
A note on product manifolds
and shrinking á la Kaluza–Klein

David L. Duncan

Suppose Z = X × Y is a product of two manifolds X and Y, and equip Z
with a product metric. In this note I compute various metric quantities (e.g., the
Hodge star and curvature) on Z in terms of analogous quantities on X and Y.
My primary interest is to write down explicit expressions for how these quan-
tities vary when the metric on the second factor is conformally scaled. These
types of metric variations have been explored for a very long time. A now-
famous instance of this appeared about a century ago in the physics literature:
Kaluza [4] and Klein [5] observe that on a product 5-manifold X4 × S1, when
the S1-factor is scaled to zero, the Einstein equation on X4 × S1 decouples to
produce the Einstein equation on X4 and Maxwell’s equation on X4. My own
interest in metric variations of this type are rooted in Atiyah’s heuristic [1] mo-
tivating the Atiyah–Floer conjecture [2, 3]. Despite the fancy-sounding words
of the previous several sentences, this note contains nothing particularly new
or really even terribly interesting; it is just a collection of notes that I have found
useful over the years and I figure they may be worth sharing.

In various examples below I will restrict to the case where X = R or X =
R × R; in both cases X will be equipped with the standard metric and orien-
tation. The variable s (resp. ordered pair (s, t)) will always be the standard
coordinate variable on R (resp. R × R). For example, the metric on R × R

is then ds2 + dt2, and the volume form is ds ∧ dt. If you, the reader, prefer
compact spaces, you are free to replace R by S1 at any time.

1 Basic Riemannian geometry of (Z, gϵ)

1.1 Metrics

Throughout this document, gX (resp. gY) will be a metric on X (resp. Y). The
aforementioned product metric on Z is the metric given by

g = π∗
X gX + π∗

YgY

on Z, where πX (resp. πY) is the projection to X (resp. Y). I will refer to g as
the standard metric on Z.

These pullbacks in the definition of g are cumbersome and their absence
won’t generally lead to a confusion, so I will generally drop them from the
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notation. For example, I will instead write things like

g = gX + gY.

The specific metric variations I will consider are given by

gϵ := gX + ϵ2gY

where ϵ > 0 is a constant. Call gϵ the ϵ-metric on Z.

Remark 1.1. I like to think of ϵ as small, so Z looks like a copy of Y slightly “thick-
ened” by X, but in principle this constant can be any value (e.g., very large). Of
course, taking ϵ = 1 this ϵ-metric g1 = g recovers the standard metric on Z. This is
the now-famous long wire analogy: from afar a long wire looks 1-dimensional, but if
you zoom in it looks like a cylinder. The wire is R × S1 and “from afar” corresponds
to the metric on the S1-factor being very small.

1.2 Orientations

The orientations on X and Y induce an orientation on Z = X × Y via the “left-
to-right convention”. This is equivalent to postulating that the volume form
dvol on Z is the product

dvol = dvolX ∧ dvolY

of the (pullbacks of the) volume forms on X and Y. The volume form just
written down is the volume form of the standard metric. The volume form of
the ϵ-metric is

dvolϵ = ϵdim(Y)dvolX ∧ dvolY = ϵdim(Y)dvol.

Note that under the left-to-right orientation convention, the map

X × Y −→ Y × X
(x, y) 7−→ (y, x) (1)

is orientation-reversing if and only if X and Y are both odd-dimensional. This
is because

dvolX ∧ dvolY = (−1)dim(X)dim(Y)dvolY ∧ dvolX .

Remark 1.2. If you are bothered by the fact that in this document I only consider
the case where the metric on Y in X × Y is scaled, leaving untreated the mirror case
where the metric on X is scaled, rest assured that you can use the diffeomorphism (1)
to convert between the two cases and it will at worst cost you a minus sign (I will leave
these details up to you).
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1.3 The pointwise norm

I will write | · | (resp. | · |ϵ) for the pointwise norm relative to g (resp. gϵ),
whether this is on vectors or on covectors. Then we have

|vector on X|ϵ = |vector on X|
|vector on Y|ϵ = ϵ|vector on Y|

where a “vector on X” is a vector on Z = X × Y that is supported in the X-
directions (if you’re confused by this, it would be a good exercise to define this
rigorously). Viewing ϵ as small (less than 1, say) the above identities express
the fact that vectors on Y are getting smaller as we pass from g to gϵ since if v
is a unit vector on Y in the g-norm, then v has length ϵ in the gϵ-norm.

The analogous identities for covectors are obtained from duality:

|covector on X|ϵ = |covector on X|
|covector on Y|ϵ = ϵ−1|covector on Y|.

