
Math 411 Homework 2 Answers

1. Use induction and the definition of derivative to prove the power rule ( d
dxx

n = nxn−1).

Case n = 1:
d

dx
x1 = lim

t→x

t− x
t− x

= lim
t→x

1 = 1 = 1x0 which starts the induction.

Assume that the theorem holds for k = n − 1 and k = n, prove it holds for k = n + 1
(this is ‘semi-strong’ induction).

Assume that
d

dx
xk = kxk−1, that is, lim

t→x

tk − xk

t− x
= kxk−1 for k = 1, 2, ..., n.

Therefore, using the formula for
d

dx
xn, we get lim

t→x

(tn − xn)(t+ x)

t− x
= lim

t→x

tn − xn

t− x
·

lim
t→x

(t + x) = nxn−1(2x) = 2nxn. However, the same thing is also equal

to lim
x→t

tn+1 − txn + xtn − xn+1

t− x
= lim

t→x

tn+1 − xn+1

t− x
+ lim

t→x

xtn − txn

t− x
=

d

dx
xn+1 +

lim
t→x

xt(tn−1 − xn−1)
t− x

=
d

dx
xn+1+lim

t→x
xt· d

dx
xn−1 =

d

dx
xn+1+x2(n−1)xn−2 =

d

dx
xn+1+

(n− 1)xn. Solving gives us
d

dx
xn+1 = 2nxn − (n− 1)xn = (2n− n+ 1)xn = (n+ 1)xn.

Honestly, it is probably easier to use binomial coefficients with the other definition of
derivative or to factor tn+1 − xn+1 into (t − x)(tn + xtn−1 + x2tn−2 + · · · + xn) and
compute the limit directly, but the problem did say induction, so you got a proof by
(strong) induction instead.

2. Let a1, ..., an ∈ R constants. Find the value of x that minimizes

f(x) =
n∑
i=1

(x− ai)2 =
n∑
i=1

x2 − 2aix+ a2i .

We’re going to use the theorem that says that if f is differentiable, then x = c is a local
max/min implies that f ′(c) = 0. Since f is a degree 2 polynomial, it is differentiable
and moreover, its graph is a right side up parabola, so it’s only critical point is also its
local minimum.

Compute f ′(x) =
n∑
i=1

2x − 2ai = 2

(
n∑
i=1

x− ai

)
= 2nx − 2

n∑
i=1

ai. This is zero when

nx =
∑n

i=1 ai or for x = 1
n

∑n
i=1 ai. By the above argument, this is the value of x for

which f(x) is the global minimum.

3. Prove that if f is differentiable on (a, b) with c ∈ (a, b) and f ′(c) < 0, then there exists
an interval around c in which f(x) is decreasing.

Since we only know that f ′(c) < 0 and not that f ′(c) < 0 near x = c, the most we can
show is there exists some ε > 0 such that c − ε < x1 < c < x2 < c + ε implies that
f(x1) > f(x2).

Since f ′(c) exists, lim
t→c

f(t)− f(c)

t− c
exists and is< 0, in particular, we have lim

t→c−
f(t)− t(c)
t− c

<

0. Since t→ c−, t < c so the denominator is negative. Since the limit is negative, there



exists some ε1 such that t ∈ (c − ε1, c) implies that the numerator is positive, so for
t ∈ (c− ε1, c), f(t)− f(c) > 0 or f(t) > f(c).

Similarly, since lim
t→c+

f(t)− f(c)

t− c
< 0 and the denominator is positive, there exists some

ε2 > 0 such that if t ∈ (c, c+ ε2), then f(t)− f(c) < 0, or f(c) > f(t).

Let ε = min{ε1, ε2}. Then if x1 ∈ (c − ε, c), f(x1) > g(c) and if x2 ∈ (c, c + ε), f(c) >
f(x2), which implies that f(x1) > f(x2) which is what we wanted to show.

4. The other definition of derivative:
a) Suppose that |f(x+ h)− f(x)| ≤ K|h|α for some constants K and α with α > 0,

prove that f is continuous.

We want to show that for all ε > 0, there exists δ > 0 such that |x− c| < δ implies that
|f(x)− f(c)| < ε. Let x+ h = c, so h = c− x. Then our assumption is |f(c)− f(x)| ≤
K|c−x|α = K|x−c|α. Since α > 0, we can take αth roots, so given ε > 0, let δ = α

√
ε
K ,

then |x−c| < α
√

ε
K implies that |x−c|α < ε

K or K|x−c|α < ε. Therefore, our assumption
that |f(x+h)−f(x)| ≤ K|h|α implies that |f(c)−f(x)| = |f(x)−f(c)| < K|x−c|α < ε
which is what we needed to show.
Notice that the issue about possibly not being able to take the αth root of a negative
number is not a problem because if K is negative, then our assumption is that
|f(x+ h)− f(x)| = 0 and constant functions are continuous.

b) Suppose that |f(x+ h)− f(x)| ≤ K|h|α for some constants K and α with α > 1,
prove that f is differentiable and f ′(x) = 0.

