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Abstract

We establish short-time existence and uniqueness results for the Yang–
Mills flow on cylindrical end 4-manifolds. We also show long-time exis-
tence and infinite-time convergence under certain hypotheses on the un-
derlying data.
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1 Introduction

The Yang–Mills flow is the flow of a natural vector field on the space of con-
nections on a Riemannian n-manifold Z. The critical dimension for the flow is
n = 4, and this is the dimension we consider here. In the closed case (compact
with no boundary), this 4-dimensional flow has been studied extensively by
many authors; e.g., [24, 3, 5, 28, 16, 26, 25, 27, 4, 32, 11]. However, the Yang–
Mills flow on non-compact 4-manifolds is not as well understood.

Here we study the case where Z has cylindrical ends and an asymptotically
cylindrical metric. Our main results establish short-, long-, and infinite-time
existence and uniqueness results of the flow under certain hypotheses; see The-
orems 1.1 and 1.2. Asymptotically cylindrical manifolds arise naturally when
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considering neck-stretching limits on closed manifolds; e.g., see [20]. Such
manifolds also arise in Floer theory [6], where the Yang–Mills minimizers on
Z can carry deep and interesting topological information about the 3-manifold
ends of Z. Applications of these types have motivated various aspects of our
set-up; for an elaboration, see Section 1.1.

Now we describe our set-up in more detail. Unless otherwise stated, Z will
always denote a cylindrical end 4-manifold that is oriented and connected. In
particular, this means we can write

Z = Z0 ∪Y ([0, ∞)×Y) ,

where Y is a closed 3-manifold, and Z0 is a compact manifold with ∂Z0 = Y.
We allow the case where Y has multiple connected components. To simplify the
exposition, we assume that Y is non-empty, though the results have extensions
to the case where Z is closed. We will use the term (cylindrical) ends to refer to
[0, ∞)× Y; although, at times, we will abuse terminology and refer to Y as the
‘ends’ as well.

A metric gcyl on Z is cylindrical if it restricts on the ends to have the form

gcyl |[0,∞)×Y = ds2 + gY,

where s is the coordinate-variable on [0, ∞), and gY is a fixed metric on Y. A
metric g on Z is asymptotically cylindrical if there is a cylindrical metric gcyl on
Z and some β > 0 relative to which

|∇k
cyl(g− gcyl)| = O(e−βs)

for all k ≥ 0. Here∇cyl is the covariant derivative induced from the Levi-Civita
connection of gcyl . We fix an asymptotically cylindrical metric g on Z. Unless
otherwise specified, all metric quantities on Z are defined in terms of g.

Let G be a compact, connected Lie group with Lie algebra g, and fix a prin-
cipal G-bundle P→ Z. We assume that P restricts on the cylindrical ends to be
a product

P|[0,∞)×Y = [0, ∞)×Q,

for some bundle Q → Y. Every principal G-bundle on Z is isomorphic to a
bundle of this form.

Fix a Lie group homomorphism G → U(N) that is also an immersion. Lin-
earizing allows us to view the Lie algebra g ⊆ u(N) as a Lie subalgebra of
u(N). Then we will consider the Ad-invariant inner product

〈ξ, ζ〉 :=
1

2π2 tr(ξ · ζ∗) = − 1
2π2 tr(ξ · ζ), (1)

on g, where the trace is the one induced from the inclusion g ⊆ u(N) ⊂
End(CN). The coefficient (2π2)−1 is to ensure we obtain integers for certain
characteristic numbers appearing below (see Example 5.3 (b) and Lemma 5.4).
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To obtain a good analytic problem, we want to consider only those connec-
tions on P that have fixed asymptotics down the cylindrical ends of Z. For this
purpose, fix a flat connection a on Q. Let

A(P; a)

denote the space of smooth connections on P that, together with all of their
derivatives, decay rapidly down the cylindrical end to the fixed connection a.
We denote by

dA : Ωk(Z, gP)→ Ωk+1(Z, gP), and FA ∈ Ω2(Z, gP)

the covariant derivative and curvature of a connection A ∈ A(P; a). Here
gP → Z is the adjoint bundle associated to P, and Ωk(Z, gP) is the space of
smooth gP-valued k-forms on Z.

Given an initial connection A0 ∈ A(P; a), the Yang–Mills flow is given by

∂τ A = −d∗AFA, A(0) = A0, (2)

where A = A(τ) is a path of connections inA(P; a). This is the formal negative
gradient flow of the Yang–Mills functional

YM : A(P; a)→ R, A 7→ 1
2
‖FA‖2

L2(Z).

The critical points of YM are the Yang–Mills connections. The Yang–Mills func-
tional is invariant under the group G(P; e) of gauge transformations that, to-
gether with all of their derivatives, decay rapidly down the ends to the identity
gauge transformation e on Q.

Our first main result establishes short-time existence and uniqueness for
the flow (2).

Theorem 1.1 (Short-time existence and uniqueness). Fix a flat connection a on
Q, and a smooth initial condition A0 ∈ A(P; a). Then there is some τ0 ∈ (0, ∞], and
a smooth solution

A : [0, τ0) −→ A(P; a)

to the Yang–Mills flow (2). If a is irreducible, then the solution A is unique.

This is a special case of Theorem 3.1 in Section 3. The proof we give fol-
lows Feehan’s monograph [11], which summarizes and expands upon the orig-
inal short-time existence proofs by Struwe [28] and Kozono–Maeda–Naito [16].
These authors work in the setting of closed 4-manifolds, and the main point we
wish to emphasize is that, by fixing the flat connection a at infinity, there is no
essential analytic difference in passing from the closed case to the cylindrical
end case considered here; see Remark 3.2 (c). This somewhat surprising fact
comes down to the observation that, if one is careful with the estimates in-
volved, all relevant norms can be taken to be defined on the full 4-manifold Z.
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It would be interesting to see the extent to which this observation extends to
other non-compact settings.

Let τ0 be the maximal existence time for which Theorem 1.1 holds. When τ0
is finite, our analysis produces a characterization of τ0 in terms of concentration
of energy. This characterization is familiar from the work of Struwe [28] and
Schlatter [26], and is discussed further in Section 4.

Now we turn to long-time existence and convergence at infinite time. To
obtain good long-time behavior, we will work under certain general position
and low-energy hypotheses. To state these, fix a flat connection a on Q, and
assume this is acyclic in the sense that a is irreducible and non-degenerate as
a critical point of the Chern–Simons functional; see Section 2.1.1. There is an
identity of the form

YM(A) = CSP(a) + ‖F+
A ‖

2
L2(Z) (3)

for all A ∈ A(P; a). Here F+
A is the self-dual part of the curvature, and CSP(a)

is the Chern–Simons value, a quantity depending only on a and the topological
type of the bundle P. We will say that a connection A is anti-self dual (ASD) if
F+

A = 0 and if YM(A) is finite (this latter condition is not generally required,
but we include it for convenience). The identity (3) shows that, when they exist,
the ASD connections are the absolute minimizers of YM onA(P; a). A related
quantity is the index IndP(a) ∈ Z, which we define to be the formal dimension
of the ASD moduli space for connections in A(P; a); see (8). We will say that
all ASD connections on P are regular if all flat connections on Q are acyclic, and
all ASD moduli spaces on P→ Z (with metric g) and on R×Q→ R×Y (with
metric ds2 + gY) are cut out transversely.

Theorem 1.2 (Long-time existence and infinite-time convergence). Assume all
ASD connections on P are regular. There is an integer IG > 0 so that if a is any flat
connection on Q with IndP(a) < IG, then there is a positive constant η(a) so the
following holds.

Assume the initial condition A0 ∈ A(P; a) satisfies

‖F+
A0
‖2

L2(Z) < η(a).

Then the flow (2) has a unique solution A : [0, ∞) → A(P; a). Moreover, as τ
approaches ∞, the connections A(τ) converge exponentially in C∞(Z) to a unique
ASD connection A∞ ∈ A(P; a).

This result follows immediately from Theorems 5.1 and 6.1, below. The con-
stant IG is essentially the lowest index IndP(a) for which bubbling can occur
in the associated ASD moduli space; see Section 5.1. The constant η(a) is de-
fined in Section 5.3, and reflects an energy gap for the Yang–Mills functional
on Z, R× Y, and S4; our proof of the existence of this energy gap relies on the
regularity hypothesis. Having established an energy gap, long-time existence
follows from analysis familiar in the closed setting; e.g., see [16]. Indeed, bub-
bling is the only obstruction to long-time existence, but bubbling is ruled out
for initial connections with Yang–Mills value within the energy gap.
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The infinite-time convergence claimed in Theorem 1.2 relies on several in-
gredients. First, since we have excluded bubbling, it follows immediately from
Uhlenbeck’s weak compactness theorem that we have weak subsequential con-
vergence at infinite time to a Yang–Mills connection A∞, where the conver-
gence is modulo gauge and on compact sets. A priori, this limiting connec-
tion may depend on the subsequence chosen, and it may be the case that the
asymptotic limits of A∞ are not a (i.e., A∞ may belong to A(P; a′) for some
other flat connection a′). This latter phenomenon is due to the possibility of
energy escaping down the cylindrical ends—a phenomenon not present in the
closed setting. To exclude this possibility, we use the ASD-regularity and small
energy assumptions again to show that, for each k ≥ 0, the path A(τ) is Wk,2-
Cauchy on the full 4-manifold Z. In particular, this implies A∞ does in fact
belong to A(P; a), as desired. Moreover, the positive energy gap forces A∞ to
be ASD, as opposed to just Yang–Mills.

In practice, the regularity hypothesis of Theorem 1.2 is frequently not satis-
fied. However, in many cases, it can be achieved by adding a perturbation to
the curvature. This perturbation scheme also fits in nicely with various stan-
dard applications of gauge theory to low-dimensional topology; see Section
1.1. Consequently, we consider a suitably perturbed version of the flow (2).
We discuss perturbations in Section 2, laying out axioms we require our per-
turbations to satisfy. Some of these axioms are analytic in nature, being used
to ensure various linear operators are well-behaved and that appropriate con-
vergence results for Yang–Mills connections extend to the perturbed setting.
Others are algebraic in nature, and used to ensure that the perturbed curva-
ture and covariant derivative behave in ways familiar from the unperturbed
setting. For example, Corollary 2.5 says that the Bianchi identity holds in our
perturbed setting (interestingly, it is not a trivial task to arrange for this identity
to hold; see Remark 2.4). The Bianchi identity is used, via a perturbed version
of (3), to show that a perturbed ASD connection has energy controlled by the
value of its asymptotic limit; this is crucial for our long-time existence analysis.

Due to the fairly specific nature of the perturbations we require, we give
an existence result for them in Appendix A. The construction uses holonomy
perturbations, which are common in the literature when studying ASD connec-
tions. However, as pointed out by Kronheimer [17], care must be taken when
considering bubbling phenomena in the presence of a holonomy perturbation.
Kronheimer showed that even for ASD connections, the best one could gener-
ally hope for is convergence in W1,p away from the bubbling set. We will be
considering bubbling phenomena for sequences of connections along the flow,
which is a second order equation and so this W1,p-convergence is initially con-
cerning. The key observation that makes holonomy perturbations viable for
our set-up is that any bubbling that cannot be a priori excluded results in con-
nections that are ASD (satisfying a first order equation), as opposed to just
Yang–Mills (satisfying a second order equation). As we show below, this is just
enough to satisfactorily couple with the W1,p-convergence. See Remark 5.9 for
more details.

Though we work with a perturbation throughout the remainder of this pa-
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per, we make no regularity assumptions in our discussion of short-time exis-
tence in Sections 3 and 4. In particular, the results of those sections hold in the
absence of any perturbation and without regularity hypotheses.

Remark 1.3. (a) Guo [14] and Sà Earp [21] each consider similar flows on cylindrical-
end Kähler manifolds. They employ Kähler techniques to obtain their convergence
results.

(b) See Janner [15] for a similar perturbed Yang–Mills flow over 3-manifolds.

The following remarks address authors working in the case where Z is a closed 4-
manifold.

(c) Schlatter [25] proved long-time existence under the assumption that F+
A0

is L2-
small, and the bundle P has small Pontryagin number. Our approach is in many ways
similar, with the restriction on the Pontryagin number being replaced by the index
assumption on a.

(d) Waldron [32] has ruled out finite-time bubbling under the assumption that
either F+ or F− does not concentrate in L2; see also his paper [33] that rules out
finite-time bubbling altogether.

(e) Feehan [11] has obtained similar infinite-time convergence results, where he
uses the Łojasiewicz–Simon’s inequality in place of our (rather strong) index and ASD-
regularity assumptions.

Acknowledgments: The author is grateful to his thesis advisor Chris Wood-
ward for his insight and valuable suggestions. He would also like to thank Paul
Feehan, Tom Parker, Alex Waldron, and anonymous referees for their helpful
comments and suggestions.

1.1 Applications

Here we discuss two applications of the main results in this paper. The first
gives an alternative proof of a well-known gluing result in Donaldson/Floer
theory. The second is an extension of these ideas to work in progress on the
quilted Atiyah–Floer conjecture. The results of this section are not used elsewhere
in the paper, though they do supply motivation for much of our set-up, includ-
ing the specific perturbations used, our regularity hypotheses, and our focus
on various constants that arise in the analysis.

1.1.1 Gluing ASD connections

For i = 1, 2, let Zi be a connected, oriented, cylindrical end 4-manifold with
asymptotically cylindrical metric gi. Assume the ends of Z1 are of the form
Y1 t Y and those of Z2 are of the form Y t Y2, where Y is the 3-manifold Y
equipped with the opposite orientation. We require that Y is non-empty and
connected, but we make no restrictions on the number of components of Y1, Y2.
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In each of Z1 and Z2, cut off the end associated to Y, and then attach these
together to obtain a new 4-manifold as follows:

Z(n) :=
(

Z1\ [n, ∞)×Y
)
∪{n}×Y

(
Z2\ [n, ∞)×Y

)
Then Z(n) is a connected, oriented, cylindrical end 4-manifold with ends Y1 ∪
Y2, and the gi induce an asymptotically cylindrical metric on Z(n). In this
section, we show how Theorem 1.2 can be used to “glue” certain pairs of ASD
connections on Z1 and Z2 to form an ASD connection on Z(n), provided n is
sufficiently large.

Fix principal G-bundles Pi → Zi that are translationally-invariant on the
end. Let Qi → Y be the bundle on Y induced from Pi. We assume that Q1 and
Q2 are isomorphic bundles, and we fix a bundle isomorphism ρ : Q2 → Q1.
Using this isomorphism, the bundles P1, P2 induce a bundle on Z(n).

We assume all flat connections on Q1 (and hence on Q2) are irreducible. By
working with a perturbation as in Theorem A.1, we may assume all (perturbed)
flat connections on the Qi are acyclic and all (perturbed) ASD connections on
the Z(n) and the Zi are regular (an application of the Baire category theorem
shows that all of these conditions can be met for all n, with the use of a sin-
gle perturbation). To simplify the discussion, we will drop the bundles and
perturbation from the terminology and notation.

We will write connections on Y1 tY as a1 ∪ b, with a1 (resp. b) representing
a connection on Y1 (resp. Y). Given a flat connection a1 ∪ b on Y1 t Y, we will
writeMASD(Z1; a1 ∪ b) for the moduli space of ASD connections on Z1 that are
asymptotic to a1 ∪ b; see Section 2.2 for a precise definition of the ASD moduli
space. We use similar notation for Z2 and Z(n). Our regularity hypotheses im-
ply these moduli spaces are all smooth, finite-dimensional manifolds, with di-
mension given by the index appearing in the statement of Theorem 1.2. When
this index is zero, the moduli spaces consist of a finite set of points [6, Ch. 4].
The above-mentioned gluing result is as follows.

Corollary 1.4 (Parabolic Gluing). There is some n0 ≥ 0 so that the following holds
for all n ≥ n0. For i = 1, 2, fix a flat connection ai on Yi. Suppose b is a flat connection
on Y with

IndZ1(a1 ∪ b) = IndZ2(ρ
∗b ∪ a2) = 0. (4)

Then there is an injection

Ψb :MASD(Z1; a1 ∪ b)×MASD(Z2; ρ∗b ∪ a2)→MASD(Z(n); a1 ∪ a2).

Moreover, every element of MASD(Z(n); a1 ∪ a2) is in the image of Ψb for some b
satisfying (4).

Our proof, sketched below, will use ASD connections on Z1 and Z2 to con-
struct a nearly-ASD connection on Z(n), and then use the Yang–Mills flow to
obtain an actual ASD connection. Though this result itself is not new (e.g., var-
ious forms of it appear in [12],[2], and [6]), our use of the Yang–Mills flow dif-
fers from traditional approaches, which instead appeal to the implicit function
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theorem (IFT) to obtain the actual ASD connection. A similar proof-strategy
was used by Waldron [32, Theorem 4.1], who gave a proof of Taubes’ grafting
procedure [29] using the Yang–Mills flow.

One upshot of the flow-theoretic proof is that, as we will see, essentially the
only estimates required are L2-estimates. This is in contrast to the standard IFT
approaches, which require norms from higher Sobolev spaces to ensure that
satisfactory embedding theorems hold. In the neck-stretching setting relevant
to Corollary 1.4, the relative ease of working with L2-estimates is similar to
the relative ease in studying the metric-scaling properties of the semi-norm
‖∇ f ‖L2 as opposed to studying those of the Sobolev norm ‖ f ‖W1,p . Of course,
with stronger hypotheses often come stronger results, and such is the case in
the present setting. For example, in extending Corollary 1.4 to moduli spaces
of higher dimension, one would like the induced map to be continuous. In the
IFT setting, continuity follows readily from the stronger hypotheses. For flows,
continuous dependence of the limit on initial conditions takes additional work
to establish (we do not carry this out in the present paper).

A particularly interesting special case of Corollary 1.4 is when Zi = R× Y
is a cylinder for i = 1, 2. In this case, Corollary 1.4 can be used to prove that the
instanton Floer homology of Y [12] is an invariant of Y, and so independent of
auxiliary choices like the metric and perturbation. More generally, gluing re-
sults such as Corollary 1.4 are the key analytic ingredients in establishing TQFT
properties of the relative Donaldson invariants, which are topological invariants
for cylindrical end 4-manifolds; see [2] and [6, Section 6.4]. In particular, these
invariants do not depend on the choice of metrics (e.g., the value of n) or any
choice of perturbation used to achieve the relevant regularity hypotheses. It is
for reasons such as these that we have chosen in this paper to study the larger
class of perturbed Yang–Mills flows mentioned in the introduction.

Proof of Corollary 1.4 (Sketch). Assume a1, a2 and b are, respectively, flat connec-
tions on Y1, Y2 and Y that satisfy (4). Let A1 (resp. A2) be an ASD connection
on Z1 (resp. Z2) with asymptotic limits a1 ∪ b (resp. b∪ a2). The index assump-
tion (4) implies IndZ(n)(a1 ∪ a2) = 0 for all n, and so all relevant moduli spaces
consist of a finite set of points; see [6, Section 3.3.].

