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The aim here is to discuss several ways of constructing connections on Lie
group and manifolds closely related to Lie groups. These are all modifications
of the Maurer–Cartan form ω, so I will review that first. Throughout, G is a Lie
group with Lie algebra g. Depending on context, some of the conversation more
naturally takes place on vector bundles (such as TG), while other bits more
naturally take place on principal bundles. As such, I have included a review in
the appendix of connections in each of these setting; I also use that space to
establish some notation. Take a look there if you don’t know what I mean by
something. It might help. Though it might not.
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The first few sections start off a bit slow, but I try to be careful about being
explicit with conventions that have confused me at various times. The reader
may find the examples in these sections fun, even if the broader discussion in
these sections seems overly pedantic. In particular, I give a computation of the
first Chern class of the Hopf fibration, which some readers may find value in
reading (I kept getting the dang sign wrong, which motivated my aforementioned
pedantry in the earlier sections). The construction of the last section is more
novel, though I am sure plenty of experts have encountered constructions of its
type before. It gives an infinite family of connections on products of Lie groups
and gives some curvature calculations (the curvature is not always zero!).

1 The Maurer–Cartan forms

For g ∈ G, write

Lg : G −! G
h 7−! gh

Rg : G −! G
h 7−! hg

for the left- and right-multiplication maps, respectively. The left-invariant
Maurer–Cartan form is the 1-form ωL ∈ Ω1(G, g) defined at v ∈ TgG by

ωL(v) = (Lg−1)∗v ∈ TeG = g.

Similarly, the right-invariant Maurer–Cartan form is the 1-form ωR ∈ Ω1(G, g)
defined at v ∈ TgG by

ωR(v) = (Rg−1)∗v ∈ TeG = g.

After the present section, I will focus mainly on ωL, and so I will drop the “L”
subscript and set:

ω := ωL.

1.1 Some notation conversations

People often write the Maurer–Cartan forms as

ωL(v) = g−1v, ωR(v) = vg−1, ∀v ∈ TgG. (1)

This is a slight abuse of notation, but it is justified whenever G is a matrix
group. In a bit more detail, assume G ⊆ GL(V ) is a subgroup of the general
linear group of some vector space V . Since GL(V ) ⊆ End(V ) and End(V ) is a
vector space, it follows that G and its Lie algebra g are subsets of End(V ) as
well:

G, g ⊆ End(V ).

Thus, if g ∈ G and ξ ∈ g, then the concatenation gξ can be defined to be the
multiplication in End(V ) (which is composition of functions). The formulas (1)
can be understood in this way.
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Another way people often write the Maurer–Cartan forms is as

ωL = g−1dg, ωR = (dg)g−1. (2)

First, as in (1), these formulas should be interpreted as taking place on the
specific tangent space TgG at g (and not necessarily on all of TG). Second,
and also as in (1), the formulas (2) secretly assume that there is some way of
“multiplying” elements of G and g, such as embedding G into a matrix group
GL(V ) as in the previous paragraph. What I think remains to be explained
is what dg means in (2). To explain this, consider the identity map G ! G
given by sending g 7! g. As in calculus, write this simply as g (think of the
function f(x) = x). We can view this function g as a function of the form
G ! End(V ). Thus, we can think of the identity function g as an element of
the space Ω0(G,End(V )) of End(V )-valued 0-forms on G (see Appendix A.1 for
details on this space of forms). Let d : Ω0(G,End(V )) ! Ω1(G,End(V )) be the
trivial connection on the trivial vector bundle G×End(V ) ! G (see Appendix
A.3). Then dg ∈ Ω1(G,End(V )) is an End(V )-valued 1-form on G. This can
be viewed as a map dg : TG ! End(V ), and this is precisely the meaning of
the symbol dg in (2). That said, tracing everything through, we see that since
g : G! G is the identity map, this map dg : TG! End(V ) is the inclusion:

dg(v) = v

for v ∈ TgG ⊆ End(V ). Thus, (2) recovers (1), as it had better.

1.2 The left-invariant Maurer–Cartan form

In this section I will focus on the left-invariant version ωL ∈ Ω1(G, g). This has
several key properties:

• This 1-form ωL is vertical: Fix ξ ∈ g and let be ξ# is the vector field on
G induced by right multiplication on G; that is

(ξ#)g :=
d

dτ

∣∣∣
τ=0

g exp(tξ).

Then
ωL(ξ

#) = ξ.

• This 1-form ωL in equivariant: Fix g ∈ G (recall that Rg is the diffeomor-
phism of G given by right multiplication). Then

R∗
gωL = Ad(g−1)ωL.

View G as a principal G-bundle over a point:

G −! G/G = {pt} ,
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with G acting on itself by right multiplication. It follows from the properties
above that ωL defines a connection on this principal G-bundle. For a review of
connections in the principal bundle setting, see Appendix A.4. Moreover, ωL is
the only connection on this bundle. This is because any two connections differ
by a basic 1-form, and the space of basic 1-forms on G! {pt} is isomorphic to
Ω1({pt} , g) = {0} (how many 1-forms are on a zero-dimensional manifold?).

In fact, every trivial connection can be viewed as a pullback of the left-
invariant Maurer–Cartan connection: Suppose P !M is a trivializable princi-
pal G-bundle, and fix a trivialization τ : P ! M ×G. Write π2 : M ×G ! G
for the projection. Then the trivial connection on P (relative to this trivializa-
tion τ) is the pullback (π2 ◦ τ)∗ωL ∈ Ω1(P, g) of ωL. See Appendix A.5 for an
overview of trivial connections in the principal bundle setting.

