Math 300 Spans Problems

1. Is $\begin{bmatrix} 3 & 5 \\ 3 & 6 \end{bmatrix}$ in Span $\left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$?

- **2.** Is $3x^2 \in \text{Span}\{x^2 x, x^2 + x + 1, x^2 1\}$?
- **3.** Determine whether $x^2 4$, $x^2 + 4$, and $x^2 + x$ span \mathbb{P}_2 where \mathbb{P}_2 is the vector space of all polynials of degree less than or equal to 2.

4. \mathbb{R}^n

- a) Suppose that $v_1, v_2, ..., v_k$ are vectors in \mathbb{R}^n . Explain how you can tell from an echelon form of the matrix $A = (v_1, v_2, ..., v_k)$ whether $v_1, v_2, ..., v_k$ span \mathbb{R}^n . What are you looking for in a matrix to tell you whether the vectors span or not? Why does this feature of the matrix let you make this conclusion?
- **b)** Explain why a set of fewer than n vectors in \mathbb{R}^n cannot span \mathbb{R}^n .
- c) Does this mean that every set of n or more vectors in \mathbb{R}^n spans \mathbb{R}^n ?