With the help of cut-off functions supported on the ends associated to Y, the
connections A1 and A2 can be joined together to form a “preglued” connection
An0 on Z(n) that (i) equals Ai on an open set in Z(n) containing Zi\ [n− 1, ∞)×
Y and (ii) is approximately ASD in the sense that

lim
n→∞

‖F+
An0
‖L2(Z(n)) + ‖d∗An0

FAn0‖L2(Z(n)) = 0;

see [6, Section 4.4]. Let ηn(a1 ∪ a2) > 0 be the constant from Theorem 1.2,
where the subscript of n on this constant records its dependence on the Rie-
mannian manifold Z(n). By an argument similar to the one given in the proof
of Theorem 5.7 below, one can show that the infimum infn ηn(a1 ∪ a2) > 0 is
positive. In particular, it follows that An0 satisfies the hypotheses of Theorem
1.2, provided n is sufficiently large. Let An(A1, A2) be the ASD connection
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on Z(n) obtained from the flow starting at An0. The gauge invariance of the
Yang–Mills functional implies that the map (A1, A2) 7→ An(A1, A2) descends
to a well-defined mapping Ψb as in the statement of the corollary.

To see that Ψb is injective, suppose An(A1, A2) = An(A′1, A′2) for two pairs
(A1, A2) and (A′1, A′2) of ASD connections. Let An0 be the preglued connection
associated to the pair (A1, A2), and let An0(τ) be the Yang–Mills flow starting
at An0; similarly, write A′n0 and A′n0(τ) for the preglued connection and flow
associated to the A′i. The regularity hypotheses imply that the supremum

Cn := sup
τ≥0
‖F+

An0
(τ)‖L2(Z(n))‖d∗An0(τ)

F+
An0

(τ)‖−1
L2(Z(n))

is finite, provided n is sufficiently large. Using an argument similar to the one
given for Corollary 5.2, one can show that the Cn are uniformly bounded by
some constant C. By Remark 6.8, we then have

‖An0 − An(A1, A2)‖L2(Z(n)) ≤ C‖d∗An0
FAn0‖L2(Z(n)).

A similar estimate holds in the primed case. Combining this with the construc-
tion of the preglued connections and the assumption An(A1, A2) = An(A′1, A′2),
we have

2

∑
i=1
‖Ai − A′i‖L2(Zi\[n−1,∞)×Y) ≤ ‖An0 − A′n0‖L2(Z(n))

≤ ‖An0 − An(A1, A2)‖L2(Z(n))
+ ‖A′n0 − An(A′1, A′2)‖L2(Z(n))

≤ C(‖d∗An0
FAn0‖L2(Z(n)) + ‖d∗A′n0

FA′n0
‖L2(Z(n))),

which is going to zero in n. This implies Ai = A′i, as desired.
To see that every element ofMASD(Z(n); a1 ∪ a2) is in the image of Ψb for

some b, assume otherwise. Then there are integers nk diverging to ∞, and
a sequence Ank of ASD connections whose gauge equivalence classes are not
in the image Ψb for any b. By Uhlenbeck’s compactness theorem, there is a
flat connection b so that, after possibly passing to a subsequence and applying
gauge transformations, the restriction of Ank to the slice {nk} × Y ⊆ Z(nk)
converges pointwise to b; for a similar argument, see the proof of Claim 1 in
the proof of Theorem 5.7. For i = 1, 2, use a cut-off function to construct a
nearly-ASD connection on Zi that agrees with Ank on Zi\ [nk − 1, ∞)× Y and
is identically equal to b on [nk, ∞)× Y. Applying Theorem 1.2 to these nearly-
ASD connections, we obtain ASD connections on Z1 and Z2 that map under Ψb
to Ank . This is a contradiction.

1.1.2 The quilted Atiyah–Floer conjecture

The specific inspiration for the present paper arose out of the author’s work on
the quilted Atiyah–Floer conjecture [10]. Here we briefly describe the conjecture
and indicate where Theorem 1.2 fits into the picture.
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Given a cylindrical end 4-manifold Z, the conjecture equates the above-
mentioned relative Donaldson invariant of Z with the relative quilt invariants
of Wehrheim–Woodward [35] [36] and Wehrheim [34]. The conjecture reduces
to a claim that, under suitable regularity and metric assumptions, there is an
identification between ASD connections on Z, and the minimizers of a differ-
ent function E associated with Z. This function E is a version of the Dirichlet
energy for Riemann surfaces.

These “suitable regularity assumptions” include an assumption that all ASD
connections are regular. There is a similar regularity hypothesis on the min-
imizers of E, and the perturbations considered here are tailored to achieve
all of these regularity hypotheses simultaneously. The aforementioned “met-
ric assumptions” are that one works relative to a family gε of metrics on Z
parametrized by ε > 0 and degenerating, in a certain sense, as ε approaches 0.

An important special case is when Z = S× Σ is the product of a cylindri-
cal end Riemannian 2-manifold (S, gS) and a closed Riemannian 2-manifold
(Σ, ε2gΣ). In this product setting, the energy E is (a perturbation of) the usual
Dirichlet energy for maps from S into the representation variety of Σ; the mini-
mizers are the (perturbed) holomorphic curves. The conjecture in this product
case was established by Dostoglou–Salamon [8, 9] for S = R× S1 and by Sala-
mon [23] when S has genus zero. Though several other special cases of the
conjecture have been established, the conjecture in the general setting is open
at the time of writing.

Given a minimizer e of E, one can construct a connection Ae on Z that is
almost ASD in the sense that Ae has near-minimal Yang–Mills value. The idea
now is to argue as in the proof of Corollary 1.4, and show that the constants
relevant to the flow can be taken to be independent of ε. Though this is still
work in progress, it would then follow from Theorem 1.2 that the Yang–Mills
flow starting at Ae exists and converges to an ASD connection. This would es-
tablish an injection between the two sets of minimizers relevant to the quilted
Atiyah–Floer conjecture. For example, in the product case Z = S× Σ, this ε-
independence of the constants does indeed hold, which can be seen via an ar-
gument similar to the n-independence discussed in the proof of Corollary 1.4.
As one might expect, for more general Z, this ε-independence is more compli-
cated and remains unknown. Nevertheless, as mentioned in Section 1.1.1, since
the necessary estimates are only in L2, they generally are much easier to work
with than, say, estimates necessary for an implicit function theorem argument.

2 Perturbations

In Section 2.1 we define a certain class of perturbations that we will use to
perturb the flow. After defining this class, we discuss perturbed versions of
the Yang–Mills and Chern–Simons functionals; see Section 2.2. Section 2.3 dis-
cusses various elliptic operators that are relevant to the flow.
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2.1 Definition of the perturbations

Here we define the relevant class of perturbations. We begin by discussing the
asymptotic behavior down the cylindrical end Y, then we discuss the pertur-
bation on the rest of Z.

2.1.1 Perturbations on Y

Let Q→ Y be as in the introduction. Fix a map of the form

K : A(Q) −→ Ω2(Y, gQ), a 7−→ Ka, (5)

where A(Q) is the space of connections on Q. We will always assume this is
gauge equivariant in the sense that

Ku∗a = Ad(u−1)Ka

for all a ∈ A(Q) and all gauge transformations u on Q. We will refer to K as a
perturbation on Y.

Denote the linearization of K at a by

dKa : Ω1(Y, gQ) −→ Ω2(Y, gQ).

We will always assume K is chosen to satisfy the following axiom.

Axiom 1. The operator dKa is symmetric in the sense that∫
Y
〈dKa(v) ∧ w〉 =

∫
Y
〈v ∧ dKa(w)〉

for all v, w ∈ Ω1(Y, gQ) and a ∈ A(Q).

The notation 〈· ∧ ·〉 combines the wedge on forms with the inner product
(1) on g. The next example shows that the axiom is not difficult to arrange.

Example 2.1. (a) Fix a gauge invariant function H : A(Q) → R, and let (dH)a ∈
T∗aA(Q) be the derivative at a. Then define Ka ∈ Ω2(Y, gQ) by

(dH)av =
∫

Y
〈Ka ∧ v〉

for all v ∈ Ω1(Y, gQ). Then this satisfies Axiom 1.

(b) Here we give a variant of the previous construction that will be useful for our
existence result in Appendix A. Suppose Σ ⊂ Y is an embedded surface that is closed
and oriented. Fix a gauge-invariant function h : A(Q|Σ) → R. For α ∈ A(Q|Σ),
define a 1-form Xα by

dhα(ν) =
∫

Σ
〈Xα ∧ ν〉
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for all ν ∈ Ω1(Σ, gP). Next, thicken Σ up to a neighborhood U × Σ ⊂ Y, for some
interval U. Fix a function f : U → R that is supported in the interior of U. Then
declare

Ya := d f ∧ Xα,

where we have written a|U×Σ = α + ψ dt, with t : U × Σ → U the projection. This
also satisfies Axiom 1.

We set
Fa,K := Fa − Ka.

We will say a connection a ∈ A(Q) is K-flat if Fa,K = 0. A K-flat connection
a ∈ A(Q) is acyclic if the matrix(

∗da − ∗dKa −da
−d∗a 0

)
(6)

is injective as an operator on Ω1(Y, gQ)⊕Ω0(Y, gQ); the Hodge star appearing
here is the one on Y. The primary relevance of Axiom 1 is that it implies the
matrix (6) is self-adjoint relative to the L2-inner product on Y.

2.1.2 Perturbations on Z

Moving to the 4-manifold Z, we are interested in gauge equivariant maps of
the form

K : A(P) −→ Ω2(Z, gP), A 7−→ KA.

We will assume any such K is translationally-invariant on the cylindrical end,
in the following sense: Fix A ∈ A(P), and write

A|[0,∞)×Y = a + p ds

so a : [0, ∞) → A(Q) is a path of connections and p : [0, ∞) → Ω0(Y, gQ) is a
path of 0-forms. Then we assume there is some K as in (5) so that

KA|[0,∞)×Y = Ka.

Any map K satisfying the above will be called a perturbation, and we will refer
to K as the induced perturbation on Y. We will say that K satisfies Axiom 1 if the
induced perturbation on Y satisfies Axiom 1.

Remark 2.2. A particularly special case is when Z is the cylinder R×Y. Any pertur-
bation on Y determines a canonical translationally-invariant perturbation on R× Y.
We will use KY to denote perturbations on R×Y obtained in this way.

We will also assume our perturbations satisfy certain uniform bounds; these
are given in Axiom 2, below. To state these, set

Ωk := Ωk(Z, gP).

Then we will use d`KA : ⊗`Ω1 → Ω2 to denote the `th derivative (relative to
the background derivative on A(P)) of the function K at A ∈ A(P).
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Axiom 2 (Analytic Axiom). For any integers `, k ≥ 0, and p ∈ [1, ∞], there is a
constant CK(k, `, p) so that

‖d`KA(V1, V2, . . . , V`)‖Wk,p(Z)

≤ CK(k, `, p)
(

1 + ‖FA,K‖k
Wk−1,p(Z)

)
‖V1‖Wk,p(Z)‖V2‖Wk,p(Z) . . . ‖V`‖Wk,p(Z)

for all connections A, and compactly supported 1-forms V1, . . . , V` ∈ Ω1(Z, gP).

For example, when ` = k = 0, this gives a uniform bound of the form

‖KA‖Lp(Z) ≤ CK(0, 0, p)

for all connections A. Estimates of this type are satisfied by perturbations de-
fined in terms of the holonomy; see Appendix A for a further discussion.

As in the 3-dimensional case, we set

FA,K := FA −KA.

The linearization of the map A 7→ FA,K is the operator

dA,K := dA − dKA : Ω1 −→ Ω2.

Just as the covariant derivative dA is defined on forms of all degrees, we want
to extend dA,K to an operator on all forms on Z. This extension is necessary
to perform integration by parts, and so we use this to motivate the definition.
Specifically, we define maps

Ω0 dKA−→ Ω1 dKA−→ Ω2 dKA−→ Ω3 dKA−→ Ω4,

as follows:

• Declare dKA : Ω0 → Ω1 to be the zero map.

• The map dKA : Ω1 → Ω2 is the linearization of A 7→ KA, as above.

• Declare dKA : Ω2 → Ω3 to be the Banach space dual to dKA : Ω1 → Ω2,
using the identification (Ωi)∗ = Ω4−i coming from integration. That is,
this extension satisfies∫

Z
〈dKA(W) ∧V〉 = −

∫
Z
〈W ∧ dKA(V)〉

for W ∈ Ω2, V ∈ Ω1 (the minus sign is to account for the grading).

• Define dKA : Ω3 → Ω4 to be the zero map. Note that this is the Banach
space dual to dKA : Ω0 → Ω1.
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Of course, the only interesting part of this is the extension to 2-forms. Due to
Axiom 1 and the requirement that K agrees with K on the ends, the operator
dKA on Ω2 is expressible, on the ends, in terms of dKa.

The point is that dA,K : ⊕kΩk → ⊕kΩk is its own Banach space adjoint, up
to a sign. Similarly, we can form the L2-Hilbert space adjoint by setting

d∗A,K := −(−1)(4−k)(k−1) ∗ dA,K∗ : Ωk −→ Ωk−1.

This satisfies
(dA,KV, W) =

(
V, d∗A,KW

)
for all compactly supported V ∈ Ωk−1, W ∈ Ωk, where

(ξ, ζ) :=
∫

Z
〈ξ ∧ ∗ζ〉

is the L2-inner product on Z coming from the metric.
It will be convenient if dA,K and FA,K satisfy the Bianchi identity dA,KFA,K =

0, and similar algebraic identities. For this purpose, we impose our next axiom
on K.

Axiom 3 (Algebraic Axiom). The following holds for each A ∈ A(P):

(i) dKA ◦ dKA = 0

(ii) dKA(KA) = 0

(iii) 〈KA ∧KA〉 = 0

(iv) dA(KA) = −dKA(FA).

Example 2.3. To construct an example of a perturbation K satisfying this, repeat
the construction of Example 2.1 (b), but interpret U × Σ as a neighborhood in Z (so
U is a surface, as opposed to an interval). It is not hard to check that this satisfies
Axiom 3. When the neighborhood U × Σ and the function f from Example 2.1 (b) are
translationally-invariant on the end [0, ∞)×Y, then the associated perturbation K is
also translationally-invariant and satisfies Axiom 1.

Remark 2.4. The use of perturbations on U × Σ defined by coupling functions (or
forms) on U with functions (or vector fields) on A(Σ) is an extension of the type of
perturbations considered by Dostoglou–Salamon [8]. There are many alternative ap-
proaches to perturbations in the literature, but they do not all suffice for our purposes.
For example, Kronheimer [17, Section 3] considers perturbations obtained by coupling
2-forms on U × Σ with functions on A(U × Σ), but these generally do not satisfy
Axiom 3, nor do they generally yield the desirable identities listed in Corollary 2.5.

Note that the gauge equivariance of K automatically gives

dKA (dAφ) = [KA, φ]

for all φ ∈ Ω0(Z, gP). Combining this with Axiom 3, it is not hard to show that
dA,K behaves algebraically like the usual covariant derivative in the following
sense.
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Corollary 2.5. Assume Axiom 3. Then the following hold for each A ∈ A(P):

(Curvature Identity) dA,K ◦ dA,Kφ = [FA,K, φ] , ∀φ ∈ Ω0(Z, gP)
(First Bianchi Identity) dA,KFA,K = 0
(Second Bianchi Identity) d∗A,Kd∗A,KFA,K = 0.

Our final axiom is one that will be used to prove the relevant version of
Uhlenbeck compactness. It too is satisfied by perturbations defined using the
holonomy; see Appendix A.

Axiom 4 (Compactness Axiom). Suppose An is a sequence of connections with the
property that there is some 1 ≤ p < ∞ and a finite set of points Ω ⊂ Z so that the An
are bounded in W1,p(K) for each compact K ⊂ Z\Ω. Then KAn is Cauchy in Lp(Z).

2.2 Perturbed Chern–Simons and Yang–Mills theory

Let K be a perturbation, with K the induced perturbation on Y. We assume
these satisfy Axioms 1, 2, 3, and 4.

Define the perturbed Chern–Simons functional by setting

CSK,P : A(Q) −→ R, CSK,P(a) := −1
2

∫
Z
〈FA,K ∧ FA,K〉,

where A is any connection in A(P; a). It follows from the first Bianchi identity
that this is independent of the choice of A ∈ A(P; a). Similarly, it depends on
K only through its asymptotic value K.

The perturbed Chern–Simons functional is invariant under the set of gauge
transformations on Q that can be extended to gauge transformations on P. The
critical points of CSK,P are precisely the K-flat connections, and the upper left-
hand component of the matrix (6) represents the Hessian of CSK,P relative to
the L2-inner product. Consequently, a K-flat connection is acyclic if and only
if it is (i) irreducible and (ii) a non-degenerate critical point of CSK,P, modulo
gauge.

Fix a K-flat connection a. The perturbed Yang–Mills functional, or energy, is
defined by

YMK(A) :=
1
2
‖FA,K‖2

L2(Z) =
1
2

∫
Z
〈FA,K ∧ ∗FA,K〉

for A ∈ A(P; a). This is invariant under the action of the gauge group G(P; e)
from the introduction.

Fix a smooth reference connection Are f ∈ A(P; a), and define all Sobolev
norms relative to Are f and the Levi-Civita connection on Z; for example,

‖W‖p
W2,p(Z) = ‖W‖

p
Lp(Z) + ‖∇Are f AW‖p

Lp(Z) + ‖∇
2
Are f

W‖p
Lp(Z)

where ∇Are f is the full covariant derivative. We will write

Wk,p(Ωi)
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for the Wk,p-completion of the subspace of Ωi(Z, gP) consisting of forms with
compact support; we use similar notation for the Lp-completion. Note that any
two asymptotically cylindrical metrics produce equivalent Sobolev norms.

We will write
Ak,p(P; a) = Are f + Wk,p(Ω1)

for the completion of A(P; a) relative to the Wk,p-Sobolev norm. Then YMK
extends smoothly to a real-valued function on A1,2(P; a), and on A1,2(P; a) ∩
Ak,p(P; a) whenever k ≥ 1 and (k + 1)p > 4.

We denote by
Gk+1,p(P; e)

the Wk+1,p-completion of G(P; e). When k ≥ 1 and (k + 1)p > 4, the group
structure on G(P; e) extends to give Gk+1,p(P; e) and G2,2(P; e) ∩ Gk+1,p(P; e)
each the structure of a Banach Lie group; see [6, Section 4.2]. These act smoothly
onAk,p(P; a) andA1,2(P; a)∩Ak,p(P; a), respectively, and the Yang–Mills func-
tional is invariant under these actions.

Remark 2.6. The set G2,2(P; e) does not inherit a group structure from G(P; e). This
is due to the failure of the Sobolev multiplication theorem at the borderline level.

The L2-gradient of YMK is d∗A,KFA,K. In particular, the critical points of
YMK on A1,2(P; a) are those connections A that satisfy

d∗A,KFA,K = 0.

We call these connections K-YM. For any A ∈ A1,2(P; a), we have an identity

YMK(A) = ‖F+
A,K‖

2
L2(Z) + CSK,P(a), (7)

where
F+

A,K :=
1
2
(1 + ∗)FA,K

is the anti-self dual part. We say a connection is K-ASD if F+
A,K = 0. The K-ASD

connections are automatically K-YM by the first Bianchi identity. Moreover, it
follows from (7) that if there are any K-ASD connections in A1,2(P; a), then
they are the global minimizers of YMK on A1,2(P; a).

The linearization of the map A 7→ F+
A,K at a connection A ∈ A(P; a) is the

operator

d+A,K :=
1
2
(1 + ∗)dA,K : Ω1(Z, gP) −→ Ω+(Z, gP),

where Ω+(Z, gP) is the +1 eigenspace for ∗ on Ω2(Z, gP). The coupled opera-
tor d+A,K ⊕ d∗A,K : Ω1 → Ω+ ⊕Ω0 is elliptic and will play a special role in the
analysis that follows.