Note that for ϵ < 1, covectors (and hence 1-forms) are larger in the ϵ-metric.
Following a standard procedure that is reviewed in the next section, each

alternating product ΛkT∗Z inherits a fiber metric from gϵ, and thus we obtain
a pointwise metric and norm on k-forms. I will also write | · |ϵ for this norm
and I will set | · | := | · |1. Then this satisfies

|k-form on X|ϵ = |k-form on X|
|k-form on Y|ϵ = ϵ−k|k-form on Y|. (2)

Remark 1.3. As discussed in the next section, there are actually several standard
ways to define this inner product, and they have to do with whether one defines α ∧ β

as α ⊗ β − β ⊗ α, or as this same formula but with a nonzero scalar (such as 1/
√

2) in
front. The identities (2) for | · |ϵ hold regardless of which choice of scalar one chooses.

2 The Hodge star

Let E be a real, oriented vector space of dimension n and equip this with
an inner product ⟨·, ·⟩. Pick an oriented orthonormal basis u1, u2, . . . , un for
E. Then the volume form associated to this inner product and orientation is
dvol := u1 ∧ u2 ∧ . . . ∧ un. The inner product on E induces an inner product
on the alternating product ΛkE for each integer k; this is reviewed in Section
2.4 for those interested. I will use the same symbol ⟨·, ·⟩ to denote the inner
product on ΛkE, and I will write | · | for its associated norm.

The Hodge star on E is the linear map ∗ : ΛkE → Λn−kE with the property
that if α ∈ ΛkE, then ∗α ∈ Λn−kE is the unique multivector satisfying

β ∧ ∗α = ⟨β, α⟩dvol, ∀β ∈ ΛkE. (3)
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If you haven’t done this exercise, it is worth checking that ∗α really is uniquely
determined by the condition (??). Moreover, since both sides of (??) are sym-
metric and bilinear in (α, β), one can show that the Hodge star is uniquely
determined by the ostensibly weaker characterization that

α ∧ ∗α = |α|2dvol

for all α ∈ ΛkE (this is the equivalence of a quadratic form and its associated
symmetric bilinear form, but it too is a worthwhile computation if you haven’t
gone through it). In Section 2.5 I give yet another characterization of Hodge
star, this time in terms of bases.

While you’re at it, you may as well prove the following useful identities:

∗2α := ∗(∗α) = (−1)k(n−k)α, ∀α ∈ ΛkE
∗(1) = dvol.

Now suppose M is an oriented manifold with a Riemannian metric. Then
each cotangent space T∗

p M is an oriented vector space with an inner product
and so admits a Hodge star. This varies smoothly with the basepoint p and so
the pointwise Hodge star determines a bundle map

∗ : Λ•T∗M −→ Λ•T∗M

covering the identity. This bundle map is called the Hodge star on M. Applying
the Hodge star on M to the values of sections gives a linear map on forms (i.e.,
on sections of Λ•T∗M), and this map is also called the Hodge star.

2.1 Product manifolds

As described in the previous section, the metric and orientation on X (resp. Y)
induces a Hodge star ∗X on X (resp. ∗Y on Y). Likewise, the manifold Z has a
Hodge star ∗ coming from the standard metric and orientation specified above.
Let’s set n := dim(Z). The question I want to answer is this:

How can we compute ∗ in terms of ∗X and ∗Y?

Let’s start with a warm-up: Let ξ ∈ Λ•T∗X be of pure degree on X, but view
it as a form on Z (e.g., by pulling it back under the projection Z = X × Y →
X). The key feature is that, since g is a product metric, the norm of ξ on X
equals its norm on Z. The definition of the Hodge star on Z says ∗ξ is uniquely
determined by

α ∧ ∗ξ = |ξ|2dvol = |ξ|2dvolX ∧ dvolY. (4)

Likewise, the definition of the Hodge star on X says ∗Xξ is uniquely deter-
mined by

ξ ∧ ∗Xξ = |ξ|2dvolX .

Using this latter identity, we have

ξ ∧ (∗Xξ) ∧ dvolY = |ξ|2dvolX ∧ dvolY = |ξ|2dvol

4



which shows that (∗Xξ) ∧ dvolY solves the identity (3) in place of ∗ξ. Since (3)
uniquely characterized ∗ξ, this shows

∗(ξ) = (∗Xξ) ∧ dvolY.

Now let’s do the analogous computation for Y: Fix ψ ∈ Λ•T∗Y of pure
degree. This time we need to reorder:

ψ ∧ ∗ψ = |ψ|2dvol

= |ψ|2dvolX ∧ dvolY

= dvolX ∧
(
|ψ|2ψ ∧ ∗Yψ

)
= (−1)|ψ|dim(X)ψ ∧ dvolX ∧ ∗Yψ.

