Math 300 Section 1.1 Additional Problems

1. Let U, V and W vectors in \mathbb{R}^{2} be as follows: $U=\left[\begin{array}{l}2 \\ 1\end{array}\right], V=\left[\begin{array}{r}-2 \\ 3\end{array}\right]$ and $W=\left[\begin{array}{r}3 \\ -5\end{array}\right]$
a) Sketch U, V, and W on the plane.
b) Sketch $U+V$.
c) Sketch $2 U,-3 V$, and $\frac{1}{2} W$.
d) Sketch $-3 V+\frac{1}{2} W$.
2. Show that all of the properties of a vector space hold for $\mathcal{F}(\mathbb{R})$ where $\mathcal{F}(\mathbb{R})$ is defined as in Theorem 1.2 .
3. In each of the following, determine whether the indicated addition and scalar multiplication on ordered pairs of real numbers yields a vector space. If a property holds, show/prove that it does. If a property does not hold, find a counterexample (and show its a counterexample).
a) $\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(x_{1}, y_{2}\right), k \odot(x, y)=(k x, k y)$
b) $\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right), k \odot(x, y)=(k+x, k+y)$
c) $\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(x_{1}+y_{2}, x_{2}+y_{1}\right), \quad k \odot(x, y)=(k x, k y)$
4. Determine whether the indicated addition and scalar multiplication on ordered pairs of positive real numbers yields a vector space. If a property holds, show/prove that it does. If a property doesn't hold, find a counterexample (and show it's a counterexample).
$\left(x_{1}, y_{1}\right) \oplus\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}, y_{1} y_{2}\right), \quad k \odot(x, y)=\left(x^{k}, y^{k}\right)$.
5. Prove the following statements about a vector space \mathcal{V}.
a) A zero vector of \mathcal{V} is unique.
b) For any vector $V \in \mathcal{V}, 0 \cdot V=\mathbf{0}$, where the zero on the left is the number 0 and the $\mathbf{0}$ on the right is the zero vector.
