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By printing my name I pledge to uphold the honor code.

I. True/False, circle T or F as appropriate. Then explain your answer citing specific
theorems/definitions/computations/etc. as time permits. . A

1. a) F In a metric space, if the limit of a sequence exists, then it is unique.
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b) @ F 7 is a complete metric spa.ce with the LUB property. 4
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/L’L c) @ If |{an}| = co, then a is a Subsequentlal limit of the sequence {a,} if

and only if a is a limit point of the set {an}.
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If A is sequencially compact in a metric space X, then every open set
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e) T @ Under a continuous function, the inverse image of a connected set is
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f) T @ If the 1mage of a convergent sequence is always convergent, then the S =@,
: function was continuous. B
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g) ﬁ/Ti’ F Given a umformly continuous function on a bounded set, we can always o
extend that function to a function on the closure of the set. Lt S AR
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The proof for the ordinary Mean Value Theorem depends on [a, b| S *‘é‘g‘\z\_

being connected.
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i) @ F The only change we need to make in order to define limits at infinity
and infinite limits, is to the concept of an open ball to a ‘neighborhood

of infinity’.  (zlewRoRNEEn o NP s‘,%
(a)°0)  RaRCES ?3(%,6\) (co BDKCS

1) @ F Taylor’s theorem is a generalization of the ordinary MVT.
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k) @ F If f(z) is a function such that its nth Taylor pol’%lomlal I\S)g?zero at
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I1. Definitions/Fill in the blank Please define/state the following. ]
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1. What are our two different definitions of a continuous function? Give examples of a
theorem that is easier to prove with one and one that is easier to prove with the other.
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2. A function is differentiable if ...
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3. Please state the General Mean Value Theorer_n. What is the central idea behind its
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4. Please state Taylor’s Theorem. What is the central idea in‘its proof? <V ' . TO O N
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ITI. Short answer Please answer the following using a sentence or PR AR ” W( i

1. Prove that if A C R!, A is connected i:mplief,\S Ais c?{l\\&?é.
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2. Outline why every element of the Cantor set is a limit point. -
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3. Describe how one would extend a uniformly continuous function f : R¢ — R™ to a (le S
function on the closure. What do you need to prove about your deﬁniﬁi‘t?n? Will the A \,\I\Nﬂ“w‘)
result be continuous, uniformly continuous, etc.? W
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4. What can you say about the derivative of a continuous function? Give an example
that illustrates how bad the behavior of a derivative can get. o
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5. Give two (Ehfferent ways to intuitively explain L’'Hoptial’s rule for limits of type 8. Ixsii ey )Ffo%ﬁz _;_(z
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6. Prove that f'(z) bounded implies that f is uniformly continuous but that the converse
is not necessarily true. Give an example of a function f : R — R that is uniformly

continuous on all of R that is not a, line. _ e DI |
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