
Math 411 Homework 1 Answers

1. Continuity and Compactness Let f : X → Y metric spaces.

a) Show that if f is continuous and A ⊂ X is compact, then f(A) is compact.

We talked about this in class, and if you use the topological definition of continuity,
it is quite easy!
To show that f(A) ⊂ Y is compact, let {Uα} be an arbitrary open cover of f(A)
(so Uα ⊂ Y is open and f(A) ⊂

⋃
α Uα). Since f is continuous and Uα is open,

we know that f−1(Uα) ⊂ X is open for all α. Therefore, to show that {f−1(Uα)}
form an open cover, we only need show that A ⊂

⋃
α f
−1(Uα). Let a ∈ A, then, by

definition of the image of a set f(a) ∈ f(A) and since {Uα} covers f(A), there exists
α such that f(a) ∈ Uα and therefore, a ∈ f−1(Uα) by definition of the inverse image
(see the solution to problem 5a for the definition). Therefore, A ⊂

⋃
α f
−1(Uα) and

{f−1(Uα)} form an open cover of A. Since A is compact, there exists a finite subcover
{Uα1 , Uα2 , ..., Uαn} that still covers A. Claim: {Uα1 , Uα2 , ..., Uαn} form an open cover
of f(A) (which is, of course, a finite subcover of our original open cover). To prove our
claim, let y ∈ f(A). Then there exists a ∈ A with y = f(a) (by definition of the image
of a set), and since {f−1(Uαi}ni=1 form an open cover of A, there exists i ∈ {1, 2, ..., n}
with a ∈ f−1(Uαi). Therefore, by the definition of a preimage, y = f(a) ∈ Uαi , so
we can conclude that f(A) ⊂

⋃n
i=1 Uαi . Since our original cover was arbitrary, we

have proven that every open cover has a finite subcover, and therefore f(A) is compact.

b) Use the result of part (a) to prove the extreme value theorem.

The theorem we want to prove is as follows: Let f : [a, b]→ R continuous. Then there
exists m,M ∈ [a, b] such that for all x ∈ [a, b], f(m) ≤ f(x) ≤ f(M). (f(m) is the
minimum value of f(x) on [a, b] and f(M) is the maximum value of f(x) on [a, b].)
Since [a, b] ⊂ R is closed an bounded in the Euclidean metric on Rn for some n ∈ N,
[a, b] is compact, and since f is continuous, by 8a) we get that f([a, b]) ⊂ R1 is
compact as well. Therefore, by problem 1 of this homework, f([a, b]) contains both its
supremium and its infemium. This means that sup f([a, b]) ∈ f([a, b]) and therefore
(by the definition of the image of a set) there exists at least one M ∈ [a, b] with
f(M) = sup f([a, b]). By the definition of the supremium and of the image of a set,
we have f(x) ≤ f(M) for all f(x) ∈ f([a, b]). Similarly, there exists at least one
m ∈ [a, b] with f(m) = inf f([a, b]) and by the definitions of infemium and image of a
set f(m) ≤ f(x) for all f(x) ∈ f([a, b]) which, together with the previous sentence, is
what we wanted to prove.

2. Cantor Set This problem is all about the Cantor middle third set which is achieved
by starting with the interval [0, 1] and taking away first its middle third, then the
middle thirds of the two remaining intervals, then the middle thirds of the four
remaining intervals, etc..

a) Prove that the Cantor set is compact.

Let E0 = [0, 1] which is a closed and bounded subset of R1 so is compact. Assume
that we have En = [0, 1

3n ] ∪ [ 2
3n ,

1
3n−1 ] ∪ · · · ∪ [3

n−1
3n , 1] (which is a closed an bounded

subset of R so compact) and define En+1 by removing the middle third of each
subinterval. The result, is another compact subset of R and by induction, we have
defined En for n ∈ N all of which are compact. Since, by a proof in class, an arbitrary
intersection of compact sets is non-empty, closed and bounded and hence compact,
the Cantor set C =

⋂∞
n=1En is non-empty and compact.
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b) Prove that the Cantor middle third set has zero length.