Theorem 2.7. Let a be an acyclic K-flat connection, and A ∈ A(P; a). Then the
bounded operator

d+A,K ⊕ d∗A,K : Wk+1,p(Ω1) −→Wk,p(Ω+)⊕Wk,p(Ω0)

is Fredholm for all k ≥ 0 and 1 < p < ∞.
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A proof of Theorem 2.7 can be found in Proposition 3.6 and Section 3.4
of Donaldson’s book [6]. Strictly speaking, Donaldson works with cylindrical
metrics; however, it is not hard to see that his argument extends to handle
asymptotically cylindrical metrics as well. Alternatively, this extension follows
from [19, Theorem 6.1] by Lockhart and McOwen.

When a and A are as in Theorem 2.7, we denote the Fredholm index of the
associated Fredholm operator by

IndK,P(a) := Ind(d+A,K ⊕ d∗A,K). (8)

This index depends only on a, K (the asymptotic values of A, K), and the topo-
logical type of the bundle P.

We will say that a K-ASD connection A is ASD-regular if d+A,K is surjec-
tive. When a is irreducible, this is equivalent to the surjectivity of the operator
d+A,K ⊕ d∗A,K. This regularity condition is a desirable property; indeed, our pri-
mary reason for introducing perturbations is to use the freedom in choice of K
to achieve ASD-regularity for all relevant K-ASD connections. This motivates
the following definition.

Definition. A perturbation K is ASD-regular if each of the following holds.

• All K-flat connections on Q are acyclic.

• All finite energy K-ASD connections on P are ASD-regular.

• All finite energy KY-ASD connections on R×Q are ASD-regular.

In the last bullet, KY is the perturbation on R × Y induced from K as in
Remark 2.2, and the KY-ASD condition should be defined using the cylindrical
metric ds2 + gY on R×Y.

One useful corollary of ASD-regularity is it asserts that, for each K-flat a,
the moduli space

MASD,K(a) :=
{

A ∈ A1,p(P; a)
∣∣∣ F+

A,K = 0
}/
G2,p(P; e)

of K-ASD connections is a smooth manifold with dimension given by IndK,P(a).
Here we need to assume p > 2 in order to have a good gauge group.

Remark 2.8. Elsewhere in the literature, the term we are calling ‘ASD-regular’ is
often simply called ‘regular’. We have introduced the prefix ‘ASD’ to help distinguish
the term from the function-theoretic notion of regularity.

2.3 Elliptic operators

Fix a perturbation K as in Section 2.1, as well as a K-flat connection a. As usual,
we assume that K satisfies Axioms 1, 2, 3, and 4; we make no assumptions on
a (e.g., a may be reducible or degenerate). Consider the second order operator

∆A,K := dA,Kd∗A,K + d∗A,KdA,K.
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on Ωk(Z, gP). When there is no perturbation, we set ∆A := ∆A,0. The following
provides a global elliptic regularity estimate for this operator; it is a variant of
[28, Lemma 3.1].

Lemma 2.9. For each A ∈ A(P; a), there is a constant CA so that

‖W‖2
W2,2(Z) ≤ CA

(
‖W‖2

L2(Z) + ‖∆A,KW‖2
L2(Z)

)
for all W ∈ W2,2(Ωi). The constant CA depends on A only through the value of
‖A− Are f ‖C1(Z).

Proof. It is not hard to see that there is an estimate

‖W‖W2,2(Z) ≤ C(A)
(
‖W‖L2(Z) + ‖∇∗A∇AW‖L2(Z)

)
, (9)

for all W ∈ W2,2(Ωi), where the constant depends on A through the norm
‖A− Are f ‖C1(Z). By (9), it suffices to bound the L2-norm of ∇∗A∇AW in terms
of the norms of W and ∆A,KW. For this, we note the following Weitzenböck
formula

∇∗A∇AW = ∆A,KW + FA,K#W + Rm#W
+dKA(d∗A,KW) + dK∗A(dA,KW) + dA,K(dK∗AW) + d∗A,K(dKAW)
+KA#W + dKA(dK∗AW) + dK∗A(dKAW),

which the reader can check reduces to the familiar unperturbed Weitzenböck
formula upon expanding and canceling the perturbation terms on the right.
Here we use # to denote an algebraic bilinear operator. Obtaining the nec-
essary bounds at this stage is straight-forward; the relevant estimates for the
perturbation terms are supplied by Axiom 2.

Lemma 2.9 has extensions to other Sobolev norms as well. As a corollary,
we have the following, which will be used to solve the linearized flow equation
in Section 3.

Theorem 2.10. Let a be any K-flat connection, and A ∈ A1,2(P; a). Then the opera-
tor ∆A,K is self-adjoint as an unbounded operator on L2(Ωi) for 0 ≤ i ≤ 4.

Proof. Since ∆A,K is symmetric and positive, the self-adjoint property for ∆A,K
follows from standard arguments using the regularity estimates as in Lemma
2.9. (Alternatively, when K is small, that ∆A,K is self-adjoint then follows im-
mediately from the Kato–Rellich Theorem and the fact that ∆A is self-adjoint.)

We will now give more refined estimates that use a curvature assumption to
obtain constants that are independent of the connection A. This will be useful
in our bubbling analysis of Section 4. The following is a variant of [28, Lemma
3.3].
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Lemma 2.11. There are constants C, δ > 0 with the following significance. Suppose
A ∈ A1,2(P; a) and R > 0 satisfy

sup
x∈Z

∫
BR(x)

|FA|2 ≤ δ.

Then

‖W‖2
L4(Z)+ ‖∇AW‖2

L2(Z) ≤ C
(

R−2‖W‖2
L2(Z) + ‖dA,KW‖2

L2(Z) + ‖d
∗
A,KW‖2

L2(Z)

)
for all smooth forms W ∈W1,2(Ωi).

Proof. Kato’s inequality |d|W|| ≤ |∇AW| combines with the Sobolev embed-
ding W1,2(Z) ⊂ L4(Z) for real-valued functions to give an estimate of the form

‖W‖L4(Z) ≤ C
(
‖W‖L2(Z) + ‖∇AW‖L2(Z)

)
with a constant C that is independent of A and W. It therefore suffices to es-
tablish the claimed estimate for ‖∇AW‖L2(Z).

For this, let (·, ·) denote the L2-inner product on Z. The Weitzenböck for-
mula from the proof of Lemma 2.9 gives

‖∇AW‖2
L2(Z) = (∇∗A∇AW, W)

= ‖dA,KW‖2 + ‖d∗A,KW‖2 + (FA,K#W, W) + (Rm#W, W)
+2(d∗A,KW, dK∗AW) + 2(dA,KW, dKAW)

+(KA#W, W) + ‖dKAW‖2 + ‖dK∗AW‖2

≤ 2
(
‖dA,KW‖2 + ‖d∗A,KW‖2 + ‖dKAW‖2 + ‖dK∗AW‖2

)
+(FA#W, W) + (Rm#W, W) + (KA#W, W).

The perturbation and Riemannian curvature terms can be estimated using Ax-
iom 2 and the fact that Z has bounded geometry. As for the curvature term
(FA#W, W), it follows as in [28, Lemma 3.3] that there is a constant C, depend-
ing only on the Riemannian manifold Z, so that

|(FA#W, W)| ≤ δC
(

R−2‖W‖L2(Z) + ‖∇AW‖L2(Z)

)
,

where δ, R are as in the statement of the lemma. The lemma then follows by
taking δ small enough so δC < 1.

3 Short-time existence

Fix a perturbation K, and let K be the induced perturbation on Y. We assume
throughout this section that K satisfies Axioms 1, 2, and 3 from Section 2.1
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(Axiom 4 and ASD-regularity are not assumed here). Suppose a ∈ A(Q) is a K-
flat connection on Q, not necessarily acyclic. Fix a smooth reference connection
Are f ∈ A1,2(P; a), and define all Sobolev norms relative to this connection.

Consider the perturbed Yang–Mills functional YMK : A1,2(P; a)→ R. The
(perturbed) Yang–Mills flow is the negative gradient flow of YMK:

∂τ A = −d∗A,KFA,K, A(0) = A0, (10)

where A0 ∈ A1,2(P; a) is some fixed initial condition, and the unknown A is a
path in A1,2(P; a). Our main short-time existence theorem is as follows.

Theorem 3.1 (Short-time existence). Let K and a ∈ A(Q) be as above. Fix 4 <
p < ∞, as well as an initial condition A0 ∈ A1,2(P; a) ∩ A2,p(P; a). Then there is
some τ0 > 0, and a solution A : [0, τ0) → A1,2(P; a) to the perturbed Yang–Mills
flow (10), with regularity

A ∈ C1
(
(0, τ0) ,A1,q(P; a)

)
∩ C0

(
(0, τ0) ,A2,q(P; a)

)
(11)

for 2 ≤ q ≤ p. The curvature has regularity

FA ∈ C1
(
(0, τ0) , W1,q(Z)

)
∩ C0

(
(0, τ0) , W2,q(Z)

)
(12)

for 2 ≤ q ≤ p. At time τ = 0, the path A(τ) is W2,2(Z)-continuous

lim
τ↘0
‖A(τ)− A0‖W2,2(Z) = 0. (13)

If the K-flat connection a is irreducible, then the solution A is unique. If A0 ∈ C∞(Z)
is smooth, then the solution A ∈ C∞ ([0, τ0)× Z) is smooth in all variables.

Our proof is given below. Theorem 1.1 from the introduction follows by
considering the case K = 0 (this trivially satisfies Axioms 1, 2, and 3).

Remark 3.2. (a) We use Hilbert space techniques to show the W2,2(Z)-continuity at
time 0 in (13). Since the initial condition A0 is in A2,p(P; a), it seems likely that (13)
can be improved to

lim
τ↘0
‖A(τ)− A0‖W2,p(Z) = 0.

However, we do not pursue this further.

(b) The flow (10) is not parabolic due to its invariance under the action of the
gauge group. One consequence of this is that the flow is typically not smoothing.
For example, suppose the initial condition A0 is a Yang–Mills connection. Then the
constant path A(τ) = A0 clearly solves (10), but it only has as much regularity as
A0. By applying a gauge transformation with regularity no higher than G3,p(P; e),
one can always construct Yang–Mills connections that are in A2,p(P; a) but do not
have any higher regularity. This shows that we cannot generally expect A(τ) to have
any higher spatial regularity than A0.
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Note that (11) implies A(τ) ∈ A2,p(P; a) for all τ < τ0. In this sense, the spatial
regularity claimed in (11) is sharp.

(c) In the absence of a perturbation, Struwe’s argument [28] carries over directly to
our setting to prove short-time existence and the weak regularity result in [28, Theorem
2.3(i)]. This follows from two observations: First, the operator ∆A from Section 2.3
is self-adjoint, and this is sufficient to import Struwe’s discussion of the linearized
problem. To import his discussion of the nonlinear problem, note that Struwe estimates
the nonlinear terms through the borderline Sobolev embedding W1,2(Z) ⊂ L4(Z),
which continues to hold in our non-compact setting.

On the other hand, it takes a little more work to extend Struwe’s argument to
handle the case of non-zero perturbations, and to establish the specific regularity claims
of Theorem 3.1. Consequently, in the proof we give below, we appeal to the more general
framework laid out by Feehan [11].

Proof of Theorem 3.1. In light of Remark 3.2 (c), and since short-time existence in
the closed case is well-treated in the literature (see [7, 28, 16, 11]), we will only
sketch the basic proof of Theorem 3.1, emphasizing the aspects that are new
to our situation. We refer primarily to the monograph [11] by Feehan, since
it is quite exhaustive and provides a nice overview of the various approaches.
Once we establish existence, then we work to establish the claimed regularity.

The (now standard) first step in establishing short-time existence for the
Yang–Mills flow is to follow Donaldson’s variant of the ‘de Turck trick’. Here,
one first solves the equation

∂τ B + d∗B,KFB,K + dB,Kd∗B,K(B− Are f ) = 0, B(0) = A0, (14)

for a path B in A1,2(P; a), where Are f is the fixed smooth reference connection.
To solve (14), note that the linearization of its left-hand side produces the oper-
ator ∂τ + ∆B,K. Since ∆B,K is self-adjoint and positive, it follows from general
theory that a solution B to (14) exists on [0, τ0) for some τ0 > 0. Standard
bootstrapping for the heat equation implies that this solution has regularity

B ∈ C0
(
[0, τ0) ,A1,2(P; a) ∩A2,p(P; a)

)
∩ C∞ ((0, τ0)× Z) .

If A0 is in C∞(Z), then the flow B is in C∞ ([0, τ0)× Z). For a reference on these
regularity assertions, see [11, Theorems 16.4, 16.5].

The next step is to transform our solution B from (14) into a solution of the
perturbed Yang–Mills flow (10). To do this, solve the equation

u−1∂τu = −d∗B,K(B− Are f ), u(0) = e (15)

for a path u of gauge transformations on Z. Given the regularity of B, this has
a unique solution u, with regularity

u ∈ C0
(
[0, τ0) ,G1,p(P; e)

)
∩ C1

(
(0, τ0) ,G1,p(P; e)

)
.
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Here we are using the assumption that p > 4 in order to obtain good Sobolev
multiplication results (e.g., a well-defined gauge group). Moreover, if A0 is
C∞(Z), then d∗B,K(B− Are f ) is smooth, and so u is C∞ on [0, τ0)× Z. See [11,
Lemma 20.1]. We set

A(τ) :=
(

u(τ)−1
)∗

B(τ),

and so the regularity on u and B give

A ∈ C0
(
[0, τ0) ,A0,p(P; a)

)
∩ C1

(
(0, τ0) ,A0,p(P; a)

)
.

Suppose for the moment that A is smooth. Then one can check directly
that A satisfies the flow (10). When a is irreducible, all elements of A1,2(P; a)
are irreducible. In particular, A(τ) is irreducible for all τ, so it follows from
the argument of [28, Section 6] that the solution A to (14) is unique. See also
[11, Section 19.2]. More generally, these conclusions hold provided A has high
enough regularity to express d∗A,KFA,K classically (e.g., if this is in Lp). That is,
to finish the proof, it suffices to assume A0 ∈ A1,2 ∩A2,p, and show that A has
the claimed regularity (11), (12), and (13).

Remark 3.3. (a) Note that the inhomogeneous term in (15) is smooth for positive time,
but not necessarily at time zero since B(0) = A0. Any irregularity of B at time τ = 0
will generally lead to irregularity of u(τ) and hence A(τ), even for positive τ. This is
expected, given the observation that the flow (10) is not smoothing; see Remark 3.2 (b).

(b) If A0 has less regularity than W2,p, then the above proof breaks down. For
example, if A0 is only inA1,2(P; a), then u is only in G0,2(P; e), which is neither a Lie
group, nor does it act on the space of connections.

In what follows, we will use notation such as

C`(Wk,p) := C`((0, τ0), Wk,p(Z))

for the space of C` maps from (0, τ0) into any space of Wk,p-sections on Z.
We begin our regularity discussion by showing that A and FA are each

C0(Lp ∩ C0). Towards this end, note that gauge equivariance of the curvature
and covariant derivative give

FA,K = Ad(u)FB,K, d∗A,KFA,K = Ad(u)d∗B,KFB,K.

The connection B is smooth for positive time, and u is continuous, so this shows
that FA,K and d∗A,KFA,K are in C0(Lp ∩ C0). The same regularity holds in the
absence of the perturbation, and so our regularity is sufficient to interpret the
flow equation ∂τ A = −d∗A,KFA,K classically as an equation in C0(Lp ∩ C0). We
know that the initial condition A0 is in Lp(Z) ∩ C0(Z), so it follows from the
identity

A(τ) = A0 +
∫ τ

0
∂τ A

that A is in C0(Lp ∩ C0).
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Now we bootstrap. We claim that if A0 ∈Wk,p(Z), then

A, FA ∈ C0(Wk−1,p) =⇒ A, FA ∈ C0(Wk,p).

We illustrate the argument for k = 1; the more general case is similar.
To show that FA is in C0(W1,p), it suffices to show that

dAre f FA, d∗Are f
FA

are each in C0(W0,p). For this, use the identity

dAre f = dA +
[
Are f − A ∧ ·

]
,

and the Bianchi identity to write

dAre f FA = dAFA +
[

Are f − A ∧ FA

]
=

[
Are f − A ∧ FA

]
d∗Are f

FA = d∗AFA − ∗
[

Are f − A ∧ ∗FA

]
= Ad(u)d∗BFB + ∗

[
A− Are f ∧ ∗FA

]
.

The right-hand side of each of these is in C0(W0,p), so this gives FA ∈ C0(W1,p).
Similar computations/claims hold in the presence of perturbations.

To show that A ∈ C0(W1,p), it suffices to show that

dAre f (A− Are f ), d∗Are f
(A− Are f )

are both in C0(W0,p). For the first of these, write

dAre f (A− Are f ) = FA − FAre f −
1
2

[
A− Are f ∧ A− Are f

]
.

which is clearly in C0(W0,p). For the second of these, we first claim that the
time derivative ∂τd∗Are f

(A− Are f ) is in C0(W0,p). To see this, write

∂τd∗Are f
(A− Are f ) = −d∗Are f

d∗A,KFA,K

= ∗
[

Are f − A ∧ ∗d∗A,KFA,K

]
− ∗dKA(∗d∗A,KFA,K)

where we used the second Bianchi identity in the second line. The right-hand
side is in C0(W0,p). Recall that we have also assumed that the initial condition
A0 is in W1,p(Z). Then the fact that d∗Are f

(A− Are f ) is in C0(W0,p) now follows
from the identity

d∗Are f
(A(τ)− Are f ) = d∗Are f

(A0 − Are f ) +
∫ τ

0
∂τd∗Are f

(A− Are f ),
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and the observations we have just made about the right-hand side. This fin-
ishes the inductive step for the case k = 1; note that we only used the regularity
on A0 at the end.

In summary, we have shown that if A0 ∈ A2,p(P; a), then

A ∈ C0((0, τ0),A2,p(P; a)), FA ∈ C0((0, τ0), W2,p(Z)),

and if A0 is smooth, then A and FA are smooth in the spatial variables. We
now focus on establishing the claimed regularity in the time-variable. We have
∂τ A = −d∗A,KFA,K ∈ C0(W1,p), and so it follows that

A ∈ C1((0, τ0),A1,p(P; a)).

As for the curvature, the flow gives

∂τ FA,K = −dA,Kd∗A,KFA,K.

We have already seen that the right-hand side is in C0(Lp), and similar argu-
ments show that it is in C0(W1,p). Hence, FA,K ∈ C1(W1,p).

To finish the proof, we need to verify that A is continuous at τ = 0 in
the W2,2(Z)-topology. We will show convergence in the W1,2(Z)-topology; the
higher order case is similar. Using the flow, we have

A(τb)− A(τa) =
∫ τb

τa
∂τ A dτ = −

∫ τb

τa
d∗A,KFA,K dτ. (16)

Take the W1,2-norm of both sides to get

‖A(τb)− A(τa)‖W1,2(Z) ≤
∫ τb

τa
‖d∗A,KFA,K‖W1,2(Z) dτ

≤ C
∫ τb

τa

(
‖d∗A,KFA,K‖L2(Z)

+ ‖d∗Are f
d∗A,KFA,K‖L2(Z)

+ ‖dAre f d∗A,KFA,K‖L2(Z)

)
dτ.