Here |ψ| is the degree of ψ. From this, we conclude that

∗ψ = (−1)|ψ|dim(X)dvolX ∧ ∗Yψ.

In general, the reader is invited to prove the following via similar lines.

Proposition 2.1. If ξ ∈ ΛkT∗X and ψ ∈ ΛℓT∗Y, then

∗(ξ ∧ ψ) = (−1)ℓ(dim(X)−k)(∗Xξ) ∧ (∗Yψ).

The reason there is an asymmetry in k = |ξ| and ℓ = |ψ| in the power of −1
is due to our left-to-right convention which ‘prefers’ one over the other.

As an example, when X = R and ψ ∈ ΛℓT∗Y we have

∗ψ = (−1)ℓdt ∧ ∗Yψ

∗dt = dvolY

∗(dt ∧ ψ) = ∗Yψ.

since dim(R) = 1.
As another example, when X = R × I and ψ ∈ ΛℓT∗Y, we have

∗ds = dt ∧ dvolY

∗dt = −ds ∧ dvolY

∗ψ = ds ∧ dt ∧ ∗Yψ

∗(ds ∧ dt) = dvolY

∗(ds ∧ ψ) = (−1)ℓdt ∧ ∗Yψ

∗(dt ∧ ψ) = (−1)ℓ+1ds ∧ ∗Yψ

∗(ds ∧ dt ∧ ψ) = ∗Yψ.
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2.2 Conformal scaling

Let me begin with the following general observations about conformal scaling:
Suppose G be any metric on a manifold M, and let c > 0 be a scalar. Writing
| · |G and dvolG for the norm and volume form associated to G, we have

|vector on M|c2G = c|vector on M|G

|k-form on M|c2G = c−k|k-form on M|G

dvolc2G = cdim(M)dvolG.

Now suppose that µ is a form on M of pure degree |µ|, and ∗c is the Hodge star
associated to c2G. Setting ∗ = ∗1 we have

∗cµ = cdim(M)−2|µ| ∗ µ.

This shows how the Hodge star behaves relative to conformal rescaling. This
shows that the Hodge star is conformally invariant in the middle dimension
(odd-dimensional manifolds don’t have a middle dimension).

2.3 The ϵ-metric

Next, let ∗ϵ be the Hodge star on Z associated to the ϵ-metric gϵ = gX + ϵ2gY.
Then we can immediately deduce the following from Proposition 2.1 and the
above conformal scaling properties.

Corollary 2.2. If ξ ∈ ΛkT∗X and ψ ∈ ΛℓT∗Y, then

∗ϵ(ξ ∧ ψ) = (−1)ℓ(dim(X)−k)ϵdim(Y)−2ℓ(∗Xξ) ∧ (∗Yψ).

Thus we have a formula for ∗ϵ that shows the explicit dependence of this
quantity on ϵ.

2.4 Appendix 1: Inner products on tensors and wedges and
things

The point of this section is to give an overview of how the inner product on a
vector space E induces on one ΛkE for each k. If you are already happy with
this fact, feel free to skip this section (frankly, you can skip this whole dang
paper if you want!).

Let E1, E2 be vector spaces. Assume Ej is equipped with an inner product
⟨·, ·⟩Ej , and write | · |Ej for its associated norm. Then these induce an inner
product on E1 ⊗ E2 by multiplying

⟨e1 ⊗ e2, e′1 ⊗ e′2⟩E1⊗E2 := ⟨e1, e′1⟩E1⟨e2, e′2⟩E2 .
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This induces the norm

|e1 ⊗ e2|E1⊗E2
:= |e1|E1

|e2|E2
.

Similarly, we can define an inner product on E1 ⊕ E2 by adding

⟨e1 ⊕ e2, e′1 ⊕ e′2⟩E1⊕E2 := ⟨e1, e′1⟩E1 + ⟨e2, e′2⟩E2 .

This induces a norm | · |E1⊕E2 that satisfies

|e1 ⊕ e2|2E1⊕E2
= |e1|2E1

+ |e2|2E2
.

As for alternating products, view

E1 ∧ E2 ⊂ (E1 ⊗ E2)⊕ (E2 ⊗ E1)

as the subbundle generated by terms of the form e1 ∧ e2 := 1√
2
(e1 ⊗ e2 + e2 ⊗

e1). Then by the above this inherits a metric and a norm. For example, the
norm is given by

|e1 ∧ e2|2E1∧E2
= 1

2

(
|e1 ⊗ e2|2E1⊗E2

+ |e2 ⊗ e1|2E2⊗E1

)
= |e1|2E1

|e2|2E2

(5)

(Note that I have used a not-necessarily-standard convention by including a√
2 in the definition of the wedge product; otherwise the right side of (4) would

have a factor of 2 on the right.)
Now consider the case where E1 = E2 are equal, and set E := E1. There is

another way to arrive at this inner product on E ∧ E: Fix an orthonormal basis
u1, . . . , un for E. Then ui ∧ uj for 1 ≤ i < j ≤ n is a basis for E ∧ E, and the
inner product defined in the previous paragraph is the unique one for which
this frame is orthonormal.