Using the same notation as above, notice that the length of E0 (written |E0|) is 1−0 = 1.
When we go from E0 to E1, we remove the middle third of the interval, and get |E1 =
1 − 1

3 . Similarly, E2 is constructed from E1 by removing the middle thirds of the two
remaining subintervals, each of which had length 1

3 , which means a total of 2
9 is removed

in this step. Namely |E2| = 1 − 1
3 −

2
9 . By induction |En| = 1 − 1

3 −
2
9 − · · · −

2n−1

3n =

1− 1
2

∑n
i=1

(
2
3

)i
. Therefore, |C| = 1− 1

2

∑∞
i=1

(
2
3

)i
= 1− 1

2

(
1

1− 2
3

− 1
)

= 1− 1 = 0. (We

used the fact that
∑∞

n=0 r
n = 1

1−r if |r| < 1.)

c) Prove that the Cantor set is uncountable.

There are several ways to go about this, one of which is in Abbott, but this one is my
favorite!

We define the trinary decimal expansion of a real number x ∈ [0, 1) as x =
∑∞

n=1 an
1
3n

where ai ∈ {0, 1, 2}. This works exactly like the ordinary decimal expansion of a number
but with powers of 3 instead of powers of 10. With the ordinary base 10 decimal
expansion of x ∈ [0, 1), if x = .b1b2b3... as its ordinary decimal expansion, if b1 = 0,
then x ∈ [0, .1), if b1 = 1, then x ∈ [.1, .2), etc. Similarly, if x = .a1a2a2... as its trinary
decimal expansion, then a1 = 0 implies x ∈ [0, 13), a1 = 1 implies x ∈ [13 ,

2
3) and a1 = 2

implies x ∈ [23 , 1). Therefore, if x ∈ C, either x = 1 or x = 1
3 or a1 = 0 or a1 = 2.

Similarly, the second decimal place tells us which 1
3 of the intervals [0, 13), [13 ,

2
3) or [23 , 1)

is in. In order to be in the cantor set, either x = 1, x = 1
3 , x = 1

9 or x = 8
9 or a2 = 0

or a2 = 2. In fact, if a number x = .a1a2a3... as its trinary decimal expansion with
ai ∈ {0, 2}, then x is not in any middle thirds of intervals, so is in the Cantor set.
(Notice, as we saw above, the only things we are going to miss using this criterion are
endpoints and since all endpoints of subintervals are rational there are only countably
many of them.) Since every single trinary decimal with only 0s and 2s is in the Cantor
set and there are uncountably many trinary decimals of this form.

(The Cantor diagionalization argument works to show this: assume the contrary and
let

c1 = .a1,1a1,2a1,3...

c2 = .a2,1a2,2a2,3...

c3 = .a3,1a3,2...

...

be a list of all of the trinary decimals with ai,j ∈ {0, 2}. We form a new decimal

c = .c1c2c3... where ci =

{
0 if ai,i = 2
2 if ai,i = 0

. Then c 6= c1 since their first trinary digit

don’t agree and the only way to have two decimal expansions be equal is to either have
all their digits agree or to have .22222 · · · = 1.00000 · · · and all of our decimals are in
[0, 1). Similarly, c 6= c2 since their second trinary digits don’t agree and the only way
for two decimals to be the same with different second trinary digit is to have carrying
of the form .1000... = .02222.... or .2000... = .12222..... or 1.000... = .2222.... and since
we are not allowing any 1 digits, this can’t happen. (As you can see, we do need to
be slightly careful with this argument!) Similarly, the c 6= cn for any n because we are
not allowing any trinary digits equal to 1. Therefore, c is not on our list, so our list
can not be complete and therefore the set of all trinary decimals with only 0s and 2s is
uncountable.)

Since this set is contained in (but not equal to) the Cantor set, the Cantor set must be
uncountable as well.

One can also do the same type of argument with strings of Ls and Rs where each element
of the Cantor set is specified by stating wether it is the left hand (L) or right hand (R)



side of each iteration. For example, the number 1
4 would start out with L since it’s

in [0, 13 ] and then an R since it’s in [29 ,
1
3 ], etc. Then each element of the Cantor set

is specified by a unique string of Ls and Rs and since there are uncountably infinitely
many such strings, the Cantor set is uncountable.