(17)

We want to show that the right-hand side goes to zero as τa, τb go to zero. For
the first term, we have∫ τb

τa
‖d∗A,KFA,K‖L2(Z) dτ ≤ |τa − τb| sup[τa ,τb ]

‖d∗A,KFA,K‖L2(Z)

= |τa − τb| sup[τa ,τb ]
‖d∗B,KFB,K‖L2(Z).

where we used the fact that A and B are gauge equivalent. The continuity
properties of B at τ = 0 imply that the supremum here is bounded independent
of τa, τb > 0 (assuming they are far from the maximal time τ0). In particular,
the right-hand side of the above goes to zero as τa, τb go to zero.
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As for the second term in (17), to show

lim
τa ,τb↘0

∫ τb

τa
‖d∗Are f

d∗A,KFA,K‖L2(Z) dτ = 0,

use the second Bianchi identity, and argue as we did for the first term.
It remains to show that the third term in (17) goes to zero:

lim
τa ,τb↘0

∫ τb

τa
‖dAre f d∗A,KFA,K‖L2(Z) dτ = 0.

For this, differentiate and use the flow equation to get

d
dτ

1
2
‖d∗A,KFA,K‖2

L2(Z) = −‖dA,Kd∗A,KFA,K‖2
L2(Z)

+
(
∗
[
d∗A,KFA,K ∧ ∗FA,K

]
, d∗A,KFA,K

)
+
(
∗d2KA(d∗A,KFA,K, ∗FA,K), d∗A,KFA,K

)
(18)

Here d2KA is the second derivative of K at A. Note that the last two terms on
the right are bounded by some constant C that is independent τ, provided τ is
sufficiently small. Integrating (18) over [τa, τb] then gives∫ τb

τa
‖dAre f d∗A,KFA,K‖L2(Z) dτ ≤ 1

2‖d∗A(τa),K
FA(τa),K‖

2
L2(Z)

− 1
2‖d∗A(τb),K

FA(τb),K‖
2
L2(Z) + |τb − τa|C

= 1
2‖d∗B(τa),K

FB(τa),K‖
2
L2(Z)

− 1
2‖d∗B(τb),K

FB(τb),K‖
2
L2(Z) + |τb − τa|C

for some constant C. The continuity of B at τ = 0 shows that this is going to
zero when τa, τb approach 0.

4 Energy concentration

Let K and a ∈ A(Q) be as in the introduction to Section 3. As in the closed case
[28, 26], the maximal existence time for the flow is determined by concentration
of energy. When this maximal existence time is finite, Yang–Mills bubbles form
at isolated points. These claims are made precise in Propositions 4.1 and 4.3,
below. We will repeatedly use fact that the L2(Z)-norms of FA,K and F+

A,K are
non-increasing along the flow. Indeed, the relation (7), the flow (10), and the
first Bianchi identity give

d
dτ ‖F

+
A(τ),K‖

2
L2(Z) = d

dτ
1
2‖FA(τ),K‖2

L2(Z)
= −‖d∗A,KFA,K‖2

L2(Z) = −4‖d∗A,KF+
A,K‖

2
L2(Z).

(19)

Throughout, we denote by BR(z) ⊂ Z the R-ball centered at z ∈ Z.
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Proposition 4.1 (Energy concentration). There is some constant η > 0 so that the
following holds. Let A be a solution of the flow (10), satisfying the conclusions of
Theorem 3.1. Then the maximal existence time for A is characterized by

τ := sup

{
τ0 > 0

∣∣∣∣∣ ∃R > 0, sup
z∈Z, 0≤τ≤τ0

∫
BR(z)

|FA(τ)|2 < η

}
. (20)

If τ < ∞ is finite, then at τ = τ, the curvature concentrates at a finite number of
points

{z1, . . . , zK} ⊂ Z

in the sense that

∀1 ≤ k ≤ K, ∀R > 0, lim sup
τ↗τ

∫
BR(zk)

|FA(τ)|2 ≥ η. (21)

We will refer to the zk as the bubbling points. The proof of this proposition is
given below.

Remark 4.2. (a) Let ηS4 be the infimum of ‖FA‖2
L2(S4)

over all non-flat Yang–Mills
connections A on principal G-bundles over S4 (it is well-known that this infimum is
positive, however see also Theorem 5.7). The proof of Proposition 4.1 will show that
we can take η = ηS4 in the statement of the proposition. Note that this constant ηS4

depends only on the Lie group G and the choice in (1) of Ad-invariant inner product
on g.

(b) The curvature FA(τ) appearing in (20) and (21) can be replaced by the per-
turbed curvature FA(τ),K to yield the same result with the same constants. This is
because Axiom 2 implies the norm ‖KA‖L∞(Z) is bounded independent of A, and so∫

BR(z)
|KA|2 ≤ CR4 for some uniform constant C.

(c) It is conceivable, a priori, that energy concentration can occur along points that
escape off the end of Z. However, part of the claim of Proposition 4.1 is that, given an
initial condition A0, all of the (finite-time) bubbling points are confined to a compact
subset of Z. We thank an anonymous referee for pointing this out.

By rescaling around each bubbling point, one can show that a Yang–Mills
bubble on S4 forms as τ approaches the maximal flow time τ.

Proposition 4.3 (Bubble formation). At each bubbling point, a non-flat Yang–Mills
connection on a bundle over S4 separates, in the following sense:

In the notation of Proposition 4.1, fix 1 ≤ k ≤ K, as well as sequences τn ↗ τ,
and Rn ↘ 0 indexed by n ≥ 0. Let d be the trivial connection on BR0(zk) relative to
some fixed trivialization of the bundle over BR0(zk). Write

A(τ)|BR0 (zk)
= d + M(τ)

for some τ-dependent g-valued 1-form M. Define a connection on B1/Rn(0) ⊂ R4 by

An(x) := d + Rn M(τn; zk + Rnx). (22)
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Then the An converge, modulo gauge and in W1,p
loc (R

4), to a non-flat Yang–Mills
connection on R4 with finite energy. This Yang–Mills connection extends to a non-
flat Yang–Mills connection on some bundle over S4.

In the statement of the above proposition, we are implicitly assuming that
R0 > 0 is small enough so that each ball BR0(zk) ⊂ Z is contractible.

Proof of Propositions 4.1 and 4.3. Suppose A(τ) is a solution of (10) on [0, τ0) with
the regularity of Theorem 3.1. Let δ > 0 be as in the statement of Lemma 2.11.
As argued by Struwe in [28, Lemma 3.6], it follows from Lemma 2.11 that if
there is some R > 0 with

sup
z∈Z, 0≤τ<τ0

∫
BR(z)

|FA(τ)|2 < δ,

then A(τ) can be continuously extended to τ = τ0 (hence extended for a pos-
itive time past τ0, as well). In particular, the quantity τ from the statement of
Proposition 4.1, does indeed characterize the maximal existence time (with δ
temporarily in place of η).

We will now justify the claim of Remark 4.2 (a), by showing that if

∃η > 0, ∀R > 0, sup
z∈Z, 0≤τ<τ

∫
BR(z)

|FA(τ)|2 ≥ η, (23)

then
∀R > 0, sup

z∈Z, 0≤τ<τ

∫
BR(z)

|FA(τ)|2 ≥ ηS4 , (24)

with ηS4 as defined in Remark 4.2 (a). Our argument here holds for any τ ∈
(0, ∞]. Assuming (23), fix sequences τn ↗ τ and Rn ↘ 0, and find points
xn ∈ Z with ∫

BRn (xn)
|FA(τn)|

2 ≥ sup
z∈Z

1
2

∫
BRn (z)

|FA(τn)|
2.

At this stage, it may be the case that the xn are unbounded; however, see the
claim below. Then

lim sup
n

∫
BRn (xn)

|FA(τn)|
2 ≥ 1

2
η > 0 (25)

is positive. Define connections A′n on B1/Rn(0) ⊂ R4 as in the right-hand side
of (22), but with xn in place of zk. These rescaled connections are Yang–Mills
on B1/Rn(0) relative to a metric that C∞-converges to the standard metric, and
relative to a perturbation that C∞-converges to 0. It therefore follows from the
argument given by Schlatter [26] that a subsequence of the A′n converge, in the
sense described in Proposition 4.3, to produce a Yang–Mills connection A′∞ on
some bundle over S4. Then (25) implies that A′∞ is not flat. It follows from the
definition of ηS4 that

lim sup
n

∫
BRn (xn)

|FA(τn)|
2 ≥ ηS4 , (26)
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from which (24) follows.
To finish the proof, we need to identify the bubbling points, and argue that

there are finitely many. We begin with the following.

Claim. If τ < ∞, then the xn are confined to a compact subset of Z.

We will prove the claim shortly. Assuming it for now, we can pass to a
subsequence and assume the xn converge to some z1 ∈ Z. Clearly the con-
nections defined in (22) also produce a non-flat Yang–Mills connection in the
limit, so this proves Proposition 4.3. Now repeating the above argument for all
sequences xn where energy concentrates, we obtain points z1, z2, . . . ∈ Z where
bubbles form; we may assume the zk are distinct. Since each bubble requires
an energy of at least ηS4 , and the total energy of A(τ) is bounded by the energy
of A0,

YMK(A(τ)) ≤ YMK(A0),

there can be only a finite number {z1, . . . , zK} of such bubbling points. This
finishes the proof of Proposition 4.1, provided we can establish the claim.

To prove the claim, we will show that there is some s0 ≥ 0 with

sup
0≤τ<τ

∫
[s0,∞)×Y

|FA(τ),K|2 ≤ ηS4 /2. (27)

The claim will then follow immediately from (27), (26), and Remark 4.2 (b).
We therefore aim to prove (27). Fix a smooth bump function ϕ : R → R that
vanishes for s ≤ 0 and is identically 1 for s ≥ 1. This can be chosen so the
derivative is bounded:

sup
s
|ϕ′(s)|2 ≤ 3/2.

Since the initial condition A0 has finite energy, we can find σ ≥ 0 with∫
[σ,∞)×Y

|FA0,K|2 < ηS4 /4.

Let φσ : Z → R be given by φσ(s, y) = ϕ(s/σ− 1) on [0, ∞)×Y, and extended
by zero to the rest of Z. Then relative to any cylindrical metric, this satisfies
supz |∇φσ|2 ≤ 3/(2σ). If we are working with an asymptotically cylindrical
metric, then by increasing σ, we may assume this satisfies

sup
z
|∇φσ(z)|2 ≤ 2/σ.

Our argument now is similar to [28, p.133]. For A = A(τ), use the flow to write∫
Z

φ2
σ|d∗A,KFA,K|2 +

d
dτ

1
2

∫
Z

φ2
σ|FA,K|2 = 2((∇φσ) ∧ d∗A,KFA,K, φσFA,K)

≤
∫

Z
φ2

σ|d∗A,KFA,K|2 +
∫

Z
|∇φσ|2|FA,K|2

≤
∫

Z
φ2

σ|d∗A,KFA,K|2 +
1
σ
YMK(A(τ)).

28



The Yang–Mills functional is non-increasing along the flow, so this gives

d
dτ

1
2

∫
Z

φ2
σ|FA,K|2 ≤

1
σ
YMK(A0).

Integrate over the interval [0, τ] to obtain∫
[2σ,∞)×Y

|FA(τ),K|2 ≤
∫
[σ,∞)×Y

|FA0,K|2 +
2τ

σ
YMK(A0)

≤ ηS4

4
+

2τ

σ
YMK(A0).

Then (27) follows by taking σ ≥ 8τYMK(A0)/ηS4 .

Even in the presence of bubbling, the connections A(τ) converge in a rather
weak sense on the complement of the bubbling set on Z. When bubbles form in
finite time, we obtain a statement familiar from the closed setting [26, Theorem
1.3] in the sense that we have L2-convergence on the full 4-manifold.

Proposition 4.4 (Convergence with finite-time bubbling). Let A be as in the state-
ment of Proposition 4.1, and assume the maximal existence time τ < ∞ is finite. Then
there is a finite-energy connection

A1 ∈ A0,2
(

P; a
)
∩A1,2

loc

(
P|Z\{z1,...,zK}

)
with the property that, as τ increases to τ, the connections A(τ) converge to A1 in
L2 (Z) ∩W1,2

loc (Z\ {z1, . . . , zK}). Moreover,

YMK(A1) + ηS4

K

∑
k=1

nk ≤ lim inf
τ↗τ

YMK(A(τ)), (28)

for some positive integers nk, where ηS4 is as in Remark 4.2 (a).

Remark 4.5. It follows from Uhlenbeck’s theorem on removal of singularities [30,
Theorem 2.1] that the limiting connection A1 from Proposition 4.4 extends over the
bubbling points zk by possibly modifying the underlying bundle. The finite-energy
and L2(Z)-convergence then imply that A1 is gauge equivalent to a connection in
A1,2(P1; a) for some principal G-bundle P1 → Z. More precisely, the bundle P1 is
cylindrical on the end in the sense that

P1|[s1,∞)×Y
∼= [s1, ∞)×Q

and there is a bundle isomorphism

U1 : P1|Z\{z1,...,zK}
∼=−→ P|Z\{z1,...,zK},

so that U∗1 A1 extends to a W1,2 connection defined on all of Z. The bundle Q appearing
here is the same one associated with the ends of P, and s1 ≥ 0 is large enough so
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that [s1, ∞) × Y does not contain any of the bubbling points zk. It will essentially
follow from the proof of Proposition 4.4 that U1 converges down the cylindrical ends
to the identity map. In particular, U∗A1 is asymptotic to a, and so is an element of
A1,2(P1; a).

Intuitively, the bundle isomorphism U1 reflects the bubbles associated to the zk.
That U1 is asymptotic to the identity captures the fact that there are no bubbling points
that escape down the ends.

Proof of Proposition 4.4. First we will prove L2(Z)-convergence of A(τ) as τ in-
creases to τ < ∞. Integrating (19) over some interval [τa, τb] gives∫ τb

τa
‖d∗A,KFA,K‖2

L2(Z) =
1
2
‖F+

A(τa),K
‖2

L2(Z) −
1
2
‖F+

A(τa),K
‖2

L2(Z). (29)

Next, recall the identity (16). Take the L2(Z)-norm of both sides of (16), and
then using Hölder’s inequality in the time-variable to get

‖A(τb)− A(τa)‖L2(Z) ≤
∫ τb

τa
‖d∗A,KFA,K‖L2(Z) dτ

≤ |τb − τa|1/2
( ∫ τb

τa
‖d∗A,KFA,K‖2

L2(Z)

)1/2
.

Combining this with (29) gives

‖A(τb)− A(τa)‖2
L2(Z) ≤ |τb − τa| sup

[τa ,τb ]

‖F+
A,K‖

2
L2(Z).

By (19), the quantity ‖F+
A,K‖

2
L2(Z) is non-increasing along the flow, so we have

‖A(τb)− A(τa)‖2
L2(Z) ≤ |τb − τa|‖F+

A0,K‖
2
L2(Z).

This implies that A(τ) is L2(Z)-Cauchy as τ ↗ τ. In particular, the A(τ)
converge in L2(Z) to some

A1 ∈ A0,2(P; a).

The W1,2
loc -convergence to A1 on Z\ {z1, . . . , zK} can now be shown using

Schlatter’s argument for the proof of [26, Theorem 1.2 (i)], which is local in
nature and hence not sensitive to the cylindrical ends.

Finally, we establish the energy inequality (28). For this, let τn, Rn be as in
the statement of Proposition 4.3; we may assume the τn are increasing, and the
Rn are small. Consider the complement

Zn := Z\
⋃
k

BRn (zk) ,

of the Rn-balls around the bubbling points. Then

YMK(A(τn)) =
1
2

∫
Zn
|FA(τn),K|

2 +
1
2 ∑

k

∫
BRn (zk)

|FA(τn),K|
2.
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The energy is non-increasing along the flow, so the sequence YMK(A(τn))
converges to the liminf of YMK(A(τ)). Hence

lim sup
n→∞

1
2

∫
Zn
|FA(τn),K|

2 + ηS4 ∑
k

nk ≤ lim inf
τ↗τ

YMK(A(τ)).

On the other hand, for each compact set S ⊂ Z, the W1,2
loc -convergence of the

A(τ) gives
1
2

∫
S
|FA1,K|2 ≤ lim sup

n→∞

1
2

∫
Zn
|FA(τn),K|

2.

Since this bound is plainly independent of the compact set S, we obtain (28).

5 Long-time existence

In this section we prove the long-time existence assertions of Theorem 1.2.

Theorem 5.1 (Long-time existence). Assume K is an ASD-regular perturbation
satisfying Axioms 1, 2, 3, and 4. Then there is an integer IG > 0 so that if a is any
K-flat connection on Q with IndK,P(a) < IG, then there is a positive constant η(a)
so the following holds.

Fix p > 4, as well as A0 ∈ A1,2(P; a) ∩A2,p(P; a), and assume this satisfies

‖F+
A0
‖2

L2(Z) < η(a).

Then there is a unique solution A : [0, ∞)→ A1,2(P; a) to the flow (10), and this has
the regularity asserted in Theorem 3.1. Moreover, there is no energy quantization at
finite or infinite time, in the sense that

lim
δ→0+

sup
τ≥0,z∈Z

∫
Bδ(z)
|FA(τ)|2 = 0.

Our proof is given in Section 5.4, and is motivated by the work of Schlatter
[26]. The index IndK,P is the index of the K-ASD operator, and is defined in
(8). We define the constant IG in Section 5.1; it depends only on G. Section
5.2 defines a notion of convergence that naturally arises when one considers
gauge theory on cylindrical ends; this notion will be relevant for our proofs in
the sections that follow. In Section 5.3, we give a fairly concrete definition of the
constant η(a) from the theorem. In addition to depending on a, the constant
η(a) also depends on the metric g as well as the perturbation K.

For future reference, we also establish the following regularity estimate,
which is proved in Section 5.4.

Corollary 5.2. In the setting of Theorem 5.1, there are C, τ0 > 0 so the following
holds. Suppose 2 ≤ q ≤ 4 and τ ≥ τ0. Then

‖W‖Lq(Z) ≤ C‖d∗A(τ),KW‖L2(Z)
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for all self-dual 2-forms W ∈W1,2(Ω+), and

‖V‖Lq(Z) ≤ C‖d+A(τ),KV‖L2(Z)

for all 1-forms V in the image of d∗A(τ),K : W2,2(Ω+)→W1,2(Ω1).

5.1 Characteristic classes and the constant IG

In this section, we define the constant IG that appears in Theorem 5.1. Its def-
inition relies on a characteristic class, and a certain rational number associated
to the index. We begin by describing the former of these.

Fix a principal G-bundle R over a closed, connected, oriented 4-manifold
X. Then the relevant characteristic class is

κ(R) :=
1
2

∫
X
〈FA ∧ FA〉,

which depends only on the topological type of R. The following examples re-
late this to standard characteristic classes (recall from (1) that the inner product
〈·, ·〉 is induced from an immersion G → U(N)).

Example 5.3. (a) Suppose G = SU(N) for N ≥ 2, and the immersion G → U(N)
from above is the inclusion. Then the Chern-Weil formula gives

κ(R) = 2c2(R) [X] ∈ 2Z.

