Additional HW for Section 3.3

- 1. Determine whether the following statements are true or false. Justify your answers.
 - (a) If A is an invertible matrix, then A^{-1} and A^2 are invertible.
 - (b) If A and B are invertible $n \times n$ matrices, then $A^{-1}B^{-1}$ is the inverse of AB.
 - (c) If A and B are invertible $n \times n$ matrices, then A + B is invertible.
 - (d) If A is an invertible $n \times n$ matrix, then the equation AX = B has at least one solution for each B in \mathbb{R}^n .
 - (e) If A is an invertible $n \times n$ matrix and B and C are $n \times p$ matrices with AB = AC, then B = C.
 - (f) If A can be row reduced to the identity matrix, then A must be invertible.
 - (g) If A is an invertible $n \times n$ matrix, then $AX = \mathbf{0}$ has nontrivial solutions.
 - (h) If A is an $n \times n$ matrix and the columns of A span \mathbb{R}^n , then A is invertible.
 - (i) If A and B are $n \times n$ matrices such that AB = 0 and B is invertible, then A = 0.
- 2. Explain why a square matrix containing a zero row or a zero column cannot be invertible.
- 3. Suppose A and B are $n \times n$ matrices and C = AB is invertible. Prove that both A and B are invertible and find A^{-1} and B^{-1} . (Hint: Find a formula for A^{-1} that involves C^{-1} and B. Similar hint for B^{-1} .)
- 4. Suppose A is an $n \times n$ matrix and there exists a matrix B such that BA = I. Prove that $NS(A) = {\vec{0}}$. Why does this show that A is invertible?
- 5. Suppose A is an $n \times n$ matrix and there exists a matrix B such that AB = I. Prove that, for each $Y \in \mathbb{R}^n$, AX = Y has at least one solution. Why does this show that A is invertible.
- 6. Prove that the inverse of an invertible matrix is unique.