Additional Suggested HW for Section 3.1, part 2

1. Let $T: \mathbb{P}_{1} \rightarrow \mathbb{P}_{2}$ be defined by $T(a x+b)=2 a x^{2}+b x+(a+b)$.
(a) Show that T is a linear transformation.
(b) Describe the nullspace of $T, N S(T)$, and the image of $T, T\left(\mathbb{P}_{1}\right)$
(c) Is T one-to-one? Is T onto?
2. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ be defined by $T\left(\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]\right)=\left[\begin{array}{c}x+2 w \\ y+z+w\end{array}\right]$.
(a) Use algebra to find a matrix A such that $T(X)=A X$ for all $X \in \mathbb{R}^{4}$. Why does this show that T is a linear transformation?
(b) Find bases for $N S(T)$ and $T\left(\mathbb{R}^{4}\right)$.
(c) Is T one-to-one? Is T onto?
3. Let $A=\left[\begin{array}{rrr}1 & 3 & -2 \\ 2 & 5 & -3 \\ -3 & 2 & 4\end{array}\right]$. Let $T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $T_{A}(X)=A X$.

Is T_{A} one-to-one? Is T_{A} onto? (Notice: I didn't ask for bases for any spaces, so you can use dimension or equivalent results.)
4. Let $A=\left[\begin{array}{rrr}1 & 3 & 4 \\ -2 & -5 & -3 \\ 1 & 4 & 9\end{array}\right]$. Let $T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $T_{A}(X)=A X$.

Is T_{A} one-to-one? Is T_{A} onto? (Notice: I didn't ask for bases for any spaces, so you can use dimension or equivalent results.)