(b) Suppose G = U(N) for N ≥ 2, and the immersion G → U(N) is just the
identity. Then

κ(R) = 2
(

c2(R)− 1
2

c2
1(R)

)
[X] ∈ Z.

(c) Suppose G = SO(r) for r ≥ 2, and the immersion G → SU(N) ⊂ U(N) is
given by the complexified adjoint action of G on gC. Then the induced inner product
on g is −(2π2)−1 times the Killing form, and

κ(R) = −2(r− 2)p1(R) [X] ∈ 2(r− 2)Z

where p1 is the first Pontryagin class. Note that this vanishes for r = 2, reflecting the
fact that SO(2) is abelian.

(d) Suppose G = PU(r) for r ≥ 2, and the embedding G ↪→ SU(N) ⊂ U(N) is
given by the complexified adjoint action, as in (c). Then

κ(R) = 2q4(R) [X] ∈ 2Z,

where q4(R) ∈ H4(X, Z) is a PU(r)-generalization of the first Pontryagin class; see
[38].

More generally, we have the following.
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Lemma 5.4. Fix G and 〈·, ·〉 as above, and let X be a closed, connected, oriented 4-
manifold X. Then κ(R) is an integer for every principal G-bundle R→ X. If G is not
abelian, then there are principal G-bundles R for which κ(R) is non-zero.

Proof. Given R, consider the classifying map ψR : X → BG ⊂ BU(N), where
we have used the embedding G ↪→ U(N) to identify BG as a sub-complex of
BU(N). Then by Example 5.3 (b), the class

κ(R) = ψ∗R(2c2 − c2
1) [X]

is the pullback of 2c2 − c2
1. This shows that κ(R) is an integer.

Now assume G is not abelian. Then there is a Lie group homomorphism
φ : SU(2) → G with finite kernel | ker φ| < ∞. Fix any SU(2)-bundle R′ → X
with c2(R′) 6= 0, and define

R := R′ ×SU(2) G,

where SU(2) acts on G by the homomorphism φ. Then κ(R) = 2| ker φ|c2(R′),
which is non-zero. See [13, Appendix E] for a similar discussion in the case
where G = SO(3).

Let Q → Y be a principal G-bundle on a 3-manifold, and suppose u is a
gauge transformation on Q. The mapping torus of u is a bundle Qu over the
4-manifold S1 × Y. It is not hard to show that, if a ∈ A(Q) is any connection,
then

CSK,P(u∗a)− CSK,P(a) = κ(Qu) ∈ Z. (30)

Now suppose that a is a K-flat connection. By the argument of [6, Prop. 3.16],
we have the following action-index identity

nG (CSK,P(u∗a)− CSK,P(a)) = IndK,P(u∗a)− IndK,P(a). (31)

Here nG ≥ 0 is a number depending only on the Lie group G, and the choice
of inner product on g. When G is not abelian, then nG is uniquely determined
by (31) since there are a, u for which both sides are non-zero. In particular,
the number nG is positive; it is also rational by (30) and the fact that the index
takes integer values. When G is abelian, both sides of (31) are zero for all a, u;
this reflects the triviality of the group π3(G) = 0. In the abelian case, we are
therefore free to declare nG := 1.

Example 5.5. (a) Suppose G = SU(N) and the embedding G ↪→ U(N) is the iden-
tity. Then nG = 2r. See [6, Prop. 3.16].

(b) Suppose G = PU(r) and the embedding G ↪→ SU(N) ⊂ U(N) is given by
the complexified adjoint action. Then nG = 1.

With these preliminaries, we define the extended real number

IG := inf
R→S4

nG |κ(R)| ,
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where the infimum is over all principal G-bundles R→ S4 for which κ(R) 6= 0.
When G is abelian, we have IG = ∞ since κ(R) = 0 for all R. When G is not
abelian, it follows from Lemma 5.4 that IG ∈ Z is a (finite) positive integer.
The significance of IG is that bubbling cannot occur in any K-ASD moduli
space of dimension smaller than IG; see Section 2.2 for more details on this
moduli space. See also [1, Section 8] for a similar discussion.

5.2 Broken trajectories

Fix a K-flat connection a on Q. Here we define ‘broken trajectories’, which are
objects that often appear as limits of sequences in A(P; a).

Definition. A broken trajectory on Z asymptotic to a ∈ A(Q) consists of the
following:

• a finite number of K-flat connections a0, a1, . . . , aJ ∈ A(Q) with aJ = a;

• for each 0 ≤ j ≤ J, a gauge transformation uj on Q;

• a connection A0 ∈ A1,2(P; u∗0 a0) asymptotic to u∗0 a0;

• a finite number of connections A1, . . . , AJ ∈ A1,2(R×Q) satisfying

lim
s→−∞

Aj|{s}×Y = aj−1, lim
s→+∞

Aj|{s}×Y = u∗j aj.

A broken trajectory is a broken K-YM trajectory (resp. broken K-ASD trajectory)
if A0 is K-YM (resp. K-ASD) and for 1 ≤ j ≤ J, the Aj is KY-YM (resp. KY-ASD).

Here the perturbation KY is as in Remark 2.2. We will typically denote a
broken trajectory by (A0; A1, . . . , AJ), with the asymptotic K-flat connections
aj and gauge transformations uj suppressed.

Remark 5.6. A more refined notion would be to require that the gauge transformations
uj have degree zero (i.e., to require that κ(Quj) = 0), since otherwise the connections
u∗j aj and aj would be very far apart from an energy perspective. However, we will have
no need to specify such a criterion explicitly, as it is effectively implicit in the estimates
we establish (e.g., see Case 1.1 in the proof of Theorem 5.7).

Now we define the relevant notion of convergence. Let H be a function
space (e.g., C∞ or W1,p).

Definition. A sequence (An)n∈N of connections converges in H, modulo gauge,
to a broken trajectory (A0; A1, . . . , AJ) if the following holds.

• There is a sequence (U0,n)n∈N of gauge transformations on Z and, for each
1 ≤ j ≤ J, a sequence (Uj,n)n∈N of gauge transformations on R×Y.

• For each 1 ≤ j ≤ J, there is a sequence (sj,n)n∈N of positive real numbers that
increases to ∞.
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These are required to satisfy the following.

• For each 1 ≤ j ≤ J − 1, lim
n→∞

sj+1,n − sj,n = ∞.

• For each compact subset B ⊂ Z, the sequence U∗0,n An converges inH(B) to A0.

• Fix 1 ≤ j ≤ J, and let
τ∗sj,n

U∗j,n An

denote the connection on [−sj,n, ∞)×Y obtained by translating U∗j,n An|[0,∞)×Y.
Then for each compact set B ⊂ R× Y, the sequence τ∗sj,n

U∗j,n An converges in
H(B) to Aj.

The sequence converges modulo bubbling if the convergence to A0 holds on the
complement of a finite set of points on Z, and, for 1 ≤ j ≤ J, the convergence to each
Aj is on the complement of a finite set of points in R×Y (this set is allowed to depend
on j).

For more details, see [20, Chapter 6] or [12]; see also [22] for a nice treatment
of the closely related case of holomorphic curves.

5.3 A positive energy gap

In this section, we give a fairly concrete description of the constant η(a) ap-
pearing in the statement of Theorem 5.1. Specifically, let nG be as in (31). Then
η(a) can be taken to be the minimum of the numbers 1, 1/nG and the following
three numbers:

A. The infimum
inf
A
‖F+

A ‖
2
L2(S4).

Here the infimum ranges over all connections A on (any principal G-bundle
over) S4 that are Yang–Mills, not ASD, and satisfy YM(A) ≤ CSK,P(a) + 1.

B. The infimum
inf
A
‖F+

A,K‖
2
L2(Z).

Here the infimum ranges over all connections A on P that are K-YM, not
K-ASD, and satisfy YMK(A) ≤ CSK,P(a) + 1.

C. The infimum
inf
A
‖F+

A,KY‖2
L2(R×Y).

Here the infimum ranges over all connections A on R×Q that are KY-YM,
not KY-ASD, and satisfy YMKY (A) ≤ CSK,P(a) + 1.
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For the quantity in C, the perturbation KY is as in Remark 2.2, and the metric
on R×Y is ds2 + gY.

The next theorem justifies this choice of η(a) by stating that each of the in-
fima in A-C is positive. In light of the identity (7), this positivity can be viewed
as saying that the perturbed Yang–Mills functional has a positive energy gap
above the minimum energy level given by the K-ASD connections. (Of course,
this minimum energy level is only a theoretical lower bound, since K-ASD
connections may not exist.)

Theorem 5.7. The quantities in A, B, and C are positive.

Before proving this theorem, we establish some preliminary estimates. It
follows from our regularity assumptions that if A (resp. A′) is a K-ASD con-
nection on Z (resp. KY-ASD connection on R× Y), then there are constants
C0(A), C0(A′) so that

‖W‖Lq(Z) ≤ C0(A)‖dA,KW‖L2(Z),
‖W ′‖Lq(R×Y) ≤ C0(A′)‖dA′ ,KY W ′‖L2(R×Y),

(32)

for all 2 ≤ q ≤ 4 and all smooth, compactly supported self-dual 2-forms W
(resp. W ′) on Z (resp. R× Y). There are similar estimates associated to K-flat
connections. The next lemma extends these to connections with small slice-
wise curvature on the end.

Lemma 5.8. Assume all K-flat connections on Y are non-degenerate. There are con-
stants T0, C0, δ0 > 0 so that the following holds. Let I ⊂ [T0, ∞) be an interval
(possibly unbounded), and suppose A is a connection on I ×Y ⊂ Z. If

sup
s∈I

∫
{s}×Y

|FA,K|2 < δ0,

then
‖W‖Lq(I×Y) ≤ C0‖dA,KW‖L2(I×Y)

for all 2 ≤ q ≤ 4 and all smooth self-dual 2-forms W compactly supported in I ×Y.

Proof. We will show that the lemma holds with T0 = 0 in the case where
g = gcyl is cylindrical; the general asymptotically cylindrical case follows by
choosing T0 ≥ 0 large enough so that g− gcyl is C1-small on [T0, ∞)×Y.

Since all K-flat connections are non-degenerate, it follows that there is a
constant C1 so that

‖w‖L2(Y) + ‖w‖L4(Y) ≤ C1(‖da,Kw‖L2(Y) + ‖d∗a,Kw‖L2(Y))

for all 2-forms w ∈ Ω2(Y, gQ) and all K-flat connections a. This constant C1
can be chosen to be independent of a because this estimate is gauge invariant
and the moduli space of K-flat connections is finite. Using this estimate and
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Uhlenbeck compactness, it is not hard to show that there are C2, δ > 0 so that
if a is a connection with ‖Fa,K‖L2(Y) < δ, then

‖w‖2
L2(Y) + ‖w‖

2
L4(Y) ≤ C2(‖da,Kw‖2

L2(Y) + ‖d
∗
a,Kw‖2

L2(Y)) (33)

for all 2-forms w. Take δ0 from the lemma to be no greater than this δ and no
greater than 1/4C2.

Let A, W be as in the statement of the lemma, and write A = a + pds and
W = w + ds ∧ v in terms of their components on the end [0, ∞)× Y. The self-
duality condition on W implies v = ∗Yw, and the curvature of A can be ex-
pressed as

FA,K = Fa,K + ds ∧ (∂sa− da,K p).
The small curvature hypothesis on A implies that, for each s ∈ I, the estimate
(33) holds with a = a(s) and w = w(s). Integrating this estimate over I gives

‖W‖2 = 2‖w‖2 ≤ 2C2(‖da,Kw‖2 + ‖d∗a,Kw‖2) (34)

where, here and below, all unspecified norms and inner products are L2 on
I ×Y. To estimate the right-hand side, note that we have

dA,KW = da,Kw + ds ∧ (∇sw− da,K ∗Y w),

where ∇s = ∂s + p. Taking the L2-norm of both sides gives

‖dA,KW‖2 = ‖da,Kw‖2 + ‖d∗a,Kw‖2 + ‖∇sw‖2

−2(∇sw, da,K ∗Y w)

= ‖da,Kw‖2 + ‖d∗a,Kw‖2 + ‖∇sw‖2

−(∇sw, da,K ∗Y w) + (w,∇sda,K ∗Y w)

= ‖da,Kw‖2 + ‖d∗a,Kw‖2 + ‖∇sw‖2

−(∇sw, da,K ∗Y w) + (w, da,K ∗Y ∇sw)

+
∫

I×Y
〈w ∧ ∗Y [∂sa− da,K p ∧ ∗Yw]〉

= ‖da,Kw‖2 + ‖d∗a,Kw‖2 + ‖∇sw‖2

+
∫

I×Y
〈w ∧ ∗Y [∂sa− da,K p ∧ ∗Yw]〉.

where, we integrated by parts in∇s, used the identity∇sda,K = da,K∇s + ∂sa−
da,K p, and then integrated by parts in the self-adjoint operator da,K∗. Since
∂sa − da,K p is a component of the curvature, we can use the small curvature
assumption to bound this cross term as follows∣∣∣ ∫

I×Y
〈w ∧ ∗Y [∂sa− da,K p ∧ ∗Yw]〉

∣∣∣ ≤ 2δ0

∫
I
‖w‖2

L4(Y) ds

≤ 2δ0C2(‖da,Kw‖2 + ‖d∗a,Kw‖2)

≤ 1
2 (‖da,Kw‖2 + ‖d∗a,Kw‖2),
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where we used (33) and δ0 ≤ 1/4C0. Having bounded the cross term, we then
have

‖da,Kw‖2
L2(I×Y) + ‖d

∗
a,Kw‖2

L2(I×Y) + ‖∇sw‖2
L2(I×Y) ≤ 2‖dA,KW‖2

L2(I×Y).

Combining this with (34) proves the lemma for q = 2. The result for q = 4
follows from the q = 2 case and Lemma 2.11. The result for general 2 ≤ q ≤ 4
follows from the interpolation estimate ‖ · ‖Lq ≤ ‖ · ‖1−θ

L2 ‖ · ‖θ
L4 , where θ =

4(1/2− 1/q).

Proof of Theorem 5.7. We will prove that the quantity in B is positive; the posi-
tivity of the quantities in A and C can be proven similarly. We argue by contra-
diction. If the infimum in B is zero, then we can find a sequence An of smooth
K-YM connections An with YMK(An) ≤ CSK,P(a) + 1 and F+

An ,K 6= 0, but
with the property that the self-dual curvatures are converging to zero

‖F+
An ,K‖L2(Z) −→ 0. (35)

Each An is K-YM with finite energy. Since all K-flat connections are non-
degenerate, it follows from standard arguments that An is asymptotic down
the end to a K-flat connection an and An ∈ A1,2(P; an); e.g., see [6, Section 4.1].
To simplify the discussion, we assume an = a for all n. The general case reduces
to this one by the gauge invariance of the problem, the uniform energy bound
on the An, and the fact that there are only finitely many gauge equivalence
classes of K-flat connections.

Next, we want to take a limit of the An. For this, we prove the following
variant of Uhlenbeck’s compactness theorem.

Claim 1. After passing to a subsequence, the An converge weakly in W1,4, modulo
gauge and bubbling, to a broken K-ASD trajectory (A0; A1, . . . , AJ) asymptotic to a.

We begin our proof of the claim by focusing on bubbling phenomena on
Z. We note that, due to the perturbation, we need to be a little careful (see Re-
mark 5.9 (b)); our argument for handling this is similar to that of [17, Prop. 11].
Suppose z ∈ Z is a point where energy can concentrate, in the sense that there
is some δ > 0 so infr>0

∫
Br(z)
|FAn |2 ≥ δ for all n. Then conformally rescaling

produces a sequence of connections A′n defined on increasing, exhausting sub-
sets of R4; see [29]. These connections are Yang–Mills relative to a metric that
is converging to the standard euclidean metric, and with a perturbation that is
converging pointwise to zero. It follows from Uhlenbeck’s compactness theo-
rem that the limit of the A′n exists and is a non-flat Yang–Mills connection on
R4 that has finite energy; in particular, it extends to a non-flat Yang–Mills con-
nection A′∞ on S4. Moreover, the condition ‖F+

An ,K‖L2 → 0 is preserved under
conformal changes, and so A′∞ is actually ASD. Each non-flat ASD connection
on S4 has energy at least IG/nG > 0. Since energy is conformally-invariant, the
uniform energy bound on the An implies that this energy concentration can oc-
cur at, at most, a finite number of points in Z; let Ω ⊂ Z be this finite bubbling
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set. (We note that, a priori, there may be additional energy concentration along
points that escape down the cylindrical end; these points are not contained in
Ω.)

Fix a compact set B ⊂ Z\Ω. By definition of Ω, there is no energy con-
centration on B, and so a local version of Lemma 2.11 implies that there is
a uniform L4(B)-bound on the curvatures FAn ,K. We can therefore combine
this with Uhlenbeck’s weak compactness theorem [31, 37], as well as a diag-
onal argument [7, Lemma 4.4.6], to conclude the following: After passing to
a subsequence and applying suitable gauge transformations, the An converge
weakly in W1,4 on compact subsets of Z\Ω. Let A0 be the limiting connection.
By Axiom 4, the perturbations KAn are converging to KA0 in L4, and so A0 is
K-ASD by (35).

Remark 5.9. (a) Though we do not make use of this below, we note that a Coulomb
gauge argument [30, Cor. 4.3] can then be used to bootstrap this slightly to strong
W1,4-convergence on compact subsets of Z\Ω.

(b) As noted by Kronheimer in the discussion following [17, Prop. 11], when con-
sidering holonomy perturbations (as we intend to do here; see Appendix A), in the
presence of bubbling, it is unlikely to expect convergence in any Sobolev norm Wk,p

for k ≥ 2. This is due to the non-local behavior of holonomy perturbations, which tend
to spread out singularities in the curvature. Nevertheless, holonomy perturbations do
satisfy Axiom 4, which, as we have just seen, is sufficient for our purposes.

(c) We want to emphasize that the assumption that F+ is going to zero is used in a
subtle, but crucial way in the argument above. In the absence of such an assumption,
we would want to show that the limit A0 is K-YM. Since the K-YM equation is second
order, this would require some sort of higher order version of Axiom 4, similar to “if
the An are weakly W2,p-bounded on compact subsets in the complement of a finite
bubbling set, then the KAn are Cauchy in W1,p(Z)”. As mentioned in Remark 5.9 (b),
it is unlikely that any such higher order version will hold for the perturbations we have
in mind.

Returning to the proof of Claim 1, we now address the additional terms that
may appear in the broken trajectory. Here our strategy is similar to that of [22];
see also [12] and [20, Chapter 6]. The K-ASD connection A0 has finite-energy,
and so is asymptotic to some K-flat connection a0. Now we address cases.

