April 2	25, 2016	

Name: KEY

		The same of the sa		T or F as appropriate. Then explain your answer by citing specific apputations/etc. as time permits.
	1. a)	Т	F	There are no substantially new metric spaces in Math 411. CX(Y) IS A NOW TYPE OF MOTERS SPACE! (THOUGH WE HAVE SEEN MOTERS THAT COME PROM
	b)	T	F	All sets that are Lebesgue measurable but not Borel measurable have Lebesgue outer measure zero.
	c)	T	${f F}$	AND NEAROST FUMINITY OF B is A so G MFASURO 340. If $A \in \mathcal{L}$ where \mathcal{L} is the Lebesgue σ -algebras, then the Lebesgue measure of A is equal to the Lebesgue outer measure of A .
	d)	T	${f F}$	IF AEZ THEN LEBESCUE OUT DE MONTSUPE IS ACRUAM LODITUS INSTEAD OF JUST SUB-LODITUS. If the uniform limit exists, it is always also a pointwise limit. THE IS POINTWISE LIMIT WHORE NOODEN IS DEPEND ON X!
	e)	Ť	F	If $f_n \to f$ where $f_n, f \in \mathcal{C}_Y(K)$ with K compact, then the convergence was uniform. WE PROPER THIS IN CLASS. NOT TRUE IF KISN'T
	f)		F	All finite sets of continuous functions are equicontinuous. St. UNFORMY!
	g)	T	F	The Cantor function is constant almost everywhere. THIS NOT CONSTANT ON THE CANCER SOT AND (C) =0
	h)	$\widehat{\mathbb{T}}$	F 3n	There exists an example of continuous functions converging (pointwise) to the Dirchlet function (1 for rationals, 0 for irrationals). = lim (cos mitter) lim fm(x) = Director Form.
	i)	1	F	The integral of the uniform limit of functions is the pointwise limit of the integrals. It's Also the uniform limit of uncorn limit of uncorn limit of uncorn limit of limit of uncorn limit of limit of limit of uncorn limit is always also a
	j)	Т	F	The Weierstrass theorem implies that the set of polynomials with coefficients in \mathbb{Q} is dense in $\mathcal{C}_{\mathbb{R}}(\mathbb{R})$
	II. Def	initions	/Fill in	the blank Please define/state the following. (Ta, ot) a(b, a, b)
	N	(年)=	inf { ? nexeu	besgue outer measure. Is it a measure? Why/why not? \[\bi - a_i \ E \ \ \ \ (\air_i \bi) \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
	50	IVE LIE D	(IIII)	luding theorem for Riemann-Stiltches integration? Why did it 2(UB:1=2) of R-S integration? & MONOTONIC INC, &'E R(Sayo)
CMA	f exp(x) [a]	5 aa - 67(3) [a tix	10/00/00 BECAUSE NOW THAT IT IS AN INF CAN GROWLDS THE FTC:

3. We proved that a function with only finitely many discontinuities on [a, b] is in $\mathcal{R}[a, b]$. What is the general, measure theoretic version of this result? What is the central idea in its proof? MEASURE THEORETIC VERSION IS RIGHANN-LEBERGUE FERCSO, 67) @ DISCONTINUINES OF F HAS MEASURE O. TH. WINESOND IDEL OF PROOF: SEPARATE OF RELIEVE BLO 1854 DISCONTINUITOS, MAKE THE PARTITION EVENDING CONTAINING THOSE V. SMALL. THE FACT THAT THE EDST IS 'CLOSE TO CONTINUOS' ALCONS US TO FIND AP FOR THAT PART 580.