Example 1. Consider the case where G = SU(2). Then we can write a generic
element g ∈ SU(2) as

g =

(
α −β
β α

)
where α, β ∈ C satisfy |α|2 + |β|2 = 1. Then

ωL = g−1dg =

(
αdα+ βdβ −αdβ + βdα

−βdα+ αdβ αdα+ βdβ

)
Here is the quaternion version of this same example: Let S3 ⊆ H be the unit

sphere in the space of quaternions; the multiplication on H restricts to S3 to give
it a group structure. It is convenient to write H = C⊕ jC. Then we can write
a generic element of g ∈ S3 as α + jβ where α, β ∈ C satisfy |α|2 + |β|2 = 1
(note that the order matters in jβ, since jβ = βj). Then we have

ωL = (αdα+ βdβ) + j(−βdα+ αdβ).

Now, the map

S3 −! SU(2), α+ jβ 7−!

(
α −β
β α

)
is a group isomorphism (this is where the order in α + jβ matters) and this
identifies the Maurer–Cartan forms on the two spaces. Of note is that this
isomorhpism carries right multiplication on S3 by z ∈ S1 ⊆ S3 to right multi-
plication SU(2) by the diagonal matrix(

z 0
0 z

)
. (3)

Later on we will view S3 and SU(2) as principal S1-bundles via this right mul-
tiplication action; see also the next remark.

Remark 1. For the moment, view S3 as a subset of C2, as opposed to the
technically-slightly-different space H like I did in the previous example. The
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scalar action of S1 ⊆ C on C2 restricts to an action on S3, and the Hopf
fibration is by definition the quotient map

πH : S3 −! CP 1 := S1\S3.

The point of this remark is to explain why the Hopf fibration corresponds exactly
to the principal S1-bundle structure on the unit sphere in H defined in the pre-
vious example using right multiplication on H. This is predicated on me having
written the quaternions as H = C⊕ jC with coordinates

C⊕ C −! H, (α, β) 7−! α+ jβ.

Of course, this map identifies the unit spheres in both spaces, which is why I feel
justified in using the same symbol S3 for both. However, it is a little funny with
the S1-action: This map takes scalar multiplication by z ∈ S1 on C2 to right
multiplication by z on H (there isn’t a problem about left-versus-right actions
here since multiplication on C is commutative). Thus, scalar multiplication on
C2 corresponds to right multiplication on H = C+ jC under these coordinates.

If we were to use the coordinates (α, β) 7! α+βj, then we would need to use
left multiplication on H to get the Hopf fibration. The SU(2)-version is that the
coordinates

(α, β) 7−!

(
α β

−β α

)
intertwine scalar multiplication on C2 with left multiplication by the diagonal
matrix (3) on matrices. Moving forward, I will stick with the coordinates of
Example 1 for my Hopf fibration.

1.3 The right-invariant Maurer–Cartan form

Now let’s consider ωR ∈ Ω1(G, g). When g is not abelian, ωR ̸= ωL. It then
follows from the discussion of the previous section that ωR is not a connection
on the trivial bundle G ! G/G = {pt} (it is this reason that I will focus on
ωL later, and not ωR). The property that fails is equivariance: The 1-form
ωR : G ! g intertwines the right multiplication action of G on itself with the
trivial action of G on g; the action on g would have to be the adjoint action for
ωR to define a connection.

This asymmetry between ωL and ωR is an artifact of a convention: We had
viewed G as a principal G-bundle over {pt} by having G act on itself by right
multiplication. If we had G act on itself by left multiplication, then we still get
a principal G-bundle G ! G\G = {pt}, but where the roles of ωL and ωR are
reversed: ωR is the only connection on this bundle and ωL is not a connection.

Put more formally, write GR for G viewed as a principal G-bundle with G
acting by right multiplication, and write GL for G viewed as a principal G-
bundle with G acting by left multiplication (necessarily with an inverse thrown
in this latter case to make sure we still have a right action). Then ωL is the
only connection on GR and ωR is the only connection on GL. The map

GR −! GL g 7−! g−1
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is an isomorphism of principal G-bundles that pulls ωR back to ωL.

2 A non-connection on TG

Assume G ⊆ GL(V ) is a matrix group. Since End(V ) is a vector space, its
tangent bundle TEnd(V ) ∼= End(V ) × End(V ) is canonically trivial. In this
section, the symbol d will stand for the restriction to G of the trivial connection
on this tangent bundle; thus, d can be viewed as a map of the form

d : Ω0(G,End(V )) −! Ω1(G,End(V )).

Equivalently, the map d is the trivial connection on the trivial bundle G ×
End(V ) ! G.

The point is that this operator d does not, at least in general, define a con-
nection on TG. The issue is that there may be ξ ∈ Ω0(G,TG) ⊆ Ω0(G,End(V ))
with dξ /∈ Ω1(G,TG); that is, d does not necessarily corestrict to define a map
of the form

Ω0(G,TG) −! Ω1(G,TG).

The next example gives probably the simplest counterexample illustrating this
phenomenon.

Example 2. Consider the case where G = S1 ⊆ C. Suppose ξ ∈ Ω0(G,TG) is
a vector field on G, so

ξ(z) ∈ TzG

for all z ∈ G; that is, ξ(z) is orthogonal to z for all z ∈ S1. Writing z = eiθ,
we have ξ(eiθ) = if(θ)eiθ for some 2π-periodic function f : R ! R. Then

dξ = −f(θ)eiθ + if ′(θ)eiθ.

