allow for this we must include

the two congruent sectors, S1, S2, of radius 1 that lie between M and L1, L2, respectively. The

angle between M and each Li is tan−1 ω
D
< επ, so the area of each sector is less than ε/2. By

taking E to be the union of M with S1 and S2 we attain our desired set.

Q.E.D.
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Figure 12:

Theorem 3. Given ε > 0 there exists a Kakeya set with Jordan measure less than ε.

Proof. Take an isosceles right triangle having unit height and longest base on a line L. Lemma

2 enables us to cut up this triangle into n smaller triangles, {Ti}n
1 , of unit height each having

base on L, where A(∪n
1Ti) < ε/6. So in each Ti a unit line segment can be rotated from one side

to the other in a continuous fashion. Notice that Ti and Ti+1 have two sides that are parallel.

By an application of Lemma 3 we can move the segment from Ti to Ti+1 in an area that is less

than ε/6n. So as the segment moves from each Ti to the next and through each Ti, and hence

through 90◦, it sweeps out an area that is less than ε/3.

Figure 13:

Now take L′ to be a line perpendicular to L and construct a copy of the above set, but this

time with respect to L′. Notice that these sets contain one pair of parallel line segments, so by

Lemma 3 a unit line segment can be moved continuously from one set to the other in an area

that is less than ε/3. Thus taking the union of these sets we obtain a Kakeya set with area less

than ε.

Q.E.D.
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3 Integration.

Before even learning of Kakeya’s conjecture Besicovitch was studying Riemann integration in the

plane and the conditions under which plane integration is equivalent to iterated integration, as

in the equality observed in Fubini’s theorem (see Appendix). In [2] he demonstrated the limita-

tions of this equivalence by constructing functions and sets where iterated integrals exist but the

corresponding plane integrals do not and where integrals exist but the iterated integrals do not.

We will look into both of these examples below and will follow Besicovitch’s original construction.

Theorem 4. There exists a function f : R2 → R and a set S ⊂ R2 so that the Riemann

integral

∫ ∫
S
f dA

exists, but the expression

∫ β

α

∫ η2

η1

f dξ dη

does not exist as a Riemann integral for any pair of orthogonal directions η, ξ, where S lies

between curves η1 and η2, which ranges from α to β in the ξ direction.

Figure 14: The set S and an arbitrary pair of orthogonal axes, η and xi.
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Proof. Let B be a set as in Theorem 2, taking L to be the x-axis where the line segments are

positioned in the first quadrant. Let r1, r2, . . . be an enumeration of the rationals in the range

(0, 1) and consider the set {Li} of lines where Li is the line y = 2−i. Denote by Bi the sections

of line segments of B that lie between Li and Li+1. For each i, translate Bi a distance ri in the

direction of the positive x-axis. Thus we have a new set which we call S1. See Figure 15.

Figure 15: Illustrated above is the translations of the Bi.

Our claim now is that S1 has zero area (Jordan measure). The difficulty comes in that S1

is the result of an infinite number of translations and Jordan measure does not handle infinities

very well. However, these infinite translations all occur very close to the x-axis, so by placing a

sufficiently wide rectangle on the x-axis we can negate this problem. We will do this as follows:

choose any positive ε and recall that B is bounded, so S1 must also be bounded since it was

constructed from B by translating distances no greater than 1. So let ψ be the length of an

interval that contains the projection of B onto the x-axis. This will be the length of the base

of our rectangle and we will take ε/2ψ to be its height. There is no harm in insisting that this

rectangle be closed, so we will require it here as it will benefit us later. Position the base of this

rectangle on the x-axis so that is covers the lower portion of S1 as in Figure 16; this is possible

because we have chosen the width to be great enough. The remaining uncovered portion of S1

consists of a finite number of translates of B and hence there exists a finite closed cover of this

portion of S1 with area less than ε/2 and we have the freedom to insist that this cover consist

solely of rectangles. Thus we have a finite cover of S1 that consists of closed rectangles with a

total area that is less than ε.

Now let S2 be the image of S1 after a 90◦ rotation. Observe that A(S1∪S2) ≤ A(S1)+A(S2) =

0. We are now ready to define the function f as follows: (i) if P ∈ S1 has a rational x-coordinate

then f(P ) = 1, (ii) if P ∈ S2 has a rational y-coordinate then f(P ) = 1, (iii) f(P ) = 0 for all
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Figure 16: The rectangle in blue has area ε/2.

other P . This makes ensures that f is not integrable as a function of a single variable, ξ or ν,

on any of the line segments of S1 or S2, respectively. Let S be a ball that contains S1 ∪ S2 and

its finite cover of closed rectangles that was constructed above. The complement of the cover of

S1 ∪ S2 is open and since f is constantly zero on this cover it follows that f is continuous there.

Thus f is discontinuous at most on the cover of rectangles, which can be made to have as small

of an area as we please, so the integral

∫ ∫
S
f dA

exists and equals zero.

