Additional Suggested HW for Section 3.1, part 2

- 1. Let $T : \mathbb{P}_1 \to \mathbb{P}_2$ be defined by $T(ax+b) = 2ax^2 + bx + (a+b)$.
 - (a) Show that T is a linear transformation.
 - (b) Describe the nullspace of T, NS(T), and the image of T, $T(\mathbb{P}_1)$
 - (c) Is T one-to-one? Is T onto?

2. Let
$$T : \mathbb{R}^4 \to \mathbb{R}^2$$
 be defined by $T\left(\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \right) = \begin{bmatrix} x+2w \\ y+z+w \end{bmatrix}$.

- (a) Use algebra to find a matrix A such that T(X) = AX for all $X \in \mathbb{R}^4$. Why does this show that T is a linear transformation?
- (b) Find bases for NS(T) and $T(\mathbb{R}^4)$.
- (c) Is T one-to-one? Is T onto?

3. Let
$$A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & 5 & -3 \\ -3 & 2 & 4 \end{bmatrix}$$
. Let $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T_A(X) = AX$.

Is T_A one-to-one? Is T_A onto? (Notice: I didn't ask for bases for any spaces, so you can use dimension or equivalent results.)

4. Let
$$A = \begin{bmatrix} 1 & 3 & 4 \\ -2 & -5 & -3 \\ 1 & 4 & 9 \end{bmatrix}$$
. Let $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T_A(X) = AX$.

Is T_A one-to-one? Is T_A onto? (Notice: I didn't ask for bases for any spaces, so you can use dimension or equivalent results.)