However, this is not orthogonal to eiθ unless f is identically zero. This shows
dξ is not an element of Ω1(G,TG) when ξ ̸= 0.

3 Two connections on TG

The diffeomorphisms Lg : G ! G and Rg : G ! G each provide maps of the
form

ΦL : TG −! G× g
TgG ∋ v 7−! (g, (Lg−1)∗v)

ΦR : TG −! G× g
TgG ∋ v 7−! (g, (Rg−1)∗v)

That is,
ΦL = πTG × ωL, ΦR = πTG × ωR

where πTG : TG ! G is the projection and ωL, ωR are the Maurer–Cartan
forms, but viewed as functions TG! g. Viewing TG andG×g as vector bundles
over G, the maps ΦL and ΦR each provide a trivialization of TG. In particular,
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each defines a connection on TG by pulling back the trivial connection. Since
TG ! G is a vector bundle, it is more natural to describe this in the language
of vector bundles and linear connections; I will call the linear connections thus
created ∇L and ∇R. I will describe both in detail, starting with “L”-version.

By definition, ∇L : Ω0(G,TG) ! Ω1(G,TG) is the operator defined by

∇L = Φ−1
L ◦ d ◦ ΦL,

where in this section d is the trivial connection on G × g ! G. If we assume
that G ⊆ GL(V ) is a matrix group, then there is another way to write this:
Letting ξ ∈ Ω0(G,TG), we have

(∇L(ξ))g = Φ−1
L ◦ d(g, g−1ξ)

= Φ−1
L (g, g−1dξ − g−1(dg)g−1ξ)

= dξ − (dg)g−1ξ.

Thus
∇L = d− (dg)g−1. (4)

Remark 2. This same formula (4) also defines a linear connection ∇′
L on the

trivial vector bundle G×End(V ) ! G, and also a connection ∇′′
L on End(V )×

End(V ) ! End(V ). Each of these bundles is naturally trivial, and the trivial
connection is the operator d but viewed as a connection on G × End(V ) or on
End(V ) × End(V ), depending on context. In particular, we see from (4) that
the connection 1-form for ∇′

L and for ∇′′
L is −(dg)g−1.

However, I want to emphasize that the connection 1-form of ∇L (which is
a connection on TG) is generally not −(dg)g−1. One way to see this is that
the operator d in (4) is not a connection on TG, at least in general (this was
the point of Section 2). Another way to see this is that, for a connection to
define a connection 1-form, we need to pick a trivialization. An obvious choice
of trivialization here is ΦL, but the connection 1-form for ∇L relative to this
trivialization is 0 ∈ Ω1(M,End(V )) and this is typically not equal to −(dg)g−1.

Similarly, define ∇R to be the connection on TG pulled back from the trivial
connection via ΦR : TG ! G × g. Then a computation similar to the one just
given shows

∇R = d− g−1dg.

3.1 A digression on these trivializations

Consider the action of G on G by left multiplication. This induces an action
of G on TG, and ΦL : TG ! G × g intertwines this with the diagonal action
on G × g with the trivial action on g. On the other hand, ΦR : TG ! G × g
intertwines the left G-action on TG with the diagonal action on G × g with
the adjoint action on g. In just the same way, if we were to instead consider
the action of G on G by right multiplication, then ΦL would correspond to the
adjoint action on g, and ΦR would correspond to the trivial action on g. This
is very much related to the fact that ωL is a connection on G (viewed as a
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G-bundle via right multiplication) while ωR is not, with the situation reversing
if we consider the left multiplication action of G on itself.

Interestingly, the connection ∇L is equivariant under both the left- and the
right-multiplication actions of G on itself:

(∇L(hξ))hg = h((∇Lξ)g), (∇L(ξh))gh = ((∇Lξ)g)h, ∀g, h ∈ G, ∀ξ ∈ g.

Similarly, ∇R is also equivariant under both of these actions.

Example 3. Consider the case where G = S3 and let V ⊆ TG be the vertical
bundle of the Hopf fibration πH : S3 ! CP 1; see Remark 1 and Example 1.
As in that example, I will view S3 ⊆ H as a principal S1-bundle where S1 acts
on S3 by right multiplication. The Lie algebra g = span(i, j, k) consists of the
purely imaginary quaternions. The fundamental vector field of the S1-action
is given by ξ#(g) = gi; this spans V. The orthogonal complement V⊥ ⊆ TS3

can be identified with the pullback bundle π∗
HTS

2 ! S3. The basic forms are
those on S3 that take values in V⊥ and are equivariant relative to the given
S1-action on S3 and its induced action on TG (which preserves V⊥). Note that
the adjoint action of S1 on g fixes i and is a rotation in the jk-plane; the map
S1 ! SO(span(i, j)) is two-to-one.

If we use ΦL to trivialize TG, then the fundamental vector field ξ(g) = gi is
taken to the constant vector field G ! g sending g 7! i. Since ΦL intertwines
the given action of TG with the action on G×g acting trivially on g, the basic 0-
forms can be identified with the S1-invariant functions ψ : G 7! g with ψ(g) ⊥ i
for all g ∈ G.