Case 1.1: For each ε > 0, there is some T so that

sup
s≥T

∫
{s}×Y

|FAn ,K|2 < ε, ∀n. (36)

We will show that this implies there is some gauge transformation u so
that u∗a0 = a; this will therefore prove Claim 1 for Case 1.1. To find this
gauge transformation, let A∗(Q) denote the set of irreducible L4-connections
on Q, and G1,4(Q) the group of W1,4-gauge transformations. The quotient
B∗ := A∗(Q)/G1,4(Q) is a smooth Banach manifold containing the (gauge
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equivalence classes of) K-flat connections B[ ⊂ B∗. Non-degeneracy and Uh-
lenbeck compactness imply that B[ is a finite set in B∗. Fix s ≥ 0, and let gY

s
denote the restriction of the metric g to the slice {s} × Y ∼= Y. It follows that
there is some ε0 > 0 so that the set{[

a′
]
∈ B∗

∣∣∣ ∃ [a[] ∈ B[, ‖a′ − a[‖L4(Y),gY
s
< ε0

}
deformation retracts to B[. The embedding W1,2 ⊂ L4 and gauge-invariance
implies that there is some ε′0 > 0 so that{

[a′] ∈ B∗
∣∣∣ ‖Fa′ ,K‖L2(Y),gY

s
< ε′0

}
⊆
{
[a′] ∈ B∗

∣∣∣ ∃ [a[] ∈ B[, ‖a′ − a[‖L4(Y),gY
s
< ε0

}
(e.g., argue as in [30, Cor. 4.3]). Since the metrics gY

s converge in s to gY, these
constants ε0, ε′0 can be taken to be independent of s ≥ 0 (e.g., these constants
depend continuously on gY

s in the C1(Y)-topology, and the path s 7→ gY
s is

precompact in the space of C1-metrics on Y). Let

P ⊆
{
[a] ∈ B∗

∣∣∣ ‖Fa,K‖L2(Y),gY
s
< ε′0

}
be the component containing [a], where a is the K-flat asymptotic limit of the
An. It follows from these considerations that the intersection P ∩ B[ = {[a]}
contains exactly one K-flat connection class.

Returning to (36), take ε = ε′0. Then it follows that the path [T, ∞) → B∗
defined by s 7→ [an(s)] is entirely contained in P . On the other hand, since
A0 is asymptotic to a0, and the An converge to A0 on compact sets, it follows
that there is a sequence sn → ∞ so that an(sn) converges in L4(Y) to a0. Hence[
a0] ∈ P , and so u∗0 a0 = a for some gauge transformation u0. This finishes the

proof of Claim 1, assuming the hypothesis of Case 1.1.

Case 1.2: The hypothesis of Case 1.1 fails.

In this case, it follows that there is some ε1 > 0 and a sequence (s1,n)n
diverging to ∞ so that ∫

{s1,n}×Y
|FAn ,K|2 ≥ ε1 (37)

for all n. On the other hand, since the An have uniformly bounded energy, for
each ε > 0, the set of points s where the estimate of (36) fails must have finite
measure. Hence, by possibly redefining the s1,n, for each ε > 0, there is some
T so that

sup
T≤s≤s1,n−T

∫
{s}×Y

|FAn ,K|2 < ε, ∀n. (38)

Now consider the translated connections τ∗s1,n
An. These are Yang–Mills on in-

creasing and exhausting subsets of R× Y, relative to metrics that are converg-
ing to ds2 + gY and perturbations that are converging to KY. We can therefore
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repeat the argument from above to conclude that a subsequence converges
weakly in W1,4 on compact subsets, modulo gauge and bubbling, to a limit-
ing finite-energy KY-ASD connection A1 on R× Y. Arguing as in Case 1.1, it
follows from (38) that A1 is asymptotic to a0 at −∞, modulo gauge. Turning
to the end at +∞, if the translated connections τ∗s1,n

An satisfy the condition of
Case 1.1, then they are asymptotic at +∞ to u∗1 a for some gauge transforma-
tion u1; this would finish the proof of Claim 1 in this case. Otherwise, if the
condition of Case 1.1 is not satisfied, repeat the analysis of Case 1.2.

Continuing inductively, we can then find times s1,n, s2,n, . . . and asymptotic
K-ASD connections A1, A2, . . . as appearing in Claim 1. We need to show that
this process terminates in a finite number of steps J ≥ 0. Since the An have
uniformly bounded energy, it suffices to show there is some h̄ > 0 so that, each
time the condition of Case 1.1 fails, an energy of at least h̄ is required (hence J
is at most this uniform energy bound divided by h̄). To see this, let h̄ > 0 be
the minimum of IG/nG and

inf
a[,a′[
|CSK,P(a[)− CSK,P(a′[)| (39)

where the infimum ranges over all K-flat connections a[ and a′[ on Q, with
CSK,P(a[) 6= CSK,P(a′[); that this infimum is positive follows because the mod-
uli space of K-flat connections is finite. Recall that the failure of the condition of
Case 1.1 implies an estimate of the form (37). This implies that either bubbling
occurred or Aj is not K-flat and so has energy CSK,P(aj) − CSK,P(aj−1) > 0.
The former case requires energy of at least IG/nG in the sequence An, and the
latter requires energy at least that of the infimum (39). This completes the proof
of Claim 1.

We will now use the convergence of Claim 1 to show that, after possibly
passing to a subsequence, we have

F+
An ,K = 0 (40)

for all n sufficiently large. Once we have shown this, we will be done with the
proof of the theorem, since (40) clearly contradicts the assumption that the An
are not K-ASD.

We will consider the following three cases that increase gradually in com-
plexity.

Case 2.1: There is no energy concentration.

Case 2.2: Energy concentration occurs, but is confined to a compact set in Z.

Case 2.3: Energy concentration occurs, but it is not confined to a compact set in Z.

Proof in Case 2.1: In this case, we are assuming the An converge weakly in
W1,4 to (A0; A1, . . . , AJ), with no energy concentration at any step. We will
show that there is a constant C so that

‖W‖Lq(Z) ≤ C‖dAn ,KW‖L2(Z) (41)

41



for all 2 ≤ q ≤ 4, all sufficiently large n, and all self-dual 2-forms W ∈
W1,2(Ω+). Then (40) will follow by applying this to W = F+

An ,K and using
the K-YM condition dAn ,KF+

An ,K = 0. (Strictly speaking, we only need (41) for
one value of q; we prove this more general estimate for later use.)

To simplify the notation, we will carry out the proof under the assumption
that g = gcyl is cylindrical and only one trajectory breaks off in the limit (so
J = 1); the more general case is similar, albeit more notationally cumbersome.
The discussion of Cases 1.1 and 1.2, and the assumption J = 1, imply that there
is some T > 0 and a sequence (sn)n diverging to ∞, so that

sup
s∈[T,sn−T]∪[sn ,∞)

∫
{s}×Y

|FAn ,K|2 < δ0 (42)

for all n; here δ0 is as in Lemma 5.8. By increasing T, if necessary, we may
assume T ≥ T0, where T0 is the obvious constant from Lemma 5.8.

We will use the intervals in (42) to decompose Z into regions, relative to
which we can carry out a patching argument similar to the one given by Floer
in [12, Lemma 2d.2]. For this, we will need a suitably chosen bump function,
which we define now. Let β : R → [0, 1] be a smooth bump function that
is identically 0 on (−∞, 0] and identically 1 on [1, ∞). For L ≥ 1, set βL(x) :=
β(x/L). Then the support of dβL is contained in [0, L], and |dβL| ≤ ‖β‖C1 /L; in
particular, ‖dβL‖L4(R) ≤ ‖β‖C1 /L3/4. Let C0 be the maximum of the constant
C0 from Lemma 5.8, and the constants C0(A), C0(A′) from (32) applied to the
connections A = A0 and A′ = A1. Then fix L large enough so that

‖dβL‖L4(R) ≤
1

64C0
.

Consider the cover of Z given by

U0(n) := Z0 ∪ [0, T + L]×Y, U1(n) := [T, sn − T]×Y

U2(n) := [sn − T − L, sn + L]×Y, U3(n) := [sn, ∞)×Y.

We will show that

‖Wi‖Lq(Ui(n)) ≤ 4C0‖dAn ,KWi‖L2(Ui(n)), 0 ≤ i ≤ 3 (43)

for all 2 ≤ q ≤ 4, all sufficiently large n, and all smooth self-dual 2-forms Wi
compactly supported in Ui(n). Before proving this, we show how it is used to
prove the global version (41) and therefore finish the proof in Case 2.1.

Assume that (43) holds, and fix n. Note that any common overlap of the
Ui(n) has length either 0 or L. Using various translations and reflections of βL
along the end of Z, it is easy to create a partition of unity

β0(n), β1(n), β2(n), β3(n)
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on Z with supp(βi(n)) ⊂ Ui(n) and so that dβi(n) is supported in the in-
tersection of interval Ui(n) with the adjacent interval(s) (e.g., supp(β1(n)) ⊆
U1(n) ∩ (U0(n) ∪U2(n))). It follows that

‖dβi(n)‖L4(Z) = 2‖dβL‖L4(R) ≤
1

32C0
, 0 ≤ i ≤ 3.

for all n. Let W be a smooth, compactly supported self-dual 2-form on Z. Then
(43) gives

‖W‖L2(Z) + ‖W‖L4(Z) ≤
3

∑
i=0
‖βiW‖L2(Ui)

+ ‖βiW‖L4(Ui)

≤ 8C0

3

∑
i=0
‖dAn ,K(βiW)‖L2(Ui)

≤ 8C0

3

∑
i=0

1
32C0

‖W‖L4(Ui)
+ ‖dAn ,KW‖L2(Ui)

= 1
2‖W‖L4(Z) + 16C0‖dAn ,KW‖L2(Z).

Hence
‖W‖L2(Z) + ‖W‖L4(Z) ≤ 32C0‖dAn ,KW‖L2(Z).

Now (41) follows by interpolation and the fact that the smooth, compactly sup-
ported, self-dual 2-forms are dense in W1,2(Ω+).

To finish the proof in Case 2.1, it therefore suffices to verify (43). The es-
timate for i = 1 and i = 3 follows immediately from Lemma 5.8, which is
valid by the small curvature estimate (42). As for U2(n), since there is no en-
ergy concentration, it follows from Uhlenbeck’s compactness theorem that the
translated connections τ∗sn An converge to A1 weakly in W1,4([−T − L, L]× Y).
By the compactness of the embedding W1,4 ↪→ L4 on compact sets, we may
assume n is large enough so that

‖τ∗sn An − A1‖L4([−T−L,L]×Y) ≤ 1/8C0,

for all n sufficiently large. It follows from the second estimate in (32) that if W
is a self-dual 2-form with support in U2(n), then

‖W‖L2(U2(n)) + ‖W‖L4(U2(n))

= ‖τ∗snW‖L2([−T−L,L]×Y) + ‖τ∗snW‖L4([−T−L,L]×Y)

≤ 2C0‖dA1,Kτ∗sn W‖L2([T−L,L]×Y)

≤ 2C0‖dAn ,KW‖L2(U2(n))
+ 4C0‖τ∗sn An − A1‖L4([−T−L,L]×Y)‖W‖L4(U2(n))

≤ 2C0‖dAn ,KW‖L2(U2(n)) +
1
2‖W‖L4(U2(n)).
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This implies (43) for i = 2. The proof for i = 0 is similar and left to the reader
(it is slightly easier since there is no need for translations). This finishes the
proof in Case 2.1.

Proof in Case 2.2: To simplify the discussion, we assume that energy concen-
trates at exactly one point z0 ∈ Z. We also assume that there is no trajectory
breaking occurs in the limit (so J = 0). The more general case is left to the
reader and is just a matter of combining the techniques of Case 2.1 with those
given below.

The assumption that energy does not concentrate at any z ∈ Z\ {z0}means
that, for each R > 0, the limit

lim
δ→0+

sup
n∈N,z∈Z\BR(z0)

∫
Bδ(z)
|FAn |

2 = 0 (44)

is zero. On the other hand, the assumption of energy concentration at z0 means
that there is some η > 0 so that

lim
δ→0+

sup
n∈N

∫
Bδ(z0)

|FAn |
2 ≥ η. (45)

To prove (40), we invoke the following trick that reduces the analysis to the
cylindrical end setting without bubbling. Consider the punctured 4-manifold
Z′ := Z − {z0} with metric g. The metric is conformally equivalent to a met-
ric g′ on Z′ that is asymptotically cylindrical. Our strategy is to reinterpret
everything in terms of g′.

By conformal invariance of L2-norms on 2-forms, the estimate (45) con-
tinues to hold with all metric quantities interpreted as being relative to g′.
That is, when viewed as being defined on the asymptotically cylindrical man-
ifold (Z′, g′), the sequence An does not exhibit energy concentration. Then
the same Uhlenbeck compactness from before implies that a subsequence con-
verges weakly in W1,4 to a broken trajectory (A0; B1, . . . , BL), where A0 is as
above (viewed as a connection on Z′) and the B` are finite-energy connections
on R× S3. (Here we are using the assumption that the original sequence, rel-
ative to g, did not have any trajectory breaking; otherwise, these additional
trajectories would need to be incorporated in this g′-limit as well.) It follows
from Axiom 2 that, relative to the metric g′, the perturbations KAn converge to
zero in L∞ on the end [0, ∞)× S3 associated to z0. This implies that the B` are
ASD (no perturbation). The 2-point conformal compactification of R× S3 into
S4 identifies the Bj with the ASD bubble(s) forming at z0.

We claim that this is a setting to which the argument of Case 2.1 applies.
Indeed, all flat connections on S3 are non-degenerate (up to gauge, the only
one is the trivial connection and non-degeneracy follows from the topological
condition H1(S3) = 0). Hence the result of Lemma 5.8 applies with Y = S3 and
K = 0. Similarly, it is well-known that all ASD connections on S4 are regular,
and so all ASD connections on R× S3 are regular since this is a conformally-
invariant notion and all asymptotic limits are non-degenerate. This provides
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regularity estimates for the Bj that can be used in place of (32). Now the argu-
ment of Case 2.1 carries over verbatim to give a constant C so that

‖W‖L2(Z′),g′ ≤ C‖dAn ,KW‖L2(Z′),g′

for all sufficiently large n and all g′-self-dual 2-forms W of Sobolev class W1,2(Z′).
Since the Hodge star on 2-forms is conformally-invariant, the g-self dual part
of any 2-forms equals the g′-self dual part. That is, we can apply the above
estimate to W = F+

An ,K to get that F+
An ,K vanishes on Z′ for all sufficiently large

n. This clearly implies (40).

Proof in Case 2.3: In this case, bubbles can form on any of the trajectories
Aj. The result in this setting follows by incorporating translations and then
arguing as in Case 2.2.

5.4 Proofs of Theorem 5.1 and Corollary 5.2

Proof of Theorem 5.1. By Theorem 3.1, there is some maximal time τ ∈ (0, ∞] for
which the flow A(τ) starting at A0 ∈ A1,2(P; a) exists for all τ ∈ [0, τ). First
assume τ1 := τ is finite. Then it follows from Proposition 4.4 and Remark 4.5,
that there is some bundle P1 → Z and a connection

A1 ∈ A1,2(P1, a)

so that the A(τ) converge to a pullback of A1, and

{energy of bubbles}+ YMK(A1) ≤ YMK(A0).

In fact, we can say a little more: We have assumed that ‖F+
A0,K‖

2
L2(Z) is no

greater than the constant η(a). By (19), this L2-norm is non-increasing along
the flow, and is conformally invariant. In particular, it follows from A in the
definition of η(a) in Section 5.3 that each Yang–Mills bubble is in fact ASD. En-
ergy quantization for ASD connections on S4 implies that each has energy at
least IG/nG, where nG is as in (31) and IG is the one appearing in the statement
of Theorem 5.1. In particular, the assumption that τ < ∞ implies that at least
one bubble forms, and so

IG/nG + YMK(A1) ≤ YMK(A0). (46)

Now we want to start the flow over again, but with initial condition A1 in
place of A0. However, from what we have at this point, it is not clear whether
A1 has enough regularity to apply the Short-Time Existence Theorem 3.1. To
obtain a suitably regular connection, consider Donaldson’s flow (14) with ini-
tial condition A1. Let A′1 be the value of this flow at any fixed positive time.
This flow is smoothing, so A′1 smooth. The second Bianchi identity shows that
this flow is energy non-increasing, and so YMK(A′1) ≤ YMK(A1); in particu-
lar, (46) holds with A′1 in place of A1. By relabeling A′1 as A1, we may therefore
assume that A1 is a smooth connection in A1,2(P1, a) satisfying (46).
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Now repeat the above procedure with A1 in place of A0. Continuing in-
ductively, there are a number of times τ1, . . . , τL at which bubbles can form.
Associated to each τ` is a bundle P` and a smooth connection A` ∈ A1,2(P`, a)
satisfying

`IG/nG + YMK(A`) ≤ YMK(A0). (47)

This shows that there can be only finitely many such times L ≥ 1 at which
bubbles form. Then the flow starting at AL exists for all time. We will denote
this flow by A(τ), with the understanding that this notation is valid for τ ≥ τL.

Now we wish to take the infinite-time limit. Towards this end, we make the
following claim.

Claim 1. There is a gauge transformation u on Q, and a broken K-ASD trajectory
(A0; A1, . . . , AJ) that is asymptotic to u∗a, and satisfies

YMK(A0) +
J

∑
j=1
YMKY (Aj) ≤ YMK(AL).

Note that the analysis from Proposition 4.4 is no longer valid in the infinite-
time regime, so there is indeed something to be shown here. Our argument
is similar to that of Claim 1 from the proof of Theorem 5.7, and so we will be
relatively brief, placing emphasis on the new features.

Fix a sequence τn → ∞. The curvature of the A(τn) can only concentrate
on a finite bubbling set B ⊂ Z. On the complement of B, we can appeal to
Uhlenbeck’s weak compactness theorem [37, Theorem B]. This implies that,
after possibly passing to a subsequence, there are gauge transformations Un so
that the U∗n A(τn) converge weakly in W1,4

loc (Z\B) to a connection

A0 ∈ A1,4
loc

(
P|Z\B

)
.

By standard infinite-time analysis for flows, it follows that A0 is K-YM on the
complement of the bubbling set B. It also satisfies the energy bound

YMK(A0) ≤ YMK(A0) = CSK,P(a) + ‖F+
A0
‖2

L2(Z) < CSK,P(a) + η(a).

This implies two things. First, it implies A0 has finite energy, and so extends
over B by removal of singularities to a finite-energy K-YM connection defined
on all of Z. Second, it implies that A0 is actually K-ASD. Indeed, recall we have
defined η(a) so that η(a) ≤ 1, which gives YMK(A0) < CSK,P(a) + 1. We also
have

‖F+
A0,K‖

2
L2(Z) ≤ lim inf

τ→∞
‖F+

A(τ),K‖
2
L2(Z) ≤ ‖F

+
A0,K‖

2
L2(Z) < η(a).

That A0 is K-ASD now follows from B in the definition of η(a) in Section 5.3.
Now argue as in Cases 1.1 and 1.2 in the proof of Theorem 5.7 to produce a

broken K-ASD trajectory (A0; A1, . . . , AJ), with AJ asymptotic to u∗a for some
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gauge transformation u. That each Aj is actually KY-ASD (as opposed to KY-
YM) follows from the same argument we used to show A0 is K-ASD; this time
one should use C from the definition of η(a) in place of B. The energy estimate
in the statement of Claim 1 follows as in the proof of Proposition 4.4.

