Additional Suggested HW for Section 3.5

1. Let β be the ordered basis $\{x^2 + x + 1, x^2 - x + 1, x^2 + 2\}$ for \mathbb{P}_2 .

(a) Find
$$[p]_{\beta}$$
 if $p = 4x^2 + 3x + 2$.
(b) Find q if $[q]_{\beta} = \begin{bmatrix} 2\\ -3\\ 7 \end{bmatrix}$

2. Let γ be the ordered basis $\left\{ \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \right\}$ of M(2, 2).

(a) Find *A* is
$$[A]_{\gamma} = \begin{bmatrix} 4 \\ -3 \\ 2 \\ -1 \end{bmatrix}$$
.
(b) Find $[C]_{\gamma}$ if $C = \begin{bmatrix} 6 & 6 \\ 4 & 11 \end{bmatrix}$.

3. Let *n* be a positive integer. Suppose \mathcal{V} is any *n*-dimensional vector space and $\beta = \{X_1, X_2, \ldots, X_n\}$ is any ordered basis for \mathcal{V} . Define the **point or basis transformation** $T^P_{\beta} : \mathbb{R}^n \to \mathcal{V}$ by

$$T_{\beta}^{P}\left(\left[\begin{array}{c}c_{1}\\c_{2}\\\vdots\\c_{n}\end{array}\right]\right) = c_{1}X_{1} + c_{2}X_{2} + \ldots + c_{n}X_{n} \qquad (\text{i.e. } T_{\beta}^{P}([X]_{\beta}) = X).$$

Show that T^P_{β} is a linear transformation.

- 4. True or False: If a statement is true, explain why. If a statement is false, what would you have to change about it to turn it into a true statement.
 - (a) Every vector space \mathcal{V} is isomorphic to some \mathbb{R}^n .
 - (b) \mathbb{P}_{10} is isomorphic to \mathbb{R}^{10} .
 - (c) M(2,3) is isomorphic to \mathbb{R}^6 .
 - (d) If $\beta = \{X_1, X_2, \dots, X_n\}$ is an ordered basis for a finite-dimensional vector space \mathcal{V} , then T_{β}^P is an isomorphism from \mathbb{R}^n onto \mathcal{V} .

5. Suppose $T : \mathbb{R}^3 \to \mathbb{R}^3$ is the linear transformation defined by

$$T\left(\left[\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right]\right) = \left[\begin{array}{c} 17x_1 - 8x_2 - 12x_3\\ 16x_1 - 7x_2 - 12x_3\\ 16x_1 - 8x_2 - 11x_3 \end{array}\right]$$

Let α be the standard basis of \mathbb{R}^3 and let β be the ordered basis of $\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\-1\\2\\2\\0 \end{bmatrix} \right\}$ of

 \mathbb{R}^3 .

- (a) Find $[T]^{\alpha}_{\alpha}$.
- (b) Find $[T]^{\beta}_{\alpha}$.
- (c) Find $[T]^{\beta}_{\beta}$.

(d) If
$$[X]_{\alpha} = \begin{bmatrix} -2\\ 3\\ 1 \end{bmatrix}$$
, find $[T(X)]_{\beta}$.

(e) Suppose γ is the ordered basis of \mathbb{R}^3 formed by $\begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}$, and $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$. Find $[T]^{\beta}_{\gamma}$.

6. Suppose
$$T : \mathbb{R}^3 \to \mathbb{R}^2$$
 is a linear transformation such that
 $T\left(\begin{bmatrix} 2\\-2\\1 \end{bmatrix} \right) = \begin{bmatrix} 2\\0 \end{bmatrix}, T\left(\begin{bmatrix} 1\\0\\2 \end{bmatrix} \right) = \begin{bmatrix} -4\\-1 \end{bmatrix}, \text{ and } T\left(\begin{bmatrix} -3\\5\\0 \end{bmatrix} \right) = \begin{bmatrix} 5\\3 \end{bmatrix}.$

Let \mathcal{E}_2 be the standard basis for \mathbb{R}^2 , \mathcal{E}_3 be the standard basis for \mathbb{R}^3 , and β be the ordered basis for \mathbb{R}^3 formed by $\begin{bmatrix} 2\\-2\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\2 \end{bmatrix}$, and $\begin{bmatrix} -3\\5\\0 \end{bmatrix}$.

- (a) Find $[T]^{\mathcal{E}_2}_{\beta}$
- (b) Find $[T]_{\mathcal{E}_3}^{\mathcal{E}_2}$. (c) If $X = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$, find T(X).
- 7. Suppose that X_1, X_2, X_3 form a basis α for a vector space \mathcal{V} and that T is a linear transformation such that $T(X_1) = X_1 - X_2$, $T(X_2) = X_2 - X_3$, and $T(X_3) = X_3 - X_1$.
 - (a) Find $[T]^{\alpha}_{\alpha}$.
 - (b) Find $[T(X)]_{\alpha}$ if $X = X_1 2X_2 + 3X_3$.
 - (c) Use the result of part b to find T(X) in terms of X_1, X_2, X_3 .