Additional Suggested HW for Section 3.5

1. Let β be the ordered basis $\left\{x^{2}+x+1, x^{2}-x+1, x^{2}+2\right\}$ for \mathbb{P}_{2}.
(a) Find $[p]_{\beta}$ if $p=4 x^{2}+3 x+2$.
(b) Find q if $[q]_{\beta}=\left[\begin{array}{r}2 \\ -3 \\ 7\end{array}\right]$
2. Let γ be the ordered basis $\left\{\left[\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right],\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]\right\}$ of $M(2,2)$.
(a) Find A is $[A]_{\gamma}=\left[\begin{array}{r}4 \\ -3 \\ 2 \\ -1\end{array}\right]$.
(b) Find $[C]_{\gamma}$ if $C=\left[\begin{array}{rr}6 & 6 \\ 4 & 11\end{array}\right]$.
3. Let n be a positive integer. Suppose \mathcal{V} is any n-dimensional vector space and $\beta=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is any ordered basis for \mathcal{V}. Define the point or basis transformation $T_{\beta}^{P}: \mathbb{R}^{n} \rightarrow \mathcal{V}$ by

$$
\left.T_{\beta}^{P}\left(\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]\right)=c_{1} X_{1}+c_{2} X_{2}+\ldots+c_{n} X_{n} \quad \text { (i.e. } T_{\beta}^{P}\left([X]_{\beta}\right)=X\right) .
$$

Show that T_{β}^{P} is a linear transformation.
4. True or False: If a statement is true, explain why. If a statement is false, what would you have to change about it to turn it into a true statement.
(a) Every vector space \mathcal{V} is isomorphic to some \mathbb{R}^{n}.
(b) \mathbb{P}_{10} is isomorphic to \mathbb{R}^{10}.
(c) $M(2,3)$ is isomorphic to \mathbb{R}^{6}.
(d) If $\beta=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is an ordered basis for a finite-dimensional vector space \mathcal{V}, then T_{β}^{P} is an isomorphism from \mathbb{R}^{n} onto \mathcal{V}.
5. Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the linear transformation defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{l}
17 x_{1}-8 x_{2}-12 x_{3} \\
16 x_{1}-7 x_{2}-12 x_{3} \\
16 x_{1}-8 x_{2}-11 x_{3}
\end{array}\right]
$$

Let α be the standard basis of \mathbb{R}^{3} and let β be the ordered basis of $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ 2\end{array}\right]\right\}$ of \mathbb{R}^{3}.
(a) Find $[T]_{\alpha}^{\alpha}$.
(b) Find $[T]_{\alpha}^{\beta}$.
(c) Find $[T]_{\beta}^{\beta}$.
(d) If $[X]_{\alpha}=\left[\begin{array}{r}-2 \\ 3 \\ 1\end{array}\right]$, find $[T(X)]_{\beta}$.
(e) Suppose γ is the ordered basis of \mathbb{R}^{3} formed by $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$, and $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Find $[T]_{\gamma}^{\beta}$.
6. Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a linear transformation such that $T\left(\left[\begin{array}{r}2 \\ -2 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 0\end{array}\right], T\left(\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]\right)=\left[\begin{array}{l}-4 \\ -1\end{array}\right]$, and $T\left(\left[\begin{array}{r}-3 \\ 5 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}5 \\ 3\end{array}\right]$.
Let \mathcal{E}_{2} be the standard basis for $\mathbb{R}^{2}, \mathcal{E}_{3}$ be the standard basis for \mathbb{R}^{3}, and β be the ordered basis for \mathbb{R}^{3} formed by $\left[\begin{array}{r}2 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$, and $\left[\begin{array}{r}-3 \\ 5 \\ 0\end{array}\right]$.
(a) Find $[T]_{\beta}^{\mathcal{E}_{2}}$
(b) Find $[T]_{\mathcal{E}_{3}}^{\mathcal{E}_{2}}$.
(c) If $X=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, find $T(X)$.
7. Suppose that X_{1}, X_{2}, X_{3} form a basis α for a vector space \mathcal{V} and that T is a linear transformation such that $T\left(X_{1}\right)=X_{1}-X_{2}, T\left(X_{2}\right)=X_{2}-X_{3}$, and $T\left(X_{3}\right)=X_{3}-X_{1}$.
(a) Find $[T]_{\alpha}^{\alpha}$.
(b) Find $[T(X)]_{\alpha}$ if $X=X_{1}-2 X_{2}+3 X_{3}$.
(c) Use the result of part b to find $T(X)$ in terms of X_{1}, X_{2}, X_{3}.

