Additional HW for Section 3.3

1. Determine whether the following statements are true or false. Justify your answers.
(a) If A is an invertible matrix, then A^{-1} and A^{2} are invertible.
(b) If A and B are invertible $n \times n$ matrices, then $A^{-1} B^{-1}$ is the inverse of $A B$.
(c) If A and B are invertible $n \times n$ matrices, then $A+B$ is invertible.
(d) If A is an invertible $n \times n$ matrix, then the equation $A X=B$ has at least one solution for each B in \mathbb{R}^{n}.
(e) If A is an invertible $n \times n$ matrix and B and C are $n \times p$ matrices with $A B=A C$, then $B=C$.
(f) If A can be row reduced to the identity matrix, then A must be invertible.
(g) If A is an invertible $n \times n$ matrix, then $A X=\mathbf{0}$ has nontrivial solutions.
(h) If A is an $n \times n$ matrix and the columns of A span \mathbb{R}^{n}, then A is invertible.
(i) If A and B are $n \times n$ matrices such that $A B=0$ and B is invertible, then $A=0$.
2. Explain why a square matrix containing a zero row or a zero column cannot be invertible.
3. Suppose A and B are $n \times n$ matrices and $C=A B$ is invertible. Prove that both A and B are invertible and find A^{-1} and B^{-1}. (Hint: Find a formula for A^{-1} that involves C^{-1} and B. Similar hint for B^{-1}.)
4. Suppose A is an $n \times n$ matrix and there exists a matrix B such that $B A=I$. Prove that $N S(A)=\{\overrightarrow{0}\}$. Why does this show that A is invertible?
5. Suppose A is an $n \times n$ matrix and there exists a matrix B such that $A B=I$. Prove that, for each $Y \in \mathbb{R}^{n}, A X=Y$ has at least one solution. Why does this show that A is invertible.
6. Prove that the inverse of an invertible matrix is unique.