If we use ΦR to trivialize TG, then gi is taken to the nonconstant vector
field G ! g sending g 7! gig−1. Since ΦR intertwines the given action of TG
with the action on G × g acting by the adjoint on g, the basic 0-forms can be
identified with the functions ψ : G 7! g with ψ(g) ⊥ gig−1 for all g that are
equivariant relative to the adjoint action of S1 on g.

4 Homogeneous spaces

Suppose ϕ : K ↪! G is an embedding of a Lie group K with Lie algebra k.
Assume that g has an Ad-invariant inner product. The construction below
depends on this inner product modulo conformal scaling; thus, if g is simple
then the construction is independent of the inner product. I want to think of G
as a principal K-bundle over G/K (with K acting by right multiplication).

Write ω ∈ Ω1(G, g) for the left-invariant Maurer–Cartan form, and let ϕ∗ :
k ! g be the pushforward of ϕ at the identity. Note that ϕ∗ is a Lie algebra
embedding. In particular it corestricts to an isomorphism ϕ∗| : k ! im(ϕ∗),
and I will write ϕ−1

∗ : im(ϕ∗) ! k for the inverse of this corestriction. Define a
1-form AG

K := AK ∈ Ω1(G, k) by the formula

AK := (ϕ∗)
−1projim(ϕ∗)ω

where projim(ϕ∗) : g ! im(ϕ∗) is the orthogonal projection. I claim that AK is
a connection on the principal K-bundle G! G/K. Let’s check the axioms:

8



• Vertical: Let ξ ∈ k. The induced vector field on G is given by

ξ#(g) =
d

dτ

∣∣∣
τ=0

gϕ(exp(τξ)).

We have ϕ(exp(τξ)) = exp(τϕ∗ξ). Since ϕ∗ξ ∈ im(ϕ∗) ⊆ g we have

AK(ξ#) = (ϕ∗)
−1projim(ϕ∗)ω(ξ

#)

= (ϕ∗)
−1projim(ϕ∗)ϕ∗ξ

= (ϕ∗)
−1ϕ∗ξ

= ξ.

• Equivariant: For all k ∈ K,

Rk(g) = gϕ(k),

where Rk : G ! G is right multiplication by k. Then ϕ(k) ∈ G, so the
equivariance of ω gives

R∗
kAK = (ϕ∗)

−1projim(ϕ∗)R
∗
kω

= (ϕ∗)
−1projim(ϕ∗)Ad(ϕ(k)−1)ω

= (ϕ∗)
−1Ad(ϕ(k)−1)projim(ϕ∗)ω

= Ad(k−1)(ϕ∗)
−1projim(ϕ∗)ω

= Ad(k−1)AK .

The fact that Ad(ϕ(k)−1) commutes with the projection follows because
the inner product is Ad-invariant.

Of course, when K = G and ϕ is the identity, then AK = ω is the Maurer–
Cartan form.

Example 4. Consider the case where G = SU(2) and K = S1, with ϕ : S1 !
SU(2) defined by

ϕ(k) :=

(
k 0

0 k

)
.

View S1 as acting on SU(2) by right multiplication, as in Example 1. As we saw
in that example and Remark 1, this is bundle isomorphic to the Hopf fibration,
but it is instructive to see how the details of this section work out in this SU(2)-
setting since ϕ is not an inclusion.

By Example 1 the Maurer–Cartan form can be written as

ω = g−1dg =

(
αdα+ βdβ −αdβ + βdα

−βdα+ αdβ αdα+ βdβ

)
.

The projection to im(ϕ∗) projects to the diagonal, so we have

projim(ϕ∗)ω =

(
αdα+ βdβ 0

0 αdα+ βdβ

)
.
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Then (ϕ∗)
−1 strips off the first component:

AK = αdα+ βdβ.

Now let’s compute the curvature FAK
of this. Using the notation of Appendix

A.7, we have
F̃AK

= dAK

= −dα ∧ dα− dβ ∧ dβ.

Being the curvature of a connection, this is a basic 2-form on the base SU(2)/S1 ∼=
CP 1. Thus, there is a unique 2-form FAK

on CP 1 with

π∗FAK
= F̃AK

.

where π : SU(2) ! CP 1 is the projection. Since K is abelian, the adjoint bundle
is trivial, so this 2-form is taking values in the trivial vector bundle with fiber
iR = Lie(K); that is, FAK

is a 2-form on CP 1 with values in iR. There are
many ways to compute this, but here is a fun one using homogeneous coordinates.
Specifically, consider the coordinate chart ψ : C ! CP 1 given by sending z ∈ C
to [z, 1]. I will show that FAK

is the pullback via ψ−1 of the 2-form

− 1

(1 + |z|2)2
dz ∧ dz = 2i

(1 + x2 + y2)2
dx ∧ dy

on C, where z = x + iy are the obvious coordinates on C. To see this, the
uniqueness of FAK

implies we just need to show

(ψ−1 ◦ π)∗ 1

(1 + |z|2)2
dz ∧ dz = F̃AK

.

To see this, note that

z = (ψ−1 ◦ π)
(
α β

β α

)
= α/β.

