Math 300 Spans Problems

1. Is $\left[\begin{array}{ll}3 & 5 \\ 3 & 6\end{array}\right]$ in $\operatorname{Span}\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]\right\}$?
2. Is $3 x^{2} \in \operatorname{Span}\left\{x^{2}-x, x^{2}+x+1, x^{2}-1\right\}$?
3. Determine whether $x^{2}-4, x^{2}+4$, and $x^{2}+x$ span \mathbb{P}_{2} where \mathbb{P}_{2} is the vector space of all polynials of degree less than or equal to 2 .
4. \mathbb{R}^{n}
a) Suppose that $v_{1}, v_{2}, \ldots, v_{k}$ are vectors in \mathbb{R}^{n}. Explain how you can tell from an echelon form of the matrix $A=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ whether $v_{1}, v_{2}, \ldots, v_{k}$ span \mathbb{R}^{n}. What are you looking for in a matrix to tell you whether the vectors span or not? Why does this feature of the matrix let you make this conclusion?
b) Explain why a set of fewer than n vectors in \mathbb{R}^{n} cannot span \mathbb{R}^{n}.
c) Does this mean that every set of n or more vectors in \mathbb{R}^{n} spans \mathbb{R}^{n} ?