3. Connected/Separated

a) Give an example of a set A such that A is not connected but A∪{1} is connected.

An example is A = (0, 1) ∪ (1, 2). A ∪ {1} = (0, 2) which is connected.

b) Show that in part (a) 1 must be a boundary point of A. (Recall the technical
definition of a boundary point as ∂A = A− Int(A).)

We are assuming that there exists α, β ⊂ R1 such that A = α ∪ β, α ∩ β = ∅ and
α ∩ β = ∅, but that there does not exist a separation of A ∪ {1}. In particular, this
means that neither α∪{1} and β nor α and β∪{1} form separations of A∪{1}. Since
α∪{1} and β don’t form a separation, either α ∪ {1}∩β 6= ∅ or (α∪{1})∩β 6= ∅. Now,
1 /∈ A (since A was separated and A∪{1} was not), so 1 /∈ α and 1 /∈ β. Since 1 /∈ β and
α ∪ {1} = α∪{1} = α∪{1} by homework 7 problem 5b and α∩β = ∅, we can conclude
that α ∪ {1} ∩ β = ∅, so it must be the case that (α ∪ {1}) ∩ β 6= ∅. Hence, 1 ∈ β,
but 1 /∈ β, so 1 ∈ ∂β. Similarly, the fact that α and β ∪ {1} don’t form a separation
of A gives 1 ∈ ∂α. Therefore, ∂A = A − Int(A) = α ∪ β − Int(A) = α ∪ β − Int(A).
Since 1 /∈ A, 1 /∈ Int(A) and therefore, 1 ∈ ∂A.

4. Continuity and Connectedness Let f : X → Y metric spaces.

a) Show that if f is continuous and A is connected, then f(A) is connected. (Recall:
A is connected if there doesn’t exist a separation. A separation is a pair of sets
α and β with A = α ∪ β such that α ∩ β = ∅ and α ∩ β = ∅. Also recall that
proofs using the contrapositive are often profitable for proving connectedness.
In addition, you may want to use the version of topological continuity given
above (inverse image of closed sets are closed) and the fact that f−1(C ∩ D) =
f−1(C) ∩ f−1(D).)

Proof by contrapositive. Assume that f(A) is separated, prove that either f is not
continuous or that A is not connected. Since it is part of our hypothesis that f is
continuous, this would imply that A is separated, and therefore, we could conclude
that f continuous and A connected implies f(A) is connected.

That is, assume that f(A) ⊂ Y is separated. That is, assume there exist α and β in
Y such that f(A) = α∪β with α∩β = ∅ and α∩β = ∅. Assume that f is continuous.

Claim: f−1(α) and f−1(β) form a separation of A.

Proof of claim:
Continuity of f implies t-continuity. Namely, that the inverse image of open sets are
open. Since f−1(Ac) = X − f−1(A) = f−1(A)c, this is the same as saying that the
inverse image of all closed sets are closed (strictly speaking, we should be speaking
about relatively open and relatively closed as in the previous problem). Therefore,
f−1(α) is closed and so f−1(α) ⊃ f−1(α). Similarly, f−1(β) ⊃ f−1(β).

In addition, f−1(C ∩D) = {x ∈ X | f(x) ∈ C ∩D} = {x ∈ X | f(x) ∈ C and f(x) ∈
D} = {x ∈ X | x ∈ f−1(C) and x inf−1(D)} = f−1(C) ∩ f−1(D). In order to check
that f−1(α) and f−1(β) form a separation, we need to compute f−1(α) ∩ f−1(β) and
f−1(α)∩f−1(β). However, f−1(α)∩f−1(β) ⊂ f−1(α)∩f−1(β) = f−1(α∩β) = f−1(∅) =



∅. Similarly, f−1(α) ∩ f−1(β) = ∅ and they do, indeed, form a separation.

b) Use the result of part (a) to prove the intermediate value theorem.