(We are working in the chart where β ̸= 0.) Then dz = β−2(βdα − αdβ).
Expanding and then using |α|2 + |β|2 = 1, we have

(ψ−1 ◦ π)∗dz ∧ dz = |β|−4
(
|β|2dα ∧ dα+ |α|2dβ ∧ dβ

−2Re(αβdα ∧ dβ)
)

= |β|−4
(
dα ∧ dα+ dβ ∧ dβ

−|α|2dα ∧ dα− |β|2dβ ∧ dβ
−2Re(αβdα ∧ dβ)

)
= |β|−4

(
dα ∧ dα+ dβ ∧ dβ

−(αdα+ βdβ) ∧ (αdα+ βdβ)
)
.
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Differentiating |α|2 + |β|2 = 1, we find

αdα+ βdβ = −(αdα+ βdβ)

and so this last term vanishes. This gives

(ψ−1 ◦ π)∗dz ∧ dz = |β|−4
(
dα ∧ dα+ dβ ∧ dβ

)
,

from which we conclude

(ψ−1 ◦ π)∗ 1

(1 + |z|2)2
dz ∧ dz = dα ∧ dα+ dβ ∧ dβ

= −F̃A

as claimed.
From here, we can compute the first Chern number of the S1-bundle SU(2) !

CP 1 via the Chern–Weil formula:

c1(S
3)⌢ [CP 1] =

i

2π

∫
CP 1

FAK

=
i

2π

∫
C
(ψ−1)∗FAK

= − 1

π

∫
C

1

(1 + x2 + y2)2
dx ∧ dy

= −1.

This is as expected (the Hopf fibration is the frame bundle for the tautological
line bundle on CP 1, which is O(−1)).

5 Action on another manifold

Suppose K ⊆ G is a subgroup andM is a manifold equipped with a right action
of K. Then K acts freely on G×M (because it acts freely on the first factor)
and we can consider it as a principal K-bundle over (G×M)/K. Write

AK;M := π∗
GAK

where πG is the projections from G×M to G. That this is a connection can be
checked directly, but here is an alternative approach, rooted in the observation
that this is literally a pullback connection: View G ! G/K as a principal K-
bundle. The map πG : G×M ! G is K-equivariant and so descends to a map
π : (G ×M)/K ! G/K. Then the pullback bundle π∗G ! (G ×M)/K is
naturally isomorphic, as a principal K-bundle, to G ×M ! (G ×M)/K and
this isomorphism identifies the pullback connection of π∗AK with the connection
denoted π∗

GAK above. An upshot of this approach is that it shows the curvature
of AK;M is the π-pullback of the curvature of AK :

π∗FAK
= FAK;M

.
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6 Products of Lie groups

Now suppose K,G0, G1 are Lie groups and

ϕj : K −! Gj

is an embedding for j = 0, 1. Then we can consider G0 × G1 as a principal
K-bundle with the diagonal action. Fix 1 ≤ p, q ≤ ∞ with p−1 + q−1 = 1.
Write

Ap,q := p−1π∗
0A

G0

K + q−1π∗
1A

G1

K

where πj is the projections from G0×G1 to Gj . I claim that this is a connection.

• Vertical: Fix ξ ∈ K and write ξ# for the induced vector field on G0 ×G1.
Temporarily write ξ#j for the induced vector field on Gj . Note that πj is

K-equivariant, so (πj)∗ξ
# = ξ#j . This implies

Ap,q(ξ
#) = p−1AG0

K (ξ#0 ) + q−1AG1

K (ξ#1 )
= p−1ξ + q−1ξ
= ξ.

• Equivariant: Fix k ∈ K. Letting (Rk)j : Gj ! Gj be right multiplication
by ϕj(k) on Gj , and Rk : G ! G right multiplication by (ϕ0(k), ϕ1(k)),
the equivariance of the πj implies πj ◦Rk = (Rk)j ◦ πj and this gives

R∗
kAp,q = p−1π∗

0(Rk)
∗
0A

G0

K + q−1π∗
1(Rk)

∗
1A

G1

K

= p−1π∗
0Ad(k−1)AG0

K + q−1π∗
1Ad(k−1)AG1

K

= Ad(k−1)Ap,q.

Example 5. Consider the case where p = 1 and q = ∞. Then

A1,∞ = π∗
0A

G0

K .

This recovers the construction of Section 5.

Example 6. Consider the case where G := K = G0 = G1 with ϕ0 = ϕ1 = IdG
the identity map. Then

Ap,q = p−1π∗
0A

G + q−1π∗
1A

G,

so
Ap,q(g0ξ0, g1ξ1) = p−1ξ0 + q−1ξ1.

Let’s compute the curvature of this thing. We have

dAp,q = p−1π∗
0dA

G0 + q−1π∗
1dA

G1

= − 1
2pπ

∗
0 [A

G0 ∧AG0 ]− 1
2qπ

∗
1 [A

G1 ∧AG1 ]

12



We also have

1
2 [Ap,q ∧Ap,q] = 1

2p2 [π
∗
0A

G0 ∧ π∗
0A

G0 ] + 1
2q2 [π

∗
qA

Gq ∧ π∗
qA

Gq ]

+ 1
pq [π

∗
0A

G0 ∧ π∗
1A

G1 ]

Thus,
F̃Ap,q

= 1−p
p2 π

∗
0 [A

G0 ∧AG0 ] + 1−q
q2 π

∗
1 [A

G1 ∧AG1 ]

= + 1
pq [π

∗
0A

G0 ∧ π∗
1A

G1 ].

Somewhat more explicitly, this is the 2-form that sends the pair

(g0ξ0, g1ξ1), (g0ξ
′
0, g1ξ

′
1) ∈ T(g0,g1)G0 ×G1

of tangent vectors to

1− p

p2
[ξ0, ξ

′
0] +

1− q

q2
[ξ1, ξ

′
1] +

1

pq
([ξ0, ξ

′
1] + [ξ1, ξ

′
0]).

