238 Chapter 4 Test

March 2	26, 2013 N	Jame:			
Unless of	otherwise specified, <i>solution</i> refers to a rea	By printing my name I pledge to al valued function.	uphold the honor code.		
1. Fil a)	Il in the blank. All solutions to a linear ODE are of the s	form			
	where is a solution to	and	is a solution		
	to				
b)	The solutions to anth order _ n -dimensional vector space.		_ ODE form an		
c)	Our technique for solving homogeneous linear ODE's only applies to ones with				
		and relies on finding the			
	of the				

2. Determine the general solution for the following differential equations.

a)	$y^{\prime\prime\prime}$	-y''	+y'	-y = 0
	-	-	-	-

b) $y'' - 4y' + 4y = e^{-x}$

3. Solve the following initial value problem.

$$y'' - 2y' + 2y = \cos x, \ y(0) = 1, \ y'(0) = 2$$

- 4. Non constant coefficient ODEs.
 - a) Show that the given set of functions forms a fundamental solution set to the homogeneous ODE.

$$\left\{\frac{1}{x}, x\right\}, x^2y'' + xy' - y = 0$$

b) Use the information from part a to find a particular solution to the following non-homogeneous ODE.

$$x^2y'' + xy' - y = \frac{1}{x}$$

5. True/False, circle T or F as appropriate.

a)	Т	F	Phase portraits are not useful for n^{th} order ODEs because the phase portrait would have to live in \mathbb{R}^n because of all the data necessary for an IVP.
b)	Т	\mathbf{F}	The sum of two solutions to a general homogeneous ODE is still a solution to that equation.
c)	Т	F	If λ is a root of the characteristic polynomial for linear constant coefficient homogeneous ODE, then $e^{\lambda x}$ is always a solution to the (homogeneous) ODE, even if it is not a real valued function.
d)	Т	\mathbf{F}	If a complex valued function is a solution to a homogeneous linear ODE, then both is real part and its imaginary part are individually solutions.
e)	Т	F	The above is false for non-linear homogeneous ODEs.

6. More fill in the blanks.

a) An initial value problem for an nth order ODE involves giving ______ extra pieces of

information, usually in the form of ______.

b) The characteristic polynomial for a constant coefficient homogeneous linear ODE is

extracted by substituting y = ______ into the ODE.

c) Given the non-homogeneous linear differential equation $y'' + 3y' + 5y = e^x \cos x$ the method of undetermined coefficients would give our first guess for

 $y_P =$ _____.

- d) The non-homogeneous linear ODE $y'' + 3y' + 5y = \sec x$ is not a good choice for the method of undetermined coefficients because ______.
- e) The method of variation of parameters involves setting

$y_P =$	where	and
solving for	by making the simplifying assumption that	