For this problem, I’m going to use the other definition of derivative, but it is just as
easy to translate to the usual definition like I did in part a. Namely, I’ll use f ′(x) =

lim
h→0

f(x+ h)− f(x)

h
.

Our assumption above implies that |f(x+h)−f(x)h | ≤ K|h|α−1 where α− 1 > 0. We must
show that the limit above exists and is equal to zero. To show that the limit exists,
show that for all ε > 0, there exists a δ > 0 such that 0 < |h − 0| < δ implies that

|f(x+h)−f(x)h − 0| < ε.
Again, we don’t have to worry about K being negative because if it is, then we are
assuming that f(x) is constant and constant functions have zero derivative.

Fix ε > 0 and let δ = ( εK )
1

α−1 . Then 0 < |h| < δ implies that∣∣∣∣f(x+ h)− f(x)

h

∣∣∣∣ ≤ K|h|α−1 < Kδα−1 = K
ε

K
= ε

which is what we wanted to show.

c) Assume that |f(x+h)− f(x)| ≤ |h| for x = 0. Must f be differentiable at x = 0?

Hint: consider f(x) =

{
1
2x if x ∈ Q
x if x /∈ Q

Notice that this problem had a fairly major typo since if this equation needed to hold for
all x the given function certainly wouldn’t satisfy this condition as by part a, the function
would have to be continuous everywhere and the given function is only continuous at
x = 0. I fixed the typo above and am going to answer the question as it was supposed
to be posed. As it was posed, the answer is yes by part b.

We just need to check that the inequality is satisfied for the given function and that the
function fails to be differentiable at x = 0.

We have two options here, h ∈ Q and h /∈ Q.

If h ∈ Q, |f(h)− f(0)| = |12h− 0| = 1
2 |h| < |h|, so the assumption holds.



If h /∈ Q, then |f(h)− f(0)| = |h− 0| = |h| ≤ |h|, so the assumption holds.

Now show that f ′(0) does not exist. f ′(0) = lim
h→0

f(0 + h)− f(0)

h
. Since f is a piecewise

function, we need to compute the right hand side for our two different cases, and notice
that if h ∈ Q, f(h)−f(0)

h = 1
2 and if h /∈ Q, f(h)−f(0)

h = 1. Therefore, the limit does
not exist and f is not differentiable at x = 0. This implies that in order for our part a
and part b conclusions to hold, the assumption needs to be true at more than just one
point!

5. Derivatives and uniform continuity
a) Prove that if f is differentiable and |f ′(x)| ≤ M for some M ∈ R, the f is

uniformly continuous.

This problem just screams MVT, doesn’t it! We want to show that for all ε > 0, there
exists δ > 0 such that |x − y| < δ implies that |f(x) − f(y)| < ε. Fix ε > 0 and let
δ = ε

M . Let |x − y| < ε
M . Then since f is differentiable and hence continuous, the

MVT applies on [x, y], so there exists c ∈ (x, y) with
∣∣∣f(y)−f(x)y−x

∣∣∣ = |f ′(c)|. Therefore,

|f(y) − f(x)| = |f(x) − f(y)| = |f ′(c)| · |x − y| < M · εM = ε which is what we needed
to show!

b) Give an example of a function that is differentiable and uniformly continuous on
(0, 1) but whose derivative is unbounded on (0, 1).

There are many such examples, but a good one is f(x) =
√
x. This function is contin-

uous on [0, 1] which is a compact set, so is uniformly continuous on [0, 1] and hence on
(0, 1). However, f ′(x) = 1

2
√
x

which takes values in (1,∞) for x ∈ (0, 1).

6. Assume that f is continuous on [a, b] and differentiable on (a, b)−{c} where c ∈ (a, b).
a) Prove that if f ′(x) > 0 for x < c and f ′(x) < 0 for x > c, that f has a local

maximum at x = c.

I suppose technically the theorem proved in class that if f ′(x) > 0 on [a, b], then f is
increasing on [a, b] doesn’t quite apply because we have a case where f ′(x) > 0 on [a, c),
not on a closed interval, so we’d get if a ≤ x < y < c, then f(x) ≤ f(y), but not that
f(x) ≤ f(c). Therefore, we’re going to reprove that theorem for a half open interval.
*sigh*
We need to show that there exists ε > 0 such that if x ∈ (c − ε, c + ε) implies that
f(x) ≤ f(c). Our assumption means that, in particular, that for all c− a ≥ ε1 > 0 and
for all c − ε1 < x < c, f is continuous on [x, c] and differentiable on (x, c), so MVT

applies! This means that there exists d ∈ (x, c) such that f(c)−f(x)
c−x = f ′(d) > 0. Since

x ∈ (c− ε1, c), c− x > 0 and therefore f(c)− f(x) > 0 which implies that f(x) ≤ f(c).
Similarly, for all b− c ≥ ε2 > 0 and for all x ∈ (c, c+ ε2), f is continuous on [c, x] and
differentiable on (c, x) so MVT applies and ..... we get f(x) − f(c) < 0 which implies
that f(c) ≥ f(x). Simply take ε−min{ε1, ε2} and we are done!

b) Prove that if f ′(x) < 0 for x < c and f ′(x) > 0 for x > c, that f has a local
minimum at x = c.