To compute FAp,q
, note that the G-bundle G2 = G0 × G1 is trivializable with

trivialization G0 ×G1 ! G×G sending (g0, g1) 7! (g0g
−1
1 , g1) (K acting diago-

nally by right multiplication on G0×G1 and on G×G by right multiplication on
the second factor). At the Lie algebra level, this sends (v0, v1) ∈ Tg0G0 × Tg1G1

to (v0g
−1
1 − g0g

−1
1 v1g

−1
1 , v1) ∈ Tg0g−1

1
G0 × Tg1G1. The inverse map is

Tg0g−1
1
G0 × Tg1G1 −! Tg0G0 × Tg1G1

(w0, w1) 7−! (w0g1 + g0g
−1
1 w1, w1).

Pulling the 2-form F̃Ap,q
back under this map, we obtain the 2-form on G × G

that sends the pair (w0, w1), (w
′
0, w

′
1) ∈ Tg0g−1

1
G× Tg1G to

1−p
p2

[
g−1
0 w0g1 + g−1

1 w1, g
−1
0 w′

0g1 + g−1
1 w′

1

]
+ 1−q

q2 [g−1
1 w1, g

−1
1 w′

1]

+ 1
pq

([
g−1
0 w0g1 + g−1

1 w1, g
−1
1 w′

1

]
+
[
g−1
1 w1, g

−1
0 w′

0g1 + g−1
1 w′

1

])
= 1−p

p2 [g−1
0 w0g1, g

−1
0 w′

0g1]

+
(

1−p
p2 + 1−q

q2 + 2
qp

)
[g−1

1 w1, g
−1
1 w′

1]

+
(

1−p
p2 + 1

pq

)
[g−1

1 w1, g
−1
0 w′

0g1]

+
(

1−p
p2 + 1

pq

)
[g−1

0 w0g1, g
−1
1 w′

1]

= 1−p
p2 [g−1

0 w0g1, g
−1
0 w′

0g1]

where the last equality follows because 1/p + 1/q = 1 (all three last terms go
away). This is a 2-form supported on the first component of G × G, which is

13



what we expect: the curvature is supposed to be basic. That is, the curvature
(relative to this trivialization of the adjoint bundle) is

FAp,q (g0ζ0g
−1
1 , g0ζ

′
0g

−1
1 ) =

1− p

p2
[ζ0, ζ

′
0] = − 1

pq
[ζ0, ζ

′
0],

where we are using g0 on the left and g−1
1 on the right to trivialize Tg0g−1

1
G.

(Take g0 = g and g1 = e to get a trivialization relative to left multiplication.)
This shows that the curvature depends on p: when p = 1 or p = ∞ it is flat (as
it should be because it is just the pullback of the Maurer–Cartan form in that
case). It is not flat when, say, p = 2.

A An overview of connections

Here I give [insert section title here], highlighting definitions but skipping essen-
tially all proofs of my assertions. There are plenty of more detailed references
for this material. If you are new to it, I strongly suggest Spivak, Vol. II for the
basics.

A.1 Bundle-valued forms

Given a vector bundle E !M over a manifoldM , I will write Ωk(M,E) for the
space of E-valued k-forms on M . If E =M × V is a trivial vector bundle, with
V a vector space, then I may write Ωk(M,V ) := Ωk(M,M × V ). For example,
the elements of Ω0(M,V ) can be viewed as smooth functions M ! V , and the
elements of Ω1(M,V ) can be viewed as smooth functions TM ! V .

A.2 Connections on vector bundles

A (linear) connection on E !M is an R-linear map

∇ : Ω0(M,E) −! Ω1(M,E)

satisfying the Leibniz rule:

∇(fϕ) = df ⊗ ξ + f∇ξ, ∀f ∈ Ω0(M,R), ∀ϕ ∈ Ω0(M,E).

I will also refer to ∇ as a covariant derivative.
Suppose E′ !M ′ is another vector bundle and F : E′ ! E is a bundle map

covering a smooth map f : M ′ ! M . Assume further that F restricts to each
fiber to be an invertible linear transformation. If ∇ is a linear connection on
E, then we can create a linear connection F ∗∇ on E′ called the pullback of ∇.
This is defined by

F ∗∇ := F ◦ ∇ ◦ F−1

where the inverse is the fiberwise inverse of F .

14



Suppose ∇ is a connection on E ! M and η ∈ Ω1(M,End(E)). Then the
sum ∇+ η is again a connection on E. Conversely, if ∇ and ∇′ are two connec-
tions on E, then the difference ∇−∇′ satisfies (∇−∇′)(fϕ) = f(∇−∇′)ϕ for all
f ∈ Ω0(M,R) and ϕ ∈ Ω0(M,E). This implies that ∇−∇′ ∈ Ω1(M,End(E))
is a 1-form on M with values in the bundle End(E). It follows that the space
of linear connections on E is an affine space modeled on Ω1(M,End(E)).

A.3 The trivial connection in the vector bundle setting

Suppose E = M × V is a trivial vector bundle. There is a canonically-defined
connection on M × V called the trivial connection, which I will denote by

d : Ω0(M,V ) −! Ω1(M,V ).

There are many ways to define this thing, and I will start with a low-brow
approach. Pick a basis v1, . . . , vn for V . Then each ϕ ∈ Ω0(M,V ) can be
written as ϕ =

∑
i ϕivi for some real valued functions ϕ1, . . . , ϕn : M ! R.