Let η and ξ be an arbitrary pair of orthogonal axes, where η is the axis that makes the smaller

angle with the x-axis, if they both meet the x-axis at the same angle then just choose one of

the axes to be ξ. Call this angle formed ξ. Consider the line segment of B that makes an angle

φ with the x-axis and let x0 be the x-coordinate of the intersection of this line segment with

the x-axis. Now let L(φ) denote the set of parallel lines that contain the line segments of S1

which make an angle φ with the x-axis, see Figure 17. Notice that L(φ) can be described by

{(x, y) : y = tan(φ)(x− x0 − r),∀r ∈ Q ∩ (0, 1)}. By the density of the rationals it follows that

the intersection of L(φ) with the x-axis is dense in the interval (x0, x0 + 1). If we now consider

the intersection of L(φ) with the ν-axis we obtain a set that is dense in an interval of length

sin φ ≥
√

2/2.

Recall that f is not integrable over any of the line segments of S1 or S2, hence the integral
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Figure 17: The dark line segment in (a) is the segment of B that is parallel to the ξ-axis. The

gray lines in (b) are the lines of L(φ) that each contain a line segment from S1.

∫ η2

η1

f dξ

does not make sense over any of the lines in L(φ) when considered as a Riemann integral. So

when viewed as a function in η the expression
∫ η2
η1
f(ξ, η) dξ is not defined on a dense set of length

sin φ. Hence, in considering the expression

∫ β

α

∫ η2

η1

f dξ dη

we conclude that it does not exist as a Riemann integral. By the same argument it follows that∫ γ

δ

∫ ξ2

ξ1
f dη dξ

does not exist, thus completing the proof.

Q.E.D.

The following theorem does not use any of the machinery developed previously in its proof,

however it is included here because its results are so similar to that of the previous theorem. As

a note, the following also follows in the manner of Besicovitch in his 1919 paper.
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Theorem 5. There exists a function f : R2 → R and a set S ⊂ R2 so that the iterated

integral

∫ β

α

∫ η2

η1

f dξ dη

exists for every pair of orthogonal directions η, ξ, but the expression

∫ ∫
S
f dA

does not exist, where S is bounded in the η direction by the curves η1 and η2 and ξ ranges from

α to β.

Proof. Consider the square with vertices A(0, 1), B(1, 1), C(1, 0) and D(0, 0). Let r1, r2, . . .

be an enumeration of the rationals in (0, 1). For each i denote by Li the translation of line

segment DA in the direction of the positive x-axis a distance of ri. Divide each Li into i equal

pieces and designate the points of division by ai,1, ai,2 . . . ai,i−1.

Figure 18: Shown here is the case where i = 8.

We are now going to construct the set of points

b2,1

b3,1, b3,2

...
...
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bi,1, bi,2, . . . , bi,i−1

...
...

that satisfy the properties

i) the distance from bi,j to ai,j is less than 1
i

ii) no three of the bi,j are collinear.

This can be done as follows: choose b2,1 and b3,1 to be any points that is within 1
2

and 1
3

of a2,1

and a3,1, respectively. Now take b3,2 to be a point within 1
3

of a3,2 and not lying on the line

determined by b2,1 and b3,1. Inductively, take bi,j to be a point within 1
i

of ai,j and not lying on

any of the lines determined by the points b2,1, b3,1, b3,2, . . . , bi,1, bi,2, . . . , bi,i−1.

Our claim now is that the set of all bi,j is dense in the square ABCD. Consider an arbitrary

point P0 = (x0, y0) in the interior of ABCD and let ε > 0 be small enough so that Bε(P0) is

contained in ABCD. There are an infinite number of rationals in the interval (x0 − ε
4
, x0 + ε

4
)

so let rn be such a rational with n > 4
ε
. The an,i are within 1

n
< ε

4
of each other, so there exists

some an,k that is within ε
2

of P0. The triangle inequality tells us that since bn,k is within ε
4

of an,k

we can conclude bn,k ∈ BεP0, so the bi,j are dense in ABCD.

Now take the function f to be the characteristic function on the set of all bn,i and let ξ, η be

an arbitrary set of orthogonal directions. For each fixed value of ξ the function f is evaluated

at at most two of the bn,i, so f is discontinuous on a set of measure zero and constantly zero

elsewhere on the given line. Hence

∫ η2

η1

fdξ = 0

for every value of η and the integral

∫ β

α

∫ η2

η1

f dξ dη

exists and is identically zero.

On the other hand, the Riemann integral

∫ ∫
ABCD

f dA

does not exist since f is discontinuous on a dense set in ABCD when f is no longer restricted

to a line.

Q.E.D.
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4 Appendix

Fubini’s Theorem provides us with sufficient conditions for when plane integration and iterated

integration are equivalent when considering Riemann integrals. Below is a statement of this

theorem [6].

Fubini’s Theorem. Let R = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}, and let f be an integrable

function on R. Suppose that for each y ∈ [c, d], the function fy defined by fy(x) = f(x, y) is

integrable on [a, b], and the function g(y) =
∫ b
a f(x, y)dx is integrable on [c, d]. Then

∫ ∫
R
fdA =

∫ d

c

[∫ b

a
f(x, y)dx

]
dy.

Remark. Having introduced the notion of a Kakeya set and demonstrating such a set with

arbitrarily small area, we are naturally inclined to ask the question: Does there exist a Kakeya

set with zero Jordan (or even Lebesgue) measure? As far as I have been able to find this question

has neither been answered to the negative nor has a sufficient example been constructed, so I

state it here as an open problem.
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