Let f : [a, b]→ R continuous and K ∈ R with K between f(a) and f(b), show that there
exists c ∈ [a, b] with f(c) = K. Since [a, b] connected (we proved outside that connected
if and only if convex in R1 and [a, b] is convex practically by definition), therefore, by
part a), f([a, b]) is connected in R1. This implies that f([a, b]) is convex, and since
f(a) ∈ f([a, b]) and f(b) ∈ f([a, b]), the entire line segment connecting f(a) and f(b)
is in f([a, b]). This means that for all K between f(a) and f(b), K ∈ f([a, b]). This
means, by definition of the image of a set, that there exists c ∈ [a, b] such that f(c) = K
which is the intermediate value theorem.

5. Show that any function whose domain is the integers is uniformly continuous.

Let f : Z → Y where Y is any metric space. Prove that for any ε > 0, there exists
δ > 0 such that dZ(x, y) < δ implies that dY (f(x), f(y)) < ε.
This will be true for any ε > 0 as long as we pick δ ≤ 1! Since the only pairs of elements
x, y ∈ Z satisfying dZ(x, y) < 1 are x = y and if x = y, then dY (f(x), f(y) = 0 < ε,
the function will be uniformly continuous.

6. Prove that if f(x) is uniformly continuous on (a, b) and continuous at x = a and at
x = b, then f(x) is uniformly continuous on [a, b].

If let f : [a, b] → Y where Y is any metric space. Then f : (a, b) → Y uniformly
continuous implies that f is continuous on (a, b) as well (so for every x ∈ (a, b) and for
every ε > 0, there exists δ > 0 such that f((x−δ, x+δ)) ⊂ BY (f(x), ε). Similarily, since
f is continuous at a, for every ε̃ > 0, there exists a δ̃ > 0 such that f((a− δ̃, a+ δ̃)) ⊂
BY (f(a), ε̃). In addition, since f is continuous at b, for every ε̂ > 0 there exists δ̂ > 0
such that....
Basically, what we are saying is that f is continuous on all of [a, b] and since [a, b] is a
closed bounded interval in R1, then [a, b] is compact, so f is continuous on a compact
set so is uniformly continuous!

7. Uniform Continuity and Boundedness

a) Show that if f is uniformly continuous on a bounded interval (not necessarily
closed!), then f is bounded.

Assume that f : (a, b) → Y is uniformly continuous on (a, b) with −∞ < a < b < ∞.
Then for all ε > 0, there exists δ > 0 such that |x−y| < δ implies that dY (f(x), f(y)) <
ε. Prove that there exists p ∈ Y and M such that {f(x) | x ∈ (a, b)} ⊂ BY (p,M).
Let p = f(a+b2 ) and let ε = 1. Then there exists δ > 0 such that |x − y| < δ implies

that dY (f(x), f(y)) < 1. Notice that (a, b) = B(a+b2 , b−a2 ) and let b−a
2 = N · δ. Then

if x ∈ (a+b2 − δ,
a+b
2 + δ), then f(x) ∈ B(p, 1). Similarily, if x ∈ (a+b2 − 2δ, a+b2 ), then

f(x) ∈ B(f(a+b2 −
δ
2 , 1) and since f(a+b2 −

δ
2) ∈ B(p, 1), f(x) ∈ B(p, 2) by the triangle

inequality. In this way, we can see that if x ∈ (a, b), then f(x) ∈ B(p,N), so the set
of {f(x) | x ∈ (a, b)} is bounded in Y .

b) Give an example of a continuous function on (0, 1) that is not bounded.

f(x) = 1
x is continuous on (0, 1) since it is the ratio of two non-zero continuous func-

tions.



c) Give an example of a bounded continuous function on (0, 1) that is not uniformly
continuous.

f(x) = 1
x works for this as well since if f(x) were uniformly continuous, then there

would exists C ∈ R such that f(x) =

{
1
x if x 6= 0
C if x = 0

is continuous on [0, 1] (a

uniformly continuous function on A can be extended to a continuous function on
A). Since the only possible answer is C = ∞ and ∞ /∈ R, f can’t be uniformly
continuous.

8. Continuity and Cauchy

a) Show that if f is uniformly continuous on (a, b) and {xn} ⊂ (a, b) is a Cauchy
sequence, then {f(xn)} is a Cauchy sequence.

