February 19, 2013

Nam

KEY

By printing my name I pledge to uphold the honor code

The last page of this exam is a pair of matrices and their reduced row echelon form. They will help with the computational portion of the exam (in more than one place). It is possible you will not need all of the matrices on the back page and it is also possible that you will want the reduced row echelon form of a matrix not on this list. In some cases, the reduced row echelon form of a matrix is not provided because there are 'tricks' that can be used to tell us enough information about the rref that we don't need to actually compute it.

need to actually compute it.		
1.	Fi	ll in the blank.
4	a)	The equation we solve to see if $\{v_1, v_2,, v_n\}$ are linearly independent/dependent is
		$C_1 V_1 + C_2 V_2 + \cdots + C_n V_n = C_1 $ (solve for).
		The vectors are linearly independent if $\underline{C_1 = C_2 = \cdots = C_n = 0}$ and sawcay.
2	b)	The Span of the set $\{v_1, v_2,, v_n\}$ is (give an English/mathematical expression that will be useful for the computation section of the exam)
		3 Cyty+Cyty++Cyty Without CIER?
	c)	A basis for a vector space V is a subset $\mathcal B$ such that the elements of $\mathcal B$ are
4		HMS/PLY WORPONDONS and 3PAN V
2.		nich of the following are vector spaces and why/why not ? (You don't need to show all of the perties if a set is a vector space, just indicate why they hold or which ones fail to hold.)
3.		with the operations of ordinary addition and ordinary multiplication. Not A VS, INVESTED DON'T BAST RORE REPORT TO BUT -24 ROBERT TO BUT
		2 PTS FER
5	a)	The subset of $M_{2\times 2}(\mathbb{R})$ consisting of invertable matrices. Not a Subspace, Not closur under S. Multi- $O(O) = O(O) = O$
	1.5	Let the vector space $V = F[0,1]$ (where $F[0,1]$ is the set of real valued functions on the interval [0,1]). Is the subset F consisting of functions $f(x)$ such that $f(x) = 0$ a subspace?
50	W	The subset 5 consisting of functions $f(x)$ such that $f(3) = 0$ a subspace: WES. CLOSED UNDUR + SINCE FIGE FIGHT ST. $F(Y_2) = g(Y_2) = 0$ WO THIS $(f+g)(Y_2) = f(x) + g(Y_2) + g(Y_2) = 0 + 0 = 0$. WO THIS CLOSED UNDUR 5. MULT. SINCE IF CER, f AS ABOUT. CF($(Y_2) = C \cdot 0 = 0$. WORTH 1 PT BACK FUR SAULING

$$\begin{cases}
\begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 1 \\ 0 \end{pmatrix}
\end{cases}
\begin{cases}
4 \\
\begin{cases} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 9 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 7 \end{pmatrix}
\end{cases}
\end{cases}
\begin{cases}
4 \\
\begin{cases} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}
\end{cases}$$

$$\begin{cases} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 9 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \\ 7 \end{pmatrix}
\end{cases}
\end{cases}
\end{cases}
\end{cases}
\begin{cases}
4 \\
\begin{cases} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}
\end{cases}$$

$$\begin{cases} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}
\end{cases}$$

$$\begin{cases} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}
\end{cases}$$

$$\begin{cases} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}
\end{cases}$$

$$\begin{cases} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}
\end{cases}$$

$$\begin{cases} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}
\end{cases}$$

$$\begin{cases} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}
\end{cases}$$

$$\begin{cases} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\$$

$$\begin{cases}
\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -3 \\ -1 & 1 \end{pmatrix}
\end{cases}$$

$$\begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & 3 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & 3 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
So No

PROF VAR.

So LIN INDEP.

5. Which of the following sets of vectors span their indicated vector spaces and why/why not?

a)
$$p,q,r \in P_3$$
 with $p = x^3 + x + 1$, $q = x^2 + x + 1$ and $r = 1$

Note A vectors to span P_3

Ox 1, $\chi_1 \chi^2, \chi^3$ is A BASIS.

LIN. IMOR INSTAND OF 8PM =

c)
$$\begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, and $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ in \mathbb{R}^2

$$a_1\begin{pmatrix} 1 \\ 3 \end{pmatrix} + a_2\begin{pmatrix} 0 \\ 1 \end{pmatrix} + a_3\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

6. Let
$$v_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ and $v_3 = \begin{pmatrix} 1 \\ -3 \\ -1 \\ 1 \end{pmatrix}$.

a) Compute $Span\{v_1, v_2, v_3\}$. Is $\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ in the span?

b) Give a basis for the span you found in part a).

SPAN IS

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$

7. Let
$$A = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & -3 & -1 & 1 \end{pmatrix}$$
 which has reduced row echelon form $\begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 4 \end{pmatrix}$.

The dimension of NS(A) is _____ and the rank of A is ______

Compute the Column Space of A.

Citisch:
$$\begin{vmatrix}
1 & -1 & 0 & 1 \\
2 & 1 & 1 & 6 \\
1 & -3 & -1 & 1
\end{vmatrix} = \begin{vmatrix}
1 & -2 & +1 \\
2 & +2 & -4 \\
1 & -6 & +4 & +1
\end{vmatrix} = \begin{vmatrix}
6 & 0 & -4 \\
6 & 0 & -4 \\
1 & 1 & 1
\end{vmatrix}$$
Is in ker.

$$\begin{pmatrix} 1 & -1 & 0 & 1/x \\ 2 & -1 & 1 & 0/y \\ 1 & -3 & -1 & 1/2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -1/y - z \\ 0 & 1 & 0 - 2/y - x - z \\ 0 & 0 & 1 & 4/2y - 3x - z \end{pmatrix}$$

Reduced Row Echelon Form

The matrix
$$\begin{pmatrix} 1 & 2 & 1 & x \\ -1 & 1 & -3 & y \\ 0 & 1 & -1 & z \\ 1 & 0 & 1 & w \end{pmatrix}$$
 has reduced row echelon form $\begin{pmatrix} 1 & 0 & 0 & -2x - 3y + 7z \\ 0 & 1 & 0 & x + y - 2z \\ 0 & 0 & 1 & x + y - 3z \\ 0 & 0 & 0 & x + 2y - 4z + w \end{pmatrix}$.

The matrix
$$\begin{pmatrix} 1 & -1 & 0 & 1 & x \\ 2 & 1 & 1 & 0 & y \\ 1 & -3 & -1 & 1 & z \end{pmatrix}$$
 has reduced row echelon form $\begin{pmatrix} 1 & 0 & 0 & -1 & y-z \\ 0 & 1 & 0 & -2 & y-x-z \\ 0 & 1 & 0 & 4 & 2y-3x-z \end{pmatrix}$