| February | 22, | 2016 | |----------|-----|------| |----------|-----|------| Name: KEY. | | | | By printing my name I pledge to uphold the honor code. | |---------------|-----------|----------------|--| | I. True | e/False, | circle | T or F as appropriate. Then explain your answer by citing specific | | theorem | ns/defini | tions/cor | nputations/etc. as time permits. | | 1. a) | (T) | \mathbf{F} | In a metric space, if the limit of a sequence exists, then it is unique. | | , | | | ANY TWO POINTS HELD A DISTANCE & APLAR | | | | | AND B(x, E/z) ABLY, E/z) = \$ 50 THE CAN'T | | | | | but continouly many soo. Enougy | | b) | | \mathbf{F} | Z is a complete metric space with the LUB property. | | | | | YES! AN CAUCHY SEQ. ARE EVERY BOUNDOD | | | | | SET LETURY CONTHINS ITS LUB (STRONGED THAN) | | c) | (T) | (F) | If $ \{a_n\} = \infty$, then a is a subsequential limit of the sequence $\{a_n\}$ if | | • | W. | | and only if a is a limit point of the set $\{a_n\}$. | | | | | SILL TILL THE A LO A SUBSECTION IS | | | | | | | $\mathbf{d})$ | ${f T}$ | \mathbf{F} | If A is sequencially compact in a metric space X , then every open set | | | | | is finite. EVERY CRON COVER HAS A
FINTE SUBCORDE. IN GONDRAL, FINITE SOTS ARE | | | | | CLOSOD, NOT ORGIN. > IN A MOTER SPACET SEQ CATGOCAT. | | e) | ${f T}$ | \mathbf{F} | Under a continuous function, the inverse image of a connected set is | | S(x) = x2 | | | connected. & SIX -> Y ACY CONNECTOR S(B) CONN | | |)=(-12,-1 | 10(1,52) | FI(A)= &UB=B BLAT F(B) AND F(B) SAP 3 B SAP | | f) | ${f T}$ | (\mathbf{F}) | If the image of a convergent sequence is always convergent, then the $S(\phi) = \emptyset$ | | | | | γ | | | SOUND | | function was continuous. WHAT IF SER. CONVERGES TO NOT PLAN? WHAT IF SER. CONVERGES TO NOT PLAN? | | Ce | SUPLETE | | WOLDNIT BE COMPUTE M.S. COM SCANCIFI WILL STORED CONFIDENT MIS. COM SCANCIFI WILL STORED CONFIDENT M.S. COM SCANCIFI WILL STORED COMPUTE COMP | | $\mathbf{g})$ | | (F) | Given a uniformly continuous function on a bounded set, we can always | | | | | extend that function to a function on the closure of the set. | | | | | RETURNED COMPUSE CATHORNSE WE CAN'T NECUSS. OFFINE | | h) | ${f T}$ | F | The proof for the ordinary Mean Value Theorem depends on la history | | | | | being connected. | | | | | ACTUALLY IT DEPONDS ON CPT | | | | _ | | | $\mathbf{i})$ | T | \mathbf{F} | The only change we need to make in order to define limits at infinity | | | | | and infinite limits, is to the concept of an open ball to a 'neighborhood | | | | | of infinity'. (NEIGHBORHOOD OF INFILMY' (S) $(a_1\infty)$ ' REPLACES $B(a_1\varepsilon)$ (OR $B(a_1\varepsilon)$) | | | | | (a, a) RAPLACES BOYE) (OF DAIL) | | $\mathbf{j})$ | T | ${f F}$ | Taylor's theorem is a generalization of the ordinary MVT. | | | | | WEITE OUT THEILERIS MA. FOR N=1 | | | | | | | 1.1 | T | ${f F}$ | If $f(x)$ is a function such that its x th Taylor polynomial is zero at | | k) | | r | If $f(x)$ is a function such that its <i>n</i> th Taylor polynomial is zero at $f(x) = f(x) f(x)$ | | | | | $x = 0$, then $\lim_{x \to 0} \frac{\sqrt{x}}{x^n} = 0$. | | | | | (Mag) | | II. Def | initions | /Fill in | the blank Please define/state the following. $x = 0, \text{ then } \lim_{x \to 0} \frac{f(x)}{x^n} = 0.$ $x = 0, \text{ then } \lim_{x \to 0} \frac{f(x)}{x^n} = 0.$ $x = 0, \text{ then } \lim_{x \to 0} \frac{f(x)}{x^n} = 0.$ $x = 0, \text{ then } \lim_{x \to 0} \frac{f(x)}{x^n} = 0.$ $x = 0, \text{ then } \lim_{x \to 0} \frac{f(x)}{x^n} = 0.