With Claim 1 in hand, we combine it with (47) and L ≥ 1 to get

IG/nG + YMK(A0) +
J

∑
j=1
YMKY (Aj) ≤ YMK(A0)

< CSK,P(a) + η(a)

≤ CSK,P(a) + 1/nG;

in the last line, we used one of the defining conditions on η(a) from Section 5.3.
Hence

YMK(A0) +
J

∑
j=1
YMKY (Aj) < CSK,P(a) + 1/nG − IG/nG. (48)

We will now give a lower bound on the energies appearing on the left. Since the
connections in (A0; A1, . . . , AJ) are K-ASD/KY-ASD, these energies depend
only on the asymptotic limits. To compute them, let a0 be the asymptotic limit
of A0 at +∞. By applying an overall gauge transformation to A1, we can as-
sume that its asymptotic limit at −∞ is equal to a0. Repeating inductively, we
may assume that

aj := lim
s→+∞

Aj|{s}×Y = lim
s→−∞

Aj+1|{s}×Y

It follows that aJ = v∗a for some gauge transformation v (v may be different
from u appearing in Claim 1; this difference does not play a crucial role in the
argument). Then since A0 is K-ASD, we have

YMK(A0) = CSK,P(a0).

The version of this for Aj with j > 0 is

YMKY (Aj) = CSK,P(aj)− CSK,P(aj−1);

indeed, it is a routine exercise to check that if A is any connection on R ×
Q that decays sufficiently fast to b± at ±∞, then CSK,P(b+) − CSK,P(b−) =
1
2

∫
R×Y〈FA ∧ FA〉. Adding the energies then gives

YMK(A0) + ∑J
j=1 YMKY (Aj) = CSK,P(a0)

+∑J
j=1 CSK,P(aj)− CSK,P(aj−1)

= CSK,P(v∗a)

= CSK,P(a) + IndK,P(v∗a)/nG
− IndK,P(a)/nG,
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where we used (31) in the last line. We have assumed IndK,P(a) < IG. Since
IndK,P(a) and IG are integers, their difference is at least 1, and so

YMK(A0) + ∑J
j=1 YMKY (Aj) ≥ CSK,P(a) + IndK,P(v∗a)/nG

+ 1/nG − IG/nG.

Comparing this with (48) we find

IndK,P(v∗a) < 0.

Our desired contradiction will now follow from the next claim.

Claim 2. The integer IndK,P(v∗a) is non-negative.

To see this, recall that the quantity IndK,P(v∗a) is the expected dimension of
the moduli space MASD,K(v∗a) of K-ASD connections that are asymptotic to
v∗a. We have assumed that K is ASD-regular, which in particular means that
all non-empty moduli space are smooth and of the expected dimension (which
is necessarily non-negative since there are no smooth manifolds with negative
dimension). It follows from Floer’s gluing theorem [12] applied to the broken
trajectory

(A0; A1, . . . , AJ)

that there is some K-ASD connection in A1,p(P; v∗a). Hence MASD,K(v∗a) is
non-empty, and must therefore have non-negative dimension. This proves the
claim.

This concludes our argument for long-time existence. Note that this same
type of argument also excludes energy quantization at infinite time.

Proof of Corollary 5.2. If the first estimate in the statement of the corollary does
not hold, then there are τn → ∞ and compactly supported self-dual 2-forms
Wn so that

‖Wn‖Lq(Z) > n‖dA(τn),KWn‖L2(Z)

for all n. It follows from Theorem 5.1 that there is no energy concentration in
the sequence An := A(τn). Moreover, the argument of Claim 1 in the proof
of Theorem 5.1 shows that, after possibly passing to a subsequence, the An
converge weakly in W1,4 to a broken K-ASD trajectory. This puts us effectively
in the situation of Case 2.1 in the proof of Theorem 5.7. In particular, we can
repeat the proof of (41) to get a constant C so that

‖W‖Lq(Z) ≤ C‖dAn ,KW‖L2(Z)

for all 2 ≤ q ≤ 4, all n, and all self-dual 2-forms W in W1,2(Z). This, of course,
is a contradiction.

We turn now to the second estimate of the corollary. By Lemma 2.11 and
interpolation, it suffices to prove the following:
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If A is any connection for which

‖W‖L2(Z) ≤ C0‖d∗A,KW‖L2(Z)

for all smooth self-dual 2-forms W with compact support, then

‖V‖L2(Z) ≤ C0‖d+A,KV‖L2(Z),

where V is any smooth compactly supported 1-form in the image of d∗A,K : Ω+ → Ω1.

To see this, let V = d∗A,KW for some smooth compactly supported W ∈ Ω+.
Then

‖V‖2
L2(Z) ≤ (d+A,KV, W)

≤ ‖d+A,KV‖L2(Z)‖W‖L2(Z)
≤ C0‖d+A,KV‖L2(Z)‖d∗A,KW‖L2(Z)

The result now follows by dividing both sides by ‖V‖L2(Z) = ‖d∗A,KW‖L2(Z).

6 Infinite-time convergence

In this section we finish the proof of Theorem 1.2 by establishing convergence
of the flow at infinite time. More generally, we prove the following.

Theorem 6.1 (Infinite-time convergence). In the setting of Theorem 5.1, for all
2 ≤ q ≤ p, the A(τ) converge exponentially in W2,q(Z), as τ approaches ∞, to
a unique K-ASD connection A∞ ∈ A2,2(P; a) ∩ A2,p(P; a). If A0 is smooth, then
A(τ) converges exponentially in C∞(Z) to A∞ in the sense that, for every k ≥ 0 there
are constants C, κ > 0 so that

‖A(τ)− A∞‖Wk,2(Z) ≤ Ce−κτ .

The proof of Theorem 6.1 is carried out in Section 6.2. Our basic analytic
arguments follow those of [26, 25, 32]. See also Feehan’s book [11] for a thor-
ough treatment of the asymptotics of the flow in the absence of ASD-regularity
hypotheses. Section 6.1 is preliminary in nature, establishing various estimates
on the self-dual curvature and showing that this self-dual curvature converges
to zero exponentially in all derivatives.

Remark 6.2. (a) The argument of our Long-Time Existence Theorem 5.1 shows that
the flow converges, modulo gauge, at infinite time to a broken K-ASD trajectory.
Theorem 6.1 refines this by showing the flow A(τ) converges at infinite time on all of
Z to an actual K-ASD connection A∞. In particular, A∞ is an element of the same
space as the initial connection A0.

(b) Similar to the situation of Remark 3.2 (b), given the regularity A0 ∈ A2,p(P; a)
on the initial condition, the claimed regularity A∞ ∈ A2,p(P; a) is the best we can
achieve, in general.
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6.1 Curvature estimates

Throughout this section, we assume that A satisfies the hypotheses of Theorem
6.1. We assume further that A(τ) is smooth for all τ sufficiently large. All
unspecified Sobolev- and Lp-norms are on all of Z.

In this section, we prove certain exponential decay results for the curvature
F+

A,K and certain derivatives Dk
AFA,K. Here

Dk
A : Ω+(Z, gP)⊕Ω1(Z, gP) −→ Ω+(Z, gP)⊕Ω1(Z, gP)

is an order-k differential operator that we define now. When k = 0, we define
D0

A to be the identity map. Assume k = 2` > 0. Then on Ω+, we define

D2`
A |Ω+ := (d+A,Kd∗A,K)(d

+
A,Kd∗A,K) . . . (d+A,Kd∗A,K) : Ω+ −→ Ω+

where the term d+A,Kd∗A,K appears ` times. Similarly, on Ω1 we define this as

D2`
A |Ω1 := (d∗A,Kd+A,K)(d

∗
A,Kd+A,K) . . . (d∗A,Kd+A,K) : Ω1 −→ Ω1.

For k = 2`+ 1 > 0 odd, we set

D2`+1
A |Ω+ := d∗A,KD2`

A |Ω+ : Ω+(Z, gP) −→ Ω1(Z, gP)

D2`+1
A |Ω1 := d+A,KD

2`
A |Ω1 : Ω1(Z, gP) −→ Ω+(Z, gP).

When k < 0, we define Dk
A to be the zero map.

The specific relevance of the operator Dk
A for us is that it arises in the flow.

For example, we can write

∂τ A = −2D1
AF+

A,K, ∂τ F+
A,K = −2D2

AF+
A,K. (49)

Note that each Dk
A is symmetric relative to the L2-inner product, and

Dk+`
A = Dk

A ◦ D`
A, for k, ` ≥ 0. (50)

Now we can state the main results of this section.

Theorem 6.3. There are positive constants C, κ so the following holds for all τ ≥ 0
and k = 0, 1, 2:

‖Dk
A(τ)F

+
A(τ),K‖L2(Z) +

∫ τ+1

τ
‖D3

AF+
A,K‖L2(Z) dτ ≤ Ce−κτ .

Theorem 6.4. For every c0 > 0 and integer k ≥ 3, there are C, κ > 0 such that if

‖A(τ)− Are f ‖Wk−1,2(Z) ≤ c0, ∀τ ≥ 0,

then the following holds for all τ ≥ 0:

‖Dk
A(τ)F

+
A(τ),K‖L2(Z) +

∫ τ+1

τ
‖Dk+1

A F+
A,K‖L2(Z) dτ ≤ Ce−κτ .
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Together, these imply bounds for Dk
AF+

A,K for all k ≥ 0. As suggested by
these theorems, the case k = 2 is a certain borderline case, after which different
techniques become necessary. In our proof of Theorem 6.3, we will see that,
when k ≤ 2, there are very few lower order terms that need to be estimated,
and these do not require any further hypotheses on the connections A. This re-
flects the fact that the Yang–Mills functional is quadratic. However, when k ≥ 3
there are higher order terms that we have been unable to estimate without the
hypotheses on the connections A(τ) appearing in Theorem 6.4. Nevertheless,
we will see in the next section that, almost by happy accident, the conclusions
of Theorem 6.3 are sufficient to imply that the hypotheses of Theorem 6.4 hold
for k = 3. This will then allow us to prove infinite-time convergence induc-
tively.

Before giving the proofs of Theorems 6.3 and 6.4, we establish the following
preliminary estimates.

Lemma 6.5. For each k ≥ 0, there is some Ck so the following holds for all τ ≥ 0 and
all 2 ≤ q ≤ 4:

‖Dk
A(τ)F

+
A(τ),K‖Lq(Z) ≤ Ck‖Dk+1

A(τ)
F+

A(τ),K‖L2(Z). (51)

Proof. We will work under the assumption that the initial condition A0 is not
K-YM; the case where A0 is K-YM is relatively easy and left to the reader.

We first claim that A(τ) is not K-YM for any τ ≥ 0. Indeed, suppose A(τ0)
were K-YM for some τ0 > 0. Then the uniqueness of the flow would imply
A(τ) = A(τ0) for all τ ≥ τ0. It then follows from Corollary 5.2 that there is a
constant C so that

‖W‖Lq(Z) ≤ C‖dA(τ),KW‖L2(Z)

for τ ∈ [τ0, ∞) and all self-dual 2-forms W. Since the A(τ) converge in L4(Z)
to A(τ0) as τ ↗ τ0, there is some δ > 0 so that the same estimate holds for
all τ in the slightly larger interval [τ0 − δ, ∞). For such τ, apply this estimate
with W = F+

A(τ),K to get that A(τ) is K-ASD for all τ ≥ τ0 − δ; hence A(τ) is
constant for all τ ≥ τ0 − δ. Arguing in this way, it follows that A(τ) is K-ASD
(and constant in τ) for all τ ≥ 0. This contradicts the assumption that A0 is not
K-YM.

To prove the lemma, fix τ ≥ 0. When k = 0, the existence of a constant
C0 = C0(τ) satisfying (51) is now obvious form the fact that A(τ) is not K-
YM. For k > 0, the existence of such a constant Ck = Ck(τ) follows from the
identities

(d+A,Kd∗A,KU, U) = ‖d∗A,KU‖2
L2(Z), (d∗A,Kd+A,KV, V) = ‖d+A,KV‖2

L2(Z),

for U ∈ Ω+, V ∈ Ω1, which show that d+A,K (resp. d∗A,K) is injective on the
image of d∗A,K (resp. d+A,K). For each k, the constants Ck(τ) can be chosen to
depend continuously on τ. In particular, for any τ0 ≥ 0, the supremum Ck :=
sup0≤τ≤τ0

Ck(τ) > 0 is positive. Apply this with τ0 equal to the constant from
Corollary 5.2. This proves the result for all 0 ≤ τ ≤ τ0. The result for τ ≥ τ0
follows from Corollary 5.2.
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Proof of Theorem 6.3. To simplify the notation, we prove this theorem under the
assumption that the perturbation K = 0 is zero. With the use of Axiom 2, it is
not hard to adapt our proofs to handle non-zero K as well.

It is convenient to introduce the algebraic operator Λ defined by

ΛV :=
{
− ∗V if V ∈ Ω3(Z, gP)
1
2 (1 + ∗)V if V ∈ Ω+(Z, gP)

(We will not need an extension of this to forms of other degrees.)
To also set up for the proof of Theorem 6.4 below, we begin by working

with all k ≥ 0. Differentiating ‖Dk
AF+

A ‖
2
L2 in τ and using (49) gives

d
dτ ‖D

k
AF+

A ‖
2
L2 = 2

(
Dk

A∂τ F+
A ,Dk

AF+
A

)
+2

k−1

∑
`=0

(
Dk−`−1

A Λ
[
∂τ A ∧D`

AF+
A

]
,Dk

AF+
A

)

= −4
(
Dk

AD2
AF+

A ,Dk
AF+

A

)
−4

k−1

∑
`=0

(
Dk−`−1

A Λ
[
D1

AF+
A ∧D

`
AF+

A

]
,Dk

AF+
A

)
,

where we used the flow in the second line. The identity (50) and the fact that
D j

A is symmetric then gives

d
dτ ‖D

k
AF+

A ‖
2
L2 = −4‖Dk+1

A F+
A ‖

2
L2

−4
k−1

∑
`=0

(
Dk−`−1

A Λ
[
D1

AF+
A ∧D

`
AF+

A

]
,Dk

AF+
A

) (52)

Claim 1. Suppose that for all δ > 0 there is some τδ > 0 so that∣∣∣(Dk−`−1
A Λ

[
D1

AF+
A ∧D

`
AF+

A

]
,Dk

AF+
A

)∣∣∣ ≤ δ‖Dk+1
A F+

A ‖
2
L2 (53)

for all τ > τδ and all 0 ≤ ` ≤ k − 1. Then there are constants C, κ so that
‖Dk

AF+
A ‖

2
L2 ≤ Ceκτ .

To prove the claim, use (52) and Lemma 6.5 to write

d
dτ ‖D

k
AF+

A ‖
2
L2 ≤ −2C−1

k ‖D
k
AF+

A ‖
2
L2 − 2‖Dk+1

A F+
A ‖

2
L2

+4
k−1

∑
`=0

∣∣∣(Dk−`−1
A Λ

[
D1

AF+
A ∧D

`
AF+

A

]
,Dk

AF+
A

)∣∣∣.
If the condition (53) holds, then take δ = 1/2k to obtain

d
dτ
‖Dk

AF+
A ‖

2
L2 ≤ −2C−1

k ‖D
k
AF+

A ‖
2
L2 .
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Then exponential decay for ‖Dk
AF+

A ‖
2
L2 follows from this identity and integra-

tion.

Now we specialize to the situation of Theorem 6.3, and show that the con-
dition of Claim 1 holds for k = 0, 1, 2. When k = 0, this is trivial since the
hypothesis of (53) is empty (i.e., there are no terms in the summation in (52)).
This gives exponential decay for ‖F+

A(τ)
‖2

L2 .
When k = 1, there is only one term to bound, and this is∣∣∣(Λ

[
D1

AF+
A ∧ F+

A
]

,D1
AF+

A

)∣∣∣ ≤ 8‖F+
A ‖L2‖D1

AF+
A ‖

2
L4

≤ 8C1‖F+
A ‖L2‖D2

AF+
A ‖

2
L2 ,

where we used Lemma 6.5. By the k = 0 case, we can assume τ is sufficiently
large so that ‖F+

A ‖L2 is as small as we wish. This establishes (53), which gives
exponential decay for ‖D1

A(τ)F
+
A(τ)
‖2

L2 .
When k = 2, we need to estimate the two terms∣∣∣(Λ

[
D1

AF+
A ∧D

1
AF+

A

]
,D2

AF+
A

)∣∣∣, ∣∣∣(Λ
[
D1

AF+
A ∧ F+

A

]
,D3

AF+
A

)∣∣∣.
The first of these terms can be estimated as in the k = 1 case. As for the second
term, use Lemma 6.5 to write∣∣∣(Λ

[
D1

AF+
A ∧ F+

A
]

,D3
AF+

A

)∣∣∣ ≤ ‖F+
A ‖L4

(
‖D1

AF+
A ‖

2
L4 + ‖D3

AF+
A ‖

2
L2

)
≤ C0(C1C2 + 1)‖D1

AF+
A ‖L2‖D3

AF+
A ‖

2
L2 .

Then exponential decay for ‖D2
A(τ)F

+
A(τ)
‖2

L2 follows form the claim and the k =

1 case.
All that remains is to prove exponential decay for∫ τ+1

τ
‖D3

AF+
A ‖L2 dτ.

For this, use Hölder’s inequality in the time variable to write( ∫ τ+1

τ
‖D3

AF+
A ‖L2 dτ

)2
≤

∫ τ+1

τ
‖D3

A(τ)F
+
A(τ)
‖2

L2 dτ

≤ 1
4‖D2

A(τ)F
+
A(τ)
‖2

L2

−
∫ τ+1

τ

(
Λ
[
D1

AF+
A ∧D

1
AF+

A

]
,D2

AF+
A

)
dτ

−
∫ τ+1

τ

(
Λ
[
D1

AF+
A ∧ F+

A

]
,D3

AF+
A

)
dτ,

where we used (52). When we verified (53) in the previous paragraph, we
showed that the second and third lines of this are bounded by

1
2

∫ τ+1

τ
‖D3

A(τ)F
+
A(τ)
‖2

L2 dτ,
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provided τ is sufficiently large. This gives( ∫ τ+1

τ
‖D3

AF+
A ‖L2 dτ

)2
≤ 1

2
‖D2

A(τ)F
+
A(τ)
‖2

L2 ,

and the desired estimate follows from the exponential decay of ‖D2
A(τ)F

+
A(τ)
‖2

L2 .

Our proof of Theorem 6.4 will be similar to the proof just given, except it
will take more work to estimate the lower order terms in (52). For this, will
be be interested in how Sobolev norms depend on the connection A used to
define them. To keep track of this dependence, we will write

‖V‖Wk,p(Z),A :=
(

∑
0≤`≤k

‖∇`
AV‖p

Lp(Z)

)1/p

for the Wk,p-Sobolev norm on Ω•(Z, gP) defined using A and the Levi-Civita
connection on Z. The relevant estimates are as follows.

Lemma 6.6. There is a constant C so that if k ≥ 0 is any integer and A ∈ A(P; a) is
smooth, then

‖ · ‖Wk,4(Z),A ≤ C‖ · ‖Wk+1,2(Z),A.

If, in addition k ≥ 3, then

‖ · ‖L∞(Z) ≤ C‖ · ‖Wk,2(Z),A.

Proof. Let W be a section of ⊗`T∗Z ⊗ gP for some ` ≥ 0. Consider the real-
valued function f = |W|. Then the Sobolev embedding W1,2(Z) ⊂ L4(Z) for
real-valued functions on Z gives

‖W‖L4(Z) = ‖ f ‖L4(Z) ≤ C(‖ f ‖L2(Z) + ‖d f ‖L2(Z)).

The covariant derivative ∇A on ⊗`T∗Z ⊗ gP is a metric connection, so Kato’s
inequality gives the pointwise estimate |d f | ≤ |∇AW|. Then the first estimate
of the lemma follows by taking W = ∇`

AV for 0 ≤ ` ≤ k + 1. The second esti-
mate is similar and relies on the embedding Wk,2(Z) ⊂ L∞(Z) for real-valued
functions; this embedding holds provided k ≥ 3.