The above discussion extends to products, sums, and alternating products
of more than two vector spaces as well, though there is a choice involved for
the wedge product (analogous to my choice of using a

√
2). I will pin this down

but only in the special case I need, which is the case in which all vector spaces
in sight are equal. Specifically, using the notation of the previous paragraph,
on the alternating product ΛkE I will consider the inner product for which the
frame

ui1 ∧ ui2 ∧ . . . ∧ uik , for 1 ≤ i1 < i2 < . . . < ik ≤ n

is orthonormal. Then this satisfies

|α ∧ β| = |α||β|

for any
α, β ∈ Λ•E :=

⊕
k

ΛkE.
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2.5 Appendix 2: Basis characterization of ∗
Here I will outline another equivalent characterization of the Hodge star that
can be useful at times (though I prefer to avoid it if I can). More specifically, the
Hodge star can be defined in terms of the frame for ΛkE coming from a choice
of orthonormal basis u1, . . . , un for E. To describe this, it is convenient to use
multi-index notation here:

uI := ui1 ∧ ui2 ∧ . . . ∧ uik

where I := (i1, i2, . . . , ik) is an ordered tuple of k integers i1, . . . , ik ∈ {1, . . . , n}.
Unless otherwise specified, I will always assume the entries of I are strictly
increasing. Note that an orthonormal basis for ΛkE is given by the set uI for
strictly increasing multi-indices I = (i1, i2, . . . , ik) of length k.

Define Ic to be the multi-index of length n − k obtained by listing the com-
plementary indices {1, . . . , n} \ {i1, . . . , ik} in increasing order. With some care-
ful thought, but without writing anything down, I was able to convince myself
that there is some σI ∈ {−1, 1} with

uI ∧ uIc = σIdvol.

I bet you can convince yourself too! If you want a bit more, here are some
extra words: the sign is determined by counting the interchanges necessary to
arrange the entries of uI ∧ uIc so the indices are in increasing order.

With this notation in hand, the Hodge star is equivalently characterized by
the identity

∗eI = σIeIc

for all multi-indices I. Since the eI are a basis for
⊕

k ΛkE, this can be used to
define ∗ uniquely.

3 Curvature

3.1 The Riemannian Curvature Tensor

In general, for a metric G on a manifold M, we have the Riemannian curvature
endomorphism RG defined by

RG : TM ⊗ TM ⊗ TM −→ TM

(X, YZ) 7−→ RG(X, Y)Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z,

where ∇ is the Levi-Civita connection. The Riemmanian curvature tensor is
then defined by

RmG(W, X, Y, Z) := G(W, RG(X, Y)Z).
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This Riemannian curvature tensor is well-behaved under products in the fol-
lowing sense: If M = M1 × M2 and G = G1 + G2 is a product, then

RmG(W1 + W2, X1 + X2, Y1 + Y2, Z1 + Z2)
= RmG1(W1, X1, Y1, Z1) + RmG2(W2, X2, Y2, Z2),

where Wi, Xi, Yi, Zi are tangent vectors on Mi. That is,

RmG = RmG1 + RmG2

where it is understood that the tensors on the right are pulled back to M1 × M2
via the obvious projections.

We need one more formula: Suppose c > 0 is a constant. The associated
Riemannian curvature tensor of c2G is related to that of G in the expected way:

Rmc2G = c2RmG.

With these tools in hand, let’s now turn to the ϵ-metric gϵ = gX + ϵ2gY on
Z = X × Y. Define

Rmϵ := Rmgϵ ,

and set RmX := RmgX and RmY := RmgY . Then applying the above formulas,
we obtain

Rmϵ = RmX + ϵ2RmY.

For example, this shows that if X is flat, then Rmϵ = ϵ2RmY, while if Y is flat,
then Rmϵ = RmX is independent of ϵ.

The Ricci curvature satisfies the same sort of product property that the Rie-
mannian curvature tensor satisfies:

RicG = RicG1 + RicG2 ,

However, it is invariant under constant conformal rescaling:

Ricc2G = RicG

(c > 0 needs to be a constant here). This implies that the Ricci curvature of gϵ is
independent of ϵ:

Ricϵ = RicX + RicY,

where I hope by now you can guess at what I mean by Ricϵ, RicX , and RicY.
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