$ $x = 0, \text{ then } \lim_{x \to 0} \frac{f(x)}{x^n} = 0.$ $x = 0, \text{ then } \lim_{x \to 0} \frac{f(x)}{x^n} = 0.$ $x = 0, \text{ then } \lim_{x \to 0} \frac{f(x)}{x^n} = 0.$ $x = 0, \text{ then } \lim_{x \to 0} \frac{f(x)}{x^n} = 0.$ $x = 0, \text{ then } \lim_{x \to 0} \frac{f(x)}{x^n} = 0.$ | | | | • | (SINCE 1,=0) SO YES! | | 1. Wh | at are o | ur two d | different definitions of a continuous function? Give examples of a | | the | orem tha | at is easie | er to prove with one and one that is easier to prove with the other. | | 8 | :X- | > \ | IS CONTINUES IF 4 ESO, 30 ST. PHOPED LEPON) | | ~ | .1 10 | V - | PROJECT TO Prove with one and one that is easier to prove with the other. (See X 200, 3500 St. (SW), S(a)) ZE, | | IP | AHC | X OBPR | PROJING ACRE FORCES | | 0- | 1002) | (CPGN) | Pooling to the most special to the Market | | | ling flt)-She) BXISTSS (AND IS PINNTED). | |----|--| | | Please state the General Mean Value Theorem. What is the central idea behind its proof? J. G. COMMONS ON 1960 S DIFF ON (960) THON J. C. C. (960) - 9(0) = C. (960) - 9(0) PICTRE IS (1941) J. C. C. (960) - 9(0) THIS ON E STANK PLATER IS (1941) J. C. C. (940) W. THIS ON E STANK PLATER IS (1941) PLATER OF THEOREM STANKED TO SEE THE TH | | II | I. Short answer Please answer the following using a sentence or two. $1000000000000000000000000000000000000$ | | | Prove that if $A \subset \mathbb{R}^1$, A is connected implies A is convex. NOTE AD PROSE NOT CONNOT SHAPE IS $2 \in \mathbb{R}^4$. THON $(-\infty, 2) \cap A$ AND $(2,\infty) \cap A$ FORM A SEPARATION OF A (THE CASH LIMIT POINT THOY COULD SHAPE IS $2 \in \mathbb{R}^4$). | | 2. | Outline why every element of the Cantor set is a limit point. PLY 670 PICK CE C. CAMOR SOT. WI CO NHM STAGE OF CAMOR CONSTRUCTION. PICK N 87. $\frac{1}{3}$ N CE, SO XECN AND INDENDED IN CN HAS LONGTH CE \Rightarrow WHOLE INDENDED IS IN B(X,E) \Rightarrow BOTH ITS BNDPOINTS AFE IN INDENDED & AT LEAST 1 IS $+$ X. \Rightarrow Y XEC YESO \Rightarrow YEC WI YEB(N,E). | | 3. | Describe how one would extend a uniformly continuous function $f: \mathbb{R}^n \to \mathbb{R}^m$ to a $\{10^n \text{ N}^{-1}\}$ function on the closure. What do you need to prove about your definition? Will the $\{10^n \text{ N}^{-1}\}$ result be continuous, uniformly continuous, etc.? WHAT POINTER A $\Rightarrow f$ SEO $\{a_n\} \in A$ What $a_n \Rightarrow a_n$. $\{f(a_n)\}_{n=1}^n \text{ is compared } M = \{10^n \text{ is compared } f \text{ is once } G(a_n)\}_{n=1}^n \text{ is once } G(a_n)$. So $G(a_n) \in A$ when $G(a_n) \in A$ where $G(a_n) \in A$ is $G(a_n) \in A$. | | 4. | What can you say about the derivative of a continuous function? Give an example that illustrates how bad the behavior of a derivative can get. INS NOT NOWS SARM CONTINUOS, BUT IT DOES SATISFY WIT. BY. $9(x) = \begin{cases} x^2 \le in(x) \end{cases}$ IF $x \neq 0$ THE NOW HE X=0 BUT Give two different ways to intuitively explain L'Hoptial's rule for limits of type $\frac{0}{0}$. $2x \le in(x) + x^2 \cos x$ | | 5. | Give two different ways to intuitively explain L'Hoptial's rule for limits of type $\frac{0}{0}$. RARES & THYLOR POULS. | | | | | 6. | Prove that $f'(x)$ bounded implies that f is uniformly continuous but that the converse is not necessarily true. Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ that is uniformly continuous on all of \mathbb{R} that is not a line. So with stars $f'(x) = f(x) - f(x) = f(x) - f(x) = f$ | 2. A function is $\underline{\text{differentiable}}$ if ...