Then the trivial connection is defined by

dϕ :=
∑
i

(dϕi)⊗ wi,

where the d appearing on the right is the de Rham operator. One can check
that this is independent of the basis. Another fun way to write this is to use
the basis to identify V ∼= Rn. This identifies

ϕ =


ϕ1
ϕ2
...
ϕn


with a vector, and then

dϕ =


dϕ1
dϕ2
...

dϕn


is a vector of 1-forms.

Remark 3. There is a slight variation people often adopt in the case where
V = End(W ) is the endomorphism ring of a vector space W . Pick a basis for
W . This allows us to identify End(W ) with the set of n × n-matrices. In this
way we can think of any ϕ ∈ Ω0(G,End(W )) as a matrix-valued function on G:

ϕ =


ϕ11 ϕ12 . . . ϕ1n
ϕ21 ϕ22 . . . ϕ2n
...

...
. . .

...
ϕn1 ϕn2 . . . ϕnn

 :M −! {n× n-matrices} ,
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where each ϕij :M ! R is a smooth function. Then dϕ is the matrix

dϕ =


dϕ11 dϕ12 . . . dϕ1n
dϕ21 dϕ22 . . . dϕ2n
...

...
. . .

...
dϕn1 dϕn2 . . . dϕnn


of 1-forms, where the d appearing on the right is the de Rham operator on
real-valued functions.

Continue to assume that E =M ×V is trivial, and let ∇ be any connection
on E. By the discussion of the previous section, there is a unique 1-form η ∈
Ω1(M,End(V )) so that

∇ = d+ η.

This η is often referred to as the connection 1-form, though it is important to
keep in mind that it is dependent on the specific choice of trivialization of E.
See Remark 4 for a further discussion.

A.4 Connections on principal bundles

Let G be a Lie group with Lie algebra g. Suppose π : P ! M is a principal
G-bundle; when P is compact, this is equivalent to assuming that G acts freely
on P on the right. The vertical bundle is the subbundle V := ker(π∗) ⊆ TP
given by the kernel of the pushforward π∗. This is canonically trivializable, with
trivialization given by

P × g −! V

(p, ξ) 7−! ξ#(p) :=
d

dt

∣∣∣
t=0

p exp(tξ).

A (Ehresmann) connection on P is a choice of K-invariant splitting of the
sequence

0 −! V ↪−! TP
π∗−! TM −! 0.

There are various equivalent way to encode this information. One is as a G-
equivariant bundle map TP ! V that restricts to the identity on V. Since the
vertical bundle is canonically-trivializable, such a bundle map is equivalent to
a map A : TP ! g that is equivariant

R∗
gA = Ad(g−1)A, ∀g ∈ G

and vertical
ιξ#A = ξ, ∀ξ ∈ g;

here Rg : P ! P is the diffeomorphism given by right multiplication by g. I
generally find this map A the most useful, so when I use the word “connection”
in a principal bundle setting I am usually referring to it. Note that a connection
A is a 1-form on P with values in g:

A ∈ Ω1(P, g).
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Another way to encode the data of a connection is via a horizontal bundle.
Specifically, an Ehresmann connection is equivalent to prescribing a subbundle
H ⊆ TP that is G-equivariant

(Rg)∗H = H, g ∈ G

and that is horizontal in the sense that

TP = V ⊕H.

ThisH is the horizontal bundle associated to the Ehresmann connection, though
sometimes people use the term “connection” or “Ehresmann connection” to refer
to H. Its relationship with A is given by

H = ker(A).

Now suppose P ′ ! M ′ is another principal G-bundle and F : P ′ ! P
is an equivariant bundle map covering some smooth map f : M ′ ! M . If
A ∈ Ω1(P, g) is a connection on π : P ! M , then so too is its pullback F ∗A ∈
Ω1(P ′, g) (pullback defined in the usual way one pulls back a differential form).
A particularly useful application of this is when we start with a smooth function
f :M ′ !M (but not a bundle P ′). Then we can create the pullback bundle

f∗P := {(x, p) ∈M ′ × P | F (x) = π(p)} .

This is naturally a principal G-bundle overM ′, and the projection to the second
component gives a bundle map F : f∗P ! P covering f . People often set

f∗A := F ∗A ∈ Ω1(f∗P, g)

and call A the pullback connection on f∗P . As an example, if P = M × G is
trivial, then f∗P =M ′ ×G is also trivial and F (x, g) = (f(x), g).

A k-form ϕ ∈ Ωk(P, g) is called basic if it is equivariant

R∗
gϕ = Ad(g−1)ϕ, ∀g ∈ G

and horizontal
ιξ#ϕ = 0, ∀ξ ∈ g.

Write
Ωℓ(P, g)basic

for the set of all basic ℓ-forms on P . This is a vector space. Write

P (g) := P ×Ad g =
P × g

(p, ξ) ∼ (pg,Ad(g−1)ξ)

for the bundle over M associated to the adjoint representation of G on g. It
is a standard result (and a good exercise in notation-juggling) that there is a
natural bundle isomorphism

π∗P (g) ∼= P × g.
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At the level of forms, the pullback gives a vector space isomorphism

π∗ : Ωk(M,P (g))
∼=−! Ωk(P, g)basic.