We did this in class, just in a slight bit more generality!
Let f : (a, b) → Y . Since {xn}∞n=1 is a Cauchy sequence, for all ε̃ > 0, there exists

Ñ such that |xn − xm| < ε̃ whenever n,m ≥ Ñ . We also know that f is uniformly
continuous, so for every ε̂ > 0, there exits a δ̂ > 0 such that |x − y| < δ̂ implies
that dY (f(x), f(y)) < ε̂. We want to show that {f(xn)}∞n=1 is a Cauchy sequence in
Y . Namely, show that for all ε > 0, there exits N such that dY (f(xn), f(xm)) < ε
whenever n,m ≥ N .

Let ε̂ = ε and let the δ̂ we get from the definition of uniformly continuous be equal to
ε̃ from the definition of a Cauchy sequence in R. Then let the resulting Ñ be our N .
Then, if n,m ≥ N = Ñ , then |xn − xm| < ε̃ = δ̂. Therefore, since f is uniformly
continuous, dY (f(xn), f(xm)) < ε̃ = ε which is what we wanted to show!

b) Give an example of a continuous function f on (0, 1) and a Cauchy sequence
{xn} ⊂ (0, 1) such that {f(xn)} is not Cauchy.

Using our example from the previous problem, let f(x) = 1
x and let our Cauchy

sequence be { 1n}
∞
n=1. The image sequence is {f( 1

n) = n}∞n=1 which diverges in R so is
not Cauchy.

c) Show that if f is continuous but not uniformly continuous on (a, b), then there
exists a Cauchy sequence {xn} ⊂ (a, b) such that {f(xn)} is not Cauchy.

This is the hardest problem on the homework!

One important thing to notice is that if f was continuous at a and continuous at b, then
f would be continuous on a compact set, so uniformly continuous, so this feat would be
impossible by part a of this problem. Therefore, f must fail to be continuous at either
x = a or at x = b.

Case 1. f is not continuous at x = a.

This means that it is not true that for all ε̃ > 0, there exits δ̃ > 0 such that f((a −
δ̃, a + δ̃)) ⊂ BY (f(a), ε). Since one of the things that could cause this to not hold is
f(a) not existing (which isn’t very helpful), we’re going to instead negate the definition
of uniform continuity but specify that it fails at a. Namely, there exists ε̃ > 0 such that
for all δ̃ > 0 there exists x, y such that |x− y| < δ̃ but dY (f(x), f(y)) ≥ ε̃. Let δn = 1

n .
Then this statement holds for all of these δn, but only for x, y near a. Namely, there
exists xn, yn ∈ (a, b) with xn, yn ∈ (a, a+ δn) such that dY (f(xn), f(yn)) ≥ ε̃. Consider
the sequence {zn}∞n=1 = {x1, y1, x2, y2, x3, y3, ...}. This sequence is Cauchy in (a, b) since
xi, yi ∈ (a, b) and for any ε > 0, there exists N such that 2

N < ε and therefore, for all
n ≥ N , zn = xn+1

2
or zn = yn/2 is inside (a, a+ 2

n) ⊂ (a, a+ ε), so |a− zn| < ε (sequence

converges to a and is therefore Cauchy). Furthermore, since dY (f(xn), f(yn)) ≥ ε̃, there



doesn’t exists M such that d(zn, zm) < ε̃ for every n,m ≥ M , so the image sequence
fails to be Cauchy.

d) If we changed (a, b) to (a,∞), does the previous result still hold?

No it doesn’t! Use f(x) = x2 as a function f : (0,∞) → R which we saw in class is
not uniformly continuous. Let {xn}∞n=1 be any Cauchy sequence in (0,∞), prove that
{x2n}∞n=1 is also a Cauchy sequence.

Since the original sequence is Cauchy, for every ε̃ > 0, there exists a Ñ such that
|xn − xm| < ε̃ whenever n,m ≥ Ñ . Show that for every ε > 0, there exists N such that
|x2n − x2m| < ε whenever n,m ≥ N . Since the original sequence is Cauchy, it is also
bounded, so there exists M such that xn ≤M for all n. Let ε̃ = ε

2M and N = Ñ . Then,

if n,m ≥ N = Ñ , |xn − xm| < ε
2M and therefore |x2n − x2m| = |xn − xm| · |xn + xm| <

ε
2M |xn + xm| < ε

2M |M +M | = ε which is what we wanted to show.