This is pretty much identical to part a, so I refuse to write everything again with
inequalities reversed. I support any student’s decision to do the same!

c) Find the local extrema of f(x) = x
2
3 (8 − x)2 on [−10, 10] and classify them as

max or mins.



First we need to differentiate to find f ′(x) = 2
3x
− 1

3 (8 − x)2 − 2x
2
3 (8 − x) which exists

everywhere except x = 0. Therefore, the potential local extrema are where f ′(x) = 0
and x = 0. f ′(8) = 0 is clear, and, in addition to this, if x 6= 8, we can cancel to get

1
3x
− 1

3 (8− x) = x
2
3 which gives 8− x = 3x or x = 2.

Since f ′(x) is continuous away from x = 0, by the intermediate value theorem, we just
need to check a single point between each of these ‘critical points’ to figure out if f ′(x)
is positive or negative.

f ′(−1) = −2
3(81)− 2(9) = −54− 18 < 0, f(1) = 2

3(49)− 2(7) = 2(161
3 − 7) > 0,

f ′(3) = 10(13
5
3√3
− 3
√

9) = 10( 3

√
125
81 −

3
√

9) < 0

f ′(9) = 2(13
1
3√9
− 3
√

81(−1)) > 0

Therefore, x = 0 is a local minimum, x = 2 is a local maximum and x = 8 is a local
minimum.

7. Assume that f is a function whose derivative exists for every x and that f has n distinct
roots.

a) Prove that f ′ has at least n− 1 distinct roots.

Let x1, x2, ..., xn be the n distinct roots of f . By MVT applied to [xi, xi+1] for
i = 1, 2, ..., n − 1, since f(xi) = f(xi+1) = 0, there exists x̃i ∈ (xi, xi+1) such that
f ′(x̃i) = 0. Since such points exist for all i = 1, ..., n − 1 and each is a root, f ′(x) has
at least n− 1 roots.

b) Is it possible for f ′ to have more roots than f?

Yes, it is! It isn’t even hard to find an example. Let f(x) = (x− 1)x(x+ 1) + 1000 =
x3−x+1000. This has one root (at something a bit less than −10), but f ′(x) = 3x2−1

has two roots (at ±
√

1
3).

8. Derivatives need not be continuous.
a) Assume that f ′ exists on (a, b) and c ∈ (a, b). Show that there exists a sequence
{xn} converging to c such that {f ′(xn)} converges to f ′(c).

Apparently I was completely overthinking this! We need to start with a sequence cn → c
any sequence (I’m doing the case cn → c from the right, but left or alternating will also
work). Then using the ordinary MVT on [c, cn] gives the existence of xn ∈ (c, cn) such

that f ′(xn) =
f(cn)− f(c)

cn − c
. Since cn → c, for any ε > 0, there exists N such that

cn − c < ε for all n ≥ N . Since c < xn < cn, this implies that xn − c < ε as well for
all n ≥ N and therefore xn → c. By taking the limit as n → ∞ of both sides of the
inequality above, we get

lim
n→∞

f ′(xn) = lim
n→∞

f(cn)− f(c)

cn − c
. Since f ′(c) exists, lim

t→c

f(t)− f(c)

t− c
exists, let F (t) =

f(t)−f(c)
t−c , so lim

t→c
F (t) = f ′(c). In other words, for all ε̃ > 0, there exists δ̃ > 0 such

that |t − c| < δ̃ implies |F (t) − f ′(c)| < ε̃. Fix ε̃ > 0 and let ε from the definition
of cn → c above be equal to the corresponding δ̃ that we get from the definition of
the limit of F (t). This means, there exists N such that |cn − c| < δ̃ if n ≥ N . This
implies that |F (xn) − f ′(c)| < ε̃ and therefore, {F (cn)} converges to f ′(c). However,
the equality from MVT above says that xn is specifically chosen so that F (cn) = f ′(xn)
and therefore, we have found a sequence {xn} → c such that {f ′(xn)} → f ′(c) which is
what we wanted.



b) Find such a sequence for our example from class for (a, b) = (−∞,∞) and c = 0

for f(x) =

{
x2 sin( 1x) if x 6= 0

0 if x = 0
.

Let cn = 1
πn . Then f(cn) = 1

π2n2 sin(πn) = 0. Clearly { 1
πn}

∞
n=1 converges to 0, and

{f(cn)}∞n=1 = {0}∞n=1, so the image sequence converges to f ′(0) = 0.