Suppose A and A′ are two connections on P . Then the difference A−A′ is a
basic 1-form. As such, it follows that A−A′ = π∗η for a unique η ∈ Ω1(M,P (g)).
Conversely, if A is a connection on P and η ∈ Ω1(M,P (g)), then A + π∗η is
another connection on P . In this way, the space of connections on P is an affine
space modeled on the vector space Ω1(M,P (g)).

A.5 The trivial connection in the principal bundle setting

Suppose P =M ×G is the trivial principal G-bundle. Then the tangent bundle

TP = π∗
1TM ⊕ π∗

2TG (5)

naturally splits, where π1 : M × G ! M and π2 : M × G ! G are the
projections. The second factor π∗

2TG = V is the vertical bundle. In this setting,
the trivial Ehresmann connection is defined to be the one with horizontal bundle
H = π∗

1TM , so the projection TP ! V = π∗
2TG is exactly the one provided

by the direct sum decomposition (5). Write Atriv ∈ Ω1(P, g) for the connection
of the trivial Ehresmann connection; I will call this the trivial connection on
M ×G.

Suppose P is trivial and A is any connection on P . As we saw above, the
difference A − Atriv is a basic 1-form and so there is a unique η ∈ Ω1(M, g)
so that difference A = Atriv + π∗η. Since Atriv is canonically determined by
the trivialization of P , people often identify A and η, and refer to this η as the
connection 1-form.

Remark 4. (a) A connection 1-form is a 1-form onM , while the connection is a
1-form on P . We can only get a connection 1-form when there is a trivialization
of the bundle floating around.

(b) In this way, one also can create from a connection a local connection
1-form on M by choosing a local trivialization of P .

A.6 Getting linear connections from connections on prin-
cipal bundles

Now I will briefly describe how connections in the principal bundle setting
produce linear connections. For this, consider the trivial linear connection
d : Ω0(P, g) −! Ω1(P, g) on the trivial vector bundle P × g ! P . Given
ξ ∈ Ωk(P, g) and ζ ∈ Ωℓ(P, g), write [ξ ∧ ζ] ∈ Ωk+ℓ(P, g) for the form obtained
by wedging on the form parts of ξ, ζ and taking the Lie bracket of the Lie algebra
parts. This wedge-bracket is a bilinear map of the form

Ωk(P, g)⊗ Ωℓ(P, g) −! Ωk+ℓ(P, g).
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It preserves the basic forms, and so determines a product structure

Ωk(M,P (g))⊗ Ωℓ(M,P (g)) −! Ωk+ℓ(M,P (g))

on the space of P (g)-valued forms on M .
If A ∈ Ω1(P, g) is a connection on P , then the formula d+A defines a map

Ω0(P, g) ! Ω1(P, g), with A acting by [A ∧ ·]. One can check d + A preserves
the basic forms and so determines an operator

dA : Ω0(M,P (g)) −! Ω1(M,P (g))

via the diagram

Ω0(P, g)basic
d+A

−−−−! Ω1(P, g)basic

π∗

x π∗

x
Ω0(M,P (g))

dA−−−−! Ω1(M,P (g))

The operator dA satisfies the Leibniz rule and so is a linear connection on the
vector bundle P (g). At this point the word “connection” is obviously way over-
used, which is why I often refer to dA as the covariant derivative associated
to A. You can also check (depending on how bored you are) that this process
intertwines the notions of pullback in the two settings. That is, if F : P ′ ! P
is a bundle isomorphism, then dF∗A = F−1 ◦ dA ◦ F .

The trivial connection in the principal bundle setting recovers the trivial
connection in the vector bundle setting as follows: If P = M × G is trivial,
then the adjoint bundle P (g) = M × g is canonically trivial, and the covariant
derivative

dAtriv
= d : Ω0(M, g) −! Ω1(M, g)

associated to Atriv is the trivial connection d on the trivial vector bundleM×g.
There is also a way of going from a linear connection ∇ : Ω0(M,E) !

Ω1(M,E) to a connection on a principal bundle. The principal bundle will be an
appropriate frame bundle of E. For example, suppose E is a real vector bundle
of rank r. Define P ! M to be the frame bundle of E (so the fiber of P over
x ∈M is the set of bases of the fiber of E over x). Then P is naturally a principal
GL(Rr)-bundle and ∇ defines a horizontal bundle (Ehresmann connection) H
by those linearized frames s at p ∈ P with ∇s vanishing at p.

Example 7. If E = M × Rr is trivial, then P = M × GL(Rr) is trivial too.
If ∇ is any connection on M × Rr, then we can write ∇ = d + η where the
connection 1-form η ∈ Ω1(M,End(Rr)) is a matrix-valued 1-form on M ; that
is, it is a map η : TM ! End(Rr) = gl(Rr). In the principal bundle setting,
this corresponds to the 1-form

Atriv + π∗η ∈ Ω1(P, gl(Rr))

on P , the kernel of which is the Ehresmann connection H.

The takeaway is that, of the many different notions of “connection” that I
have defined above, they are all equivalent in an appropriate sense.
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A.7 Curvature

Suppose A ∈ Ω1(P, g) is a connection on a principal G-bundle P !M . Define

F̃A := dA+ [A ∧A] ∈ Ω2(P, g).

This is a basic 2-form, and so there is a unique FA ∈ Ω2(M,P (g)) so that

π∗FA = F̃A.

This 2-form FA is called the curvature of A. Note that if g is abelian, then its
Lie bracket vanishes and so F̃A = dA.
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