Lemma 6.7. Fix a smooth reference connection Are f . For each c0 > 0 and integer
k ≥ 3, there are constants c, C so that the following holds. If A ∈ A(P; a) is a smooth
connection satisfying

‖A− Are f ‖Wk−1,2(Z),Are f
≤ c0,

then

c‖ · ‖Wk,2(Z),A ≤ ‖ · ‖Wk,2(Z),Are f
≤ C‖ · ‖Wk,2(Z),A. (54)
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Proof. We prove the estimate on the right of (54); the other estimate is similar.
Fix 1 ≤ ` ≤ k and V ∈ Ω•(Z, gP). It suffices to bound ‖∇`

Are f
V‖L2(Z) in terms

of ‖V‖Wk,2(Z),A. We have an identity of the form

∇`
Are f

V = ∇`
AV + ∑

0≤j≤`−1
∇`−j−1

Are f
((A− Are f )#∇

j
AV),

where here and below we are using # to denote a bilinear algebraic operation.
Taking the L2-norm of each side, using the product rule, and then Hölder’s
inequality gives

‖∇`
Are f

V‖L2(Z) ≤ ‖∇`
AV‖L2(Z) + ‖(∇`−1

Are f
(A− Are f ))#V‖L2(Z)

+C ∑
1≤j≤`−1

‖∇`−j−1
Are f

(A− Are f )‖L4(Z)‖∇
j
AV‖L4(Z)

≤ ‖∇`
AV‖L2(Z) + C′‖A− Are f ‖W`−1,2(Z),Are f

‖V‖L∞(Z)

+C′ ∑
1≤j≤`−1

‖∇`−j
Are f

(A− Are f )‖L2(Z)‖∇
j+1
A V‖L2(Z)

≤ C′′‖A− Are f ‖Wk−1,2(Z),Are f
‖V‖Wk,2(Z),A

≤ c0C′′′‖V‖Wk,2(Z),A

where we used Lemma 6.6.

Proof of Theorem 6.4. We prove the theorem for K = 0, leaving the case of non-
zero K to the reader. We will prove exponential decay of ‖Dk

A(τ)
F+

A(τ)
‖L2(Z) by

induction on k, using Theorem 6.3 as the base case.
We therefore fix k ≥ 3 and assume the claim of Theorem 6.4 holds for all in-

tegers less than k. By Claim 1 appearing in the proof of Theorem 6.3, it suffices
to verify the condition (53). Towards this end, we begin by working with the
` = k− 1 term ∣∣∣(Λ

[
D1

AF+
A ∧D

k−1
A F+

A

]
,Dk

AF+
A

)∣∣∣
Here we can use Lemma 6.5 and Theorem 6.3 to write∣∣∣(Λ

[
D1

AF+
A ∧D

k−1
A F+

A

]
,Dk

AF+
A

)∣∣∣ ≤ ‖D1
AF+

A ‖L2‖Dk−1
A F+

A ‖L4‖Dk
AF+

A ‖L4

≤ Ce−κτ‖Dk+1
A F+

A ‖
2
L2 ,

which is the desired estimate for ` = k− 1, provided τ is sufficiently large.
We may therefore assume that 0 ≤ ` ≤ k− 2. Then we have∣∣∣(Dk−`−1

A Λ
[
D1

AF+
A ∧D

`
AF+

A

]
,Dk

AF+
A

)∣∣∣
=
∣∣∣(Dk−`−2

A Λ
[
D1

AF+
A ∧D

`
AF+

A

]
,Dk+1

A F+
A

)∣∣∣
≤ C′‖Dk+1

A FA‖L2

k−`−1

∑
j=1
‖F+

A ‖W j,4,A‖F
+
A ‖Wk−1−j,4,A.
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By Lemma 6.6, this is bounded by a uniform constant times

‖Dk+1
A F+

A ‖L2

k−`−1

∑
j=1
‖F+

A ‖W j+1,2,A‖F
+
A ‖Wk−j,2,A

We will be done if we can show that the summand ‖F+
A ‖W j+1,2,A‖F

+
A ‖Wk−j,2,A is

small for all 1 ≤ j ≤ k− `− 1. Note that j+ 1 and k− j are both no greater than
k− 1. Then we can use our hypotheses on A− Are f and Lemma 6.7 to write

‖F+
A ‖W j+1,2,A‖F

+
A ‖Wk−j,2,A ≤ C′′‖F+

A ‖
2
Wk−1,2,Are f

Elliptic regularity for the operator Dk−1
Are f

on self-dual 2-forms gives a bound of
the form

‖F+
A ‖

2
Wk−1,2,Are f

≤ C′′′
(
‖F+

A ‖L2 + ‖Dk−1
Are f

F+
A ‖

2
L2

)
.

As in the proof of Lemma 6.7, we can use the bound on ‖A− Are f ‖Wk−1,2,Are f
to

convert from Dk−1
Are f

to Dk−1
A , bounding this further by a constant times

‖F+
A ‖L2 + ‖Dk−1

A F+
A ‖

2
L2 .

By the inductive hypothesis, this can be made as small as we want. By Claim 1
in the proof of Theorem 6.3, the decay estimate for ‖Dk

A(τ)
F+

A(τ),K‖L2(Z) follows.
The decay estimate for ∫ τ+1

τ
‖Dk+1

A F+
A,K‖L2(Z)

is obtained by the argument we gave for the analogous term appearing in The-
orem 6.3.

6.2 Proof of Theorem 6.1

Let A be a solution to the flow, as in Theorem 6.1, and set

‖ · ‖Lp := ‖ · ‖Lp(Z), ‖ · ‖Wk,p := ‖ · ‖
Wk,p

Are f
(Z)

where Are f is a fixed smooth reference connection on Z. We begin by reduc-
ing the general case to the case where A is smooth. Recall from the proof of
Theorem 3.1 that the solution A has the form

A(τ) = (u(τ)−1)∗B(τ),

where u is a path of gauge transformations, B is a path of connections, and
where B is smooth for positive time. Fix any τ◦ > 0, and set

A◦(τ) := (u◦)∗A(τ + τ◦), u◦ := u(τ◦).
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Then this satisfies the flow (10) with the smooth initial condition A◦(0) = B(τ◦).
In particular, A◦ is smooth in all variables and exists for all τ ≥ 0. Assume we
can show that A◦(τ) converges exponentially in C∞ to a some K-ASD connec-
tion A◦∞. Then we claim that, for each 2 ≤ q ≤ p, the A(τ) converge exponen-
tially in W2,q to

A∞ := ((u◦)−1)∗A◦∞.

To see this, it suffices to show that u◦ has regularity W3,q on Z. We already
know from the proof of Theorem 3.1 that u◦ has regularity W1,p, and it is not
hard to see that this can be refined to having regularity in W1,2 ∩W1,p ⊂ W1,q.
The higher regularity on u◦ now follows from a two-step bootstrapping argu-
ment using the identity

du◦ = u◦A(τ◦)− B(τ◦)u◦

and the fact that B(τ◦) is smooth, and A(τ◦) has regularity W2,q.

It therefore suffices to prove Theorem 6.1 under the assumption that A is
smooth in all variables. This puts us in a setting where the discussion of Section
6.1 is valid. We remind the reader of the operators Dk

A, defined in that section.
Our proof at this stage is carried out in several steps.

Step 1. The A(τ) converge exponentially in L2 to some A∞ ∈ A0,2(P; a).

Integrate ∂τ A = −2D1
AF+

A,K over an interval [τa, τb] to get

A(τa)− A(τb) = 2
∫ τb

τa
D1

AF+
A,K. (55)

Take the L2-norm of both sides and then use Theorem 6.3 to get

‖A(τa)− A(τb)‖L2 ≤ 2
∫ τb

τa
‖D1

AF+
A,K‖L2 ≤ 2C1κ−1(e−κτa − e−κτb).

This shows that {A(τ)}τ is L2-Cauchy and so converges in L2(Z) to some lim-
iting connection A∞ ∈ A0,2(P; a). This argument also shows exponential con-
vergence in L2:

‖A(τ)− A∞‖L2 ≤ 2C1κ−1e−κτ , τ ≥ 0. (56)

Remark 6.8. Let C0 be any constant for which

‖F+
A(τ),K‖L2 ≤ C0‖dA(τ),KF+

A(τ),K‖L2

for all τ ≥ 0. An inspection of the proofs of Theorem 6.3 and Lemma 6.5 show that if
‖F+

A0,K‖L2 ≤ 1/(16C0), then the constants C1 and κ appearing in (56) can be taken
to be

C1 =
1
2
‖d∗A0,KFA0,K‖L2 , κ = C−1

0 .
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Step 2. The connections A(τ) converge exponentially in L4 to A∞.

Take the L4-norm of (55), then use Lemma 6.5 and Theorem 6.3 to get

‖A(τa)− A(τb)‖L4 ≤ 2
∫ τb

τa
‖D1

AF+
A,K‖L4 dτ

≤ 2C2

∫ τb

τa
‖D2

AF+
A,K‖L2 dτ

≤ 2C2Cκ−1(e−κτa − e−κτb),

As in Step 1, this implies that A(τ) converges exponentially in L4; the limit is
necessarily A∞.

The next step shows that the L4 ∩ L2-convergence we just established im-
plies convergence in W1,2. To set up for an induction argument later, we prove
a more general result.

Step 3. Fix an integer k ≥ 1 and assume that the A(τ) converge exponentially in
Wk−1,4 ∩Wk−1,2. Then the A(τ) converge exponentially in Wk,2.

Recall the Sobolev norms are defined relative to the fixed reference connec-
tion Are f . By elliptic regularity for d+Are f

⊕ d∗Are f
, we have

‖A− A∞‖Wk,2 ≤ C
(
‖d+Are f ,K(A− A∞)‖Wk−1,2 + ‖d∗Are f ,K(A− A∞)‖Wk−1,2

+ ‖A− A∞‖Wk−1,2

)
≤ C′

(
‖d+A∞ ,K(A− A∞)‖Wk−1,2 + ‖d∗A∞ ,K(A− A∞)‖Wk−1,2

+ ‖A∞ − Are f ‖Wk−1,4‖A− A∞‖Wk−1,4 + ‖A− A∞‖Wk−1,2

)
Our assumptions imply that the last two terms are going to zero in τ, so it
suffices to show

lim
τ→∞

‖d+A∞ ,K(A(τ)− A∞)‖Wk−1,2 + ‖d∗A∞ ,K(A(τ)− A∞)‖Wk−1,2 = 0.

We will work with the first limit; the other is similar (use the second Bianchi
identity). Apply d+A∞ ,K to both sides of (55) to get

d+A∞ ,K(A(τ)− A∞) = −2d+A∞ ,K

∫ ∞

τ
D1

AFA,K dτ

= −2
∫ ∞

τ
d+A∞ ,KD

1
AF+

A,K dτ

Consider the identity

d+A∞ ,K = d+A,K +
1
2
(1 + ∗)

(
[A∞ − A ∧ ·] + dKA − dKA∞

)
,
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where dKA is the linearization of the perturbation at A. Using this identity,
taking the Wk−1,2-norm, and using Axiom 2 gives

‖d+A∞ ,K(A(τ)− A∞)‖Wk−1,2 ≤ C
∫ ∞

τ
‖D2

AF+
A,K‖Wk−1,2

+ ‖A∞ − A‖Wk−1,4‖D1
AF+

A,K‖Wk−1,4 dτ.

Our assumptions imply a uniform bound on ‖A∞ − A‖Wk−1,4 . Now use elliptic
regularity for the operator Dk−1

Are f
on self-dual 2-forms to continue this and get

‖d+A∞ ,K(A(τ)− A∞)‖Wk−1,2 ≤ C′
∫ ∞

τ
‖Dk−1

Are f
D2

AF+
A,K‖L2 + ‖D2

AF+
A,K‖L2

+ ‖Dk
Are f
D1

AF+
A,K‖L2 + ‖D1

AF+
A,K‖L2 dτ.

As in the proof of Lemma 6.7, we can convert from D`
Are f

to D`
A at the cost

of picking up lower order terms. These lower order terms can be controlled
uniformly using Lemma 6.5. In summary, we have

‖d+A∞ ,K(A(τ)− A∞)‖Wk−1,2 ≤ C′′
∫ ∞

τ
‖Dk+1

A F+
A,K‖L2 dτ.

It follows from Theorem 6.3 (for k = 1, 2) and Theorem 6.4 (for k ≥ 3) that there
are constants C, κ (depending on k) so that∫ τ+j+1

τ+j
‖Dk+1

A F+
A,K‖L2 dτ ≤ Ce−κ(τ+j)

for all j, τ. This gives

‖d+A∞ ,K(A(τ)− A∞)‖Wk−1,2 ≤ C′′
∞

∑
j=0

∫ τ+j+1

τ+j
‖Dk+1

A F+
A,K‖L2 dτ

≤ C′′C
∞

∑
j=0

e−κ(τ+j)

= C′′Ce−κτ(1− e−κ)−1.

Step 3 follows from this estimate, and a similar one for ‖d∗A∞ ,K(A(τ)−A∞)‖Wk−1,2 .

Step 4. For each k ≥ 2, if the A(τ) converge exponentially in Wk−1,2, then the A(τ)
converge exponentially in Wk,2.

By Step 3, it suffices to show that show that the A(τ) converge exponen-
tially in Wk−1,4. For this, take the Wk−1,4-norm of (55) to get

‖A(τ + j)− A(τ + j + 1)‖Wk−1,4 ≤ 2
∫ τ+j+1

τ+j
‖D1

AF+
A,K‖Wk−1,4 dτ.

As in Step 3, we can bound this by

C
∫ τ+j+1

τ+j
‖Dk+1

A F+
A,K‖L2 dτ
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for some uniform constant C. When k = 2, we can apply Theorem 6.3 to bound
this by a constant times e−κ(τ+j). Then the exponential convergence follows by
summing over j, as we did at the end of Step 3. When k ≥ 3 the hypothesis
that the A(τ) converge in Wk−1,2 implies that Theorem 6.4 applies, and so we
can repeat the same argument we gave for k = 2.

Theorem 6.1 now follows from an induction argument using Step 4, with
base case given by the W1,2-convergence established in Step 3.

A Existence of ASD-regular perturbations

To avoid a vacuous discussion of long-time existence and infinite-time con-
vergence, we would like some sort of existence statement for perturbations
satisfying the axioms of Section 2.1. This is supplied by the following theorem.

Theorem A.1. Assume Q→ Y is such that all flat connections are irreducible. Then
there exists a perturbation K that is ASD-regular and satisfies Axioms 1, 2, 3, and 4.

Sketch of Proof. We will consider perturbations having the form described in
Example 2.3, since these automatically satisfy Axioms 1 and 3. Below, we refer
to the notation of Example 2.3 (and hence Example 2.1 (b)). Restrict further to
the family F of perturbations where the function h is defined by considering
holonomy over thickened loops in the surface Σ; perturbations of this type
were considered by Dostoglou and Salamon [8, Section 7]. Then each K ∈ F
satisfies Axioms 2 and 4; see [17, Prop. 7] and [17, Lem. 10], respectively.

Now we turn to ASD-regularity. When all flat connections are irreducible,
the same is true for all K-flat connections, provided K is sufficiently small. The
key point then is that this family F is large enough to contain a comeager set of
perturbations satisfying the remaining conditions of ASD-regularity. Indeed,
the existence of this comeager set follows from a Sard-Smale argument that is
now fairly standard in gauge theory; we refer the reader to Donaldson’s book
[6, Section 5.5] for a nice general treatment. This argument ultimately comes
down to the idea that, modulo gauge, connections are distinguished by their
holonomy. That it suffices to consider holonomy only in the Σ-directions (e.g.,
as opposed to all four directions in U × Σ) follows because, modulo gauge,
the K-ASD connections on neighborhoods U × Σ are determined by their Σ-
component α(x) := A|{x}×Σ, provided the α(x) are irreducible for all x ∈ U.
This irreducibility condition can be arranged by further refining the choice of
K.

The next example shows that bundles Q satisfying the hypotheses of Theo-
rem A.1 are fairly abundant.

Example A.2. (a) Suppose G = SO(3) and Y has positive first Betti number. Fix
any non-torsion class γ ∈ H1(Y, Z2), and define Q → Y to be the principal SO(3)-
bundle whose Stiefel-Whitney class w2(Q) ∈ H2(Y, Z2) is Poincaré dual to γ. Then
all flat connections on Q are irreducible.
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This strategy generalizes to G = PU(r) for r ≥ 2.

(b) Suppose Y is any 3-manifold. Then taking the connect sum with the torus Y#T3

produces a 3-manifold with positive first Betti number. In particular, for each r ≥ 2,
the manifold Y#T3 admits a PU(r)-bundle with no reducible flat connections. This
strategy is due to Kronheimer–Mrowka [18].
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1995).

[3] J-P. Bourguignon, H. B. Lawson, Stability and isolation phenomena for
Yang–Mills fields, Comm. Math. Phys. 79(2) (1981) 189–230.

[4] G. Daskalopoulos, R. Wentworth, Convergence properties of the Yang–
Mills flow on Kähler surfaces, J. Reine Angew. 575 (2004) 69–99.

[5] S. Donaldson, Anti-self dual Yang–Mills connections over complex alge-
braic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985)
1–26.

[6] S. Donaldson, Floer homology groups in Yang–Mills theory (Cambridge Uni-
versity Press, 2002).

[7] S. Donaldson, P. Kronheimer, The Geometry of Four-Manifolds (Clarendon
Press, 1997).

[8] S. Dostoglou, D. Salamon, Instanton homology and symplectic fixed
points, LMS Lecture Notes Series 192 (Cambridge University Press, 1993).

[9] S. Dostoglou, D. Salamon, Self-dual instantons and holomorphic curves
Ann. of Math. 139 (1994) 581–640.

[10] D. Duncan, Compactness Results for the Quilted Atiyah-Floer Conjecture The-
sis, Rutgers University (2013).

[11] P. Feehan, Global Existence and Convergence of Smooth Solutions
to Yang–Mills Gradient Flow over Compact Four-Manifolds (2014)
arXiv.1409.1525v1.

[12] A. Floer, An instanton-invariant for 3-manifolds, Comm. Math. Phys. 118
(1988) 215–240.

[13] D. Freed, K. Uhlenbeck, Instantons and Four-Manifolds (Springer, 2nd ed,
1991).

61



[14] G. Y. Guo, Yang–Mills fields on cylindrical manifolds and holomorphic
bundles I, Comm. Math. Phys. 179 (1996) 737–775.

[15] R. Janner, Perturbed geodesics on the moduli space of flat connections and
Yang–Mills theory (2010) arXiv:1006.5340v1.

[16] H. Kozono, Y. Maeda, H. Naito, Global solutions for the Yang–Mills gra-
dient flow for 4-manifolds, Nagoya Math. J. 139 (1995) 93–128.

[17] P. Kronheimer, Four-manifold invariants from higher-rank bundles, J. Diff.
Geom. 70(1) (2005) 59–112.

[18] P. Kronheimer, T. Mrowka, Knot homology groups from instantons, J.
Topol. 4(4) (2011) 835–918.

[19] R. B. Lockhart, R. C. McOwen, Elliptic differential operators on noncom-
pact manifolds, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze
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