Additional Suggested HW for Section 4.2

1. Use determinants to answer the following questions:
(a) Do $\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right],\left[\begin{array}{r}2 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ -1 \\ 8\end{array}\right]$ form a basis for \mathbb{R}^{3} ?
(b) Are $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$ linearly independent?
(c) Let $A=\left[\begin{array}{rrr}1 & 2 & 1 \\ -1 & 1 & 0 \\ 1 & 5 & 2\end{array}\right]$. Is $N S(A)=\{0\}$? Is multiplication by A one-to-one?
(d) Let $B=\left[\begin{array}{rrrr}2 & -1 & 3 & 5 \\ 2 & 0 & 1 & 0 \\ 6 & 1 & 3 & 4 \\ -7 & 3 & -2 & 8\end{array}\right]$. Do the columns of $B \operatorname{span} \mathbb{R}^{4}$? Is multiplication by B an onto transformation onto \mathbb{R}^{4} ?
2. Why can we not use determinants to decide whether $\left[\begin{array}{r}4 \\ -1 \\ 2 \\ 7\end{array}\right],\left[\begin{array}{r}0 \\ 2 \\ -5 \\ 1\end{array}\right],\left[\begin{array}{r}3 \\ -4 \\ 9 \\ 0\end{array}\right]$ are linearly independent?
