238 Chapter 5 Test

April 1	6, 2013	Name:	By printing my name I pledge to uphold the honor code.
			By printing my name I pledge to uphold the honor code
. Fil	ll in the blank.		
a)	A function $T: V \to W$ between v	vector spaces V	and W is a linear transformation if the
	following two equations are satisfi	ied:	holds for all
	and		holds for all
b)	A linear transformation $T:V \rightarrow$	W is completely	v determined by its value on
c)	Eigenvalues for a matrix A are fo	und by computi	ng

while eigenspaces are found by computing _____

2. Let
$$T : \mathbb{R}^3 \to \mathbb{R}^2$$
 defined by $T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x - y + z \\ 3y \end{pmatrix}$.

a) Prove that T is a linear transformation using the definition.

b) Let α be the standard basis for \mathbb{R}^3 and β be the standard basis for \mathbb{R}^2 . Find $[T]_{\alpha}^{\beta}$.

3. Given
$$T : \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $T\left(\begin{pmatrix} 1\\1 \end{pmatrix}\right) = \begin{pmatrix} 0\\5 \end{pmatrix}$ and $T\left(\begin{pmatrix} -1\\2 \end{pmatrix}\right) = \begin{pmatrix} -3\\1 \end{pmatrix}$

a) Given the matrix for T in terms of the standard basis.

$$[T] =$$

b) Give a matrix $[T]^{\beta}_{\beta}$ such that $[T]^{\beta}_{\beta}$ is in Jordan canonical form for some basis β . You do not need to find β .

$$[T]^{\beta}_{\beta} =$$

- 4. The characteristic polynomial of the matrix $A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$ is $(\lambda + 1)^2 (\lambda 8)$.
 - a) Compute all of the eigenspaces for the matrix A. You may not need all of the blanks.

$$E_{_} = \{ \}.$$

 $E_{_} = \{ \}.$
 $E_{_} = \{ \}.$

b) Find P and D such that D is diagional and $A = PDP^{-1}$.

$$D =$$

$$P =$$

- 5. True/False, circle T or F as appropriate. If you have time after you have finished the rest of the exam you may go back and explain your answers for possible partial credit/extra credit.
 - a) **T F** If $T(\mathbf{0}_V) \neq \mathbf{0}_W$, then T is not a linear transformation.
 - b) **T F** The definition of matrix multiplication from Chapter 1 comes from what we would need for composition of linear transformations to be multiplication of the cooresponding matrices.
 - c) **T F** Every matrix has a unique Jordan canonical form (up to reordering the jordan blocks).
 - d) **T F** A two by two matrix with repeated eigenvalues is either already diagional or not diagionalizable.

e) **T F**
$$\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$
 is an eigenvector for $\begin{pmatrix} 1 & -1 & 2 & 1\\ -6 & 9 & -1 & 1\\ 1 & 2 & -3 & 3\\ 4 & -2 & 1 & 0 \end{pmatrix}$.

6. More fill in the blanks.

- a) A matrix is diagionalizable if and only if
- **b)** The dimension of the eigenspace $E_{\lambda} \leq$ _____
- c) Describe one way the diagional form of a matrix can be useful.
- 7. Describe the linear transformation from problem 3 in terms of what the transformation does to \mathbb{R}^2 geometrically.