4. What is the difference between a pointwise bounded set of functions and uniformly bounded one? Please provide an example. Why did we define these in the first place? ESCN) POINTWISE BOUNDOD IF J 9:X >R St. 15(X)/<9(X) YXEX, XEI. Efalk) BOLLOW IF JM W IFOW YXEX, REI. \$1 (det

Ey=x23 is powerise borrood Ey=sinx3 is one, bodo, due indo them in

Ey=x23 is powerise of the complexities on Cy(X). 5. Please state the real version of the Stone-Weierstrass theorem (be sure to define all of your terms). What is one consequence of the Stone-Weierstrass theorem involving $\mathbb{Q}[x]$? $\mathcal{L} \subset \mathbb{C}_{\mathbb{R}}(\mathbb{K})$ SUB-ALGOBRA (CLOSOO UNDOR +, SCALLE MULT) IS DENSE IN CIPCK) (CONFAINS & NOW-ZURO CONSTANT FOR E SEPARATUS POINTS (IF OFFICK, 3 FELL W/ P(W) + P(M))) Q[X] CONTAINS NOW-ZURD CONSTAIN & IF Q+ 1) > f(X)=2X SEPARATES Q & b III. Short answer Please answer the following using a sentence or two. (a+b = 2a+2b) 1. What does it mean for a set to have Lebesgue outer measure zero? Prove that any countable set has Lebesgue measure zero. 300 W/ ECU(ai,bi) Anno [bi-ai < &.) (E) = 0 = 4 E20 = 3 { [ai,bi] }; W/ ECU(ai,bi) Anno [Ti-1] (THIS USBS DOF & INFORMOM TO BE EQUIVALENT TO [T.1]) LET ECR CONTAINED (WE ONLY DOFINED X' FOR SUBSOFS OF R) 2. Outline the proof of FTC part 1. EC($a_1 - \varepsilon_1$, $a_1 + \varepsilon_1$) $V(a_2 - \varepsilon_1, a_2 + \varepsilon_1) \cup \dots \cup (a_n - \varepsilon_1, a_n + \varepsilon_1) \cup \dots \cup (a_n -$ >== { a, a2, an } THEN FOR ANY 670, CHOOSE OCE, CE, AND PTC 1 SATS IF FEYRSails] > F(x)=[x+Adt is continuous on said] & IF f is continuous LT No, F is DUFF. AT NO W P'(NO) = f(NO). FC 52 NOCT |F(t)-F(S) - S(NO)] = | f f(H) At - f(NO) | S= +(+) - S= +(ND) dt = | S+ +(+) - +(ND) dt CHOOSE S, + SO THIS IS 3. Prove the uniform limit of bounded functions is bounded. LET fix- > Y w/ I fn(x)/ < Mn Amo fn > 9 UNF. =3 Y ENO 7 NSt. 15, (W)-f(W) < E YN>N, YNEX. UST E=1 = 1760/= 1960-2/100/+2/00/= 18(0)-2/100/+12/100/< HMN =008 4 KEX 50 + IS BOUNDED AS WELL. 4. Why was finding a subsequence converging on a countable subset so helpful? What was the missing ingredient to finding a full convergent subsequence and why? EVERY COMPACT SET HAS A COUNTABLE DENSE SUBSET, SO IF ST, CCON(K) & ECK CONTABLE = 3 SUBSED. COM. ON E, OF ANY CHOOSE E TO BE DONSE E, ONE SUBSED CONVECES WITHIN E OF ANY POINT WHICH ALLOWS POINT WORK WEDDOLONG IS EQUICUM WITH WHICH ALLOWS POINT WITH OF AR SUBSED TO GET CONTINUITY 5. Describe the 'basis' of functions used in the proof of the Weierstrass theorem. How was this set of functions helpful in the proof. was this set of functions helpful in the proof? AE (1-X5)N $Q_{n}(x) = c_{n}(1-x^{2})^{n}$ which $c_{n} = \frac{1}{12}(-x^{2})^{n}dx$ ON LOOK HKEN 50 NOUVON TO HAW ARBA WE USED THAN TO DESIGN OR POYNOMIALS buty) = l, t(x++) Oull) My compresing to & etc. IT'S A POW CINCE QUE IS (MULTIPLY IT OUT) & MOST CE Q IS CLOSE TO O.