Math 411 Homework 2 Answers

Use induction and the definition of derivative to prove the power rule (%1‘” = na" 1),

L lim1 = 1 = 12° which starts the induction.
dx tosxt —x t—x

Assume that the theorem holds for Kk = n — 1 and k = n, prove it holds for k = n + 1
(this is ‘semi-strong’ induction).

d k k—1 . . tk - xk k—1
Assume that —z kx" ", that is, lim = kzx for £k = 1,2,...,n.
dx tor t—x
Therefore, using the formula for —z", we get lim( ") (¢ + ) = lim T
dx t—x —x twr t—2x
}im(t + x) = nz"1(2z) = 2n2". However, the same thing is also equal
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(n —1)z". Solving gives us %w”“ =2nz" —(n—1)2" = 2n—n+1)z" = (n+ 1)a".
Honestly, it is probably easier to use binomial coefficients with the other definition of
derivative or to factor "t — 2™t into (¢t — z)(t" + 2xt" ' + %" 2 + ... + 2") and
compute the limit directly, but the problem did say induction, so you got a proof by
(strong) induction instead.

Let aq,...,a, € R constants. Find the value of x that minimizes

n

flz) = Z(CE —a;)? = Zn::cQ — 2a;x + a?.
i=1

i=1

We’re going to use the theorem that says that if f is differentiable, then z = c is a local
max/min implies that f’(¢) = 0. Since f is a degree 2 polynomial, it is differentiable
and moreover, its graph is a right side up parabola, so it’s only critical point is also its
local minimum.

n n n

Compute f'(z) = ZQZB —2a; = 2 (Zm - ai> = 2nx — QZCM'- This is zero when
i=1 i=1 i=1

ne =Y ., a; or for x = %Z?:l a;. By the above argument, this is the value of x for

which f(z) is the global minimum.

Prove that if f is differentiable on (a,b) with ¢ € (a,b) and f’(c) < 0, then there exists
an interval around c in which f(z) is decreasing.

Since we only know that f’(¢) < 0 and not that f’(¢) < 0 near z = ¢, the most we can
show is there exists some ¢ > 0 such that ¢ — € < 21 < ¢ < 29 < ¢+ € implies that

f(@1) > f(xa).

t)— f(c t) —t(c
M exists and is < 0, in particular, we have lim M <
t—c tse-  t—c
0. Since t — ¢—, t < ¢ so the denominator is negative. Since the limit is negative, there

Since f’(c) exists, lim
t—c



exists some €; such that ¢ € (¢ — €1,¢) implies that the numerator is positive, so for

te(c—e1,c), f(t)— f(c)>0o0r f(t) > f(c).
Similarly, since lim M

t—ct t—c
€2 > 0 such that if ¢ € (¢,c+ €2), then f(t) — f(c) <0, or f(c) > f(t).
Let € = min{ey, e2}. Then if 21 € (¢ —€,¢), f(x1) > g(c) and if 25 € (¢,c+€), f(c) >
f(z2), which implies that f(x1) > f(z2) which is what we wanted to show.

< 0 and the denominator is positive, there exists some

4.  The other definition of derivative:
a) Suppose that |f(z+ h) — f(x)| < K|h|* for some constants K and a with o > 0,
prove that f is continuous.

We want to show that for all € > 0, there exists 6 > 0 such that |z —¢| < ¢ implies that
|f(z) — f(e)] < e. Let z+h =¢, s0 h =c—x. Then our assumption is |f(c) — f(z)| <
Klc—z|* = K|z —c|*. Since o > 0, we can take ot roots, so given € > 0, let 6 = ¢/%,
then [z—c| < ¢/ implies that [z—c|* < = or K|z—c|® < e. Therefore, our assumption
that |f(x+h)— f(z)| < K|h|* implies that |f(c)— f(x)| = |f(x)— f(c)] < K|z —¢|* <€
which is what we needed to show.

Notice that the issue about possibly not being able to take the ottt root of a negative
number is not a problem because if K is negative, then our assumption is that
|f(z+ h) — f(x)| = 0 and constant functions are continuous.

b) Suppose that |f(z+ h) — f(x)| < K|h|® for some constants K and « with o > 1,
prove that f is differentiable and f'(z) = 0.

For this problem, I'm going to use the other definition of derivative, but it is just as
easy to translate to the usual definition like I did in part a. Namely, I'll use f'(x) =
L f )~ f)

h—0 h

Our assumption above implies that |w| < K|h|*~! where o — 1 > 0. We must
show that the limit above exists and is equal to zero. To show that the limit exists,

show that for all € > 0, there exists a § > 0 such that 0 < |h — 0] < ¢ implies that
’f(w+h2L—f(w) — 0| <e

Again, we don’t have to worry about K being negative because if it is, then we are
assuming that f(z) is constant and constant functions have zero derivative.

Fix e > 0 and let 6 = (£)a7. Then 0 < |h| < § implies that

flx+h) = f(z)
h

< Khl* ! < K62 = K% =
which is what we wanted to show.

c) Assume that |f(z+h)— f(z)| < |h| for z = 0. Must f be differentiable at x = 07
%x ifxeQ

r ifxdgQ

Notice that this problem had a fairly major typo since if this equation needed to hold for
all x the given function certainly wouldn’t satisfy this condition as by part a, the function
would have to be continuous everywhere and the given function is only continuous at
x = 0. I fixed the typo above and am going to answer the question as it was supposed
to be posed. As it was posed, the answer is yes by part b.

Hint: consider f(x) =

We just need to check that the inequality is satisfied for the given function and that the
function fails to be differentiable at « = 0.

We have two options here, h € Q and h ¢ Q.
If h e Q, |f(h) — f(0)| = |3 — 0] = 1|h| < |R], so the assumption holds.



If h ¢ Q, then |f(h) — f(0)| = |h — 0| = |h| < |h|, so the assumption holds.

B) —
Now show that f/(0) does not exist. f/(0) = }lbin% 1O+ })L F(0)
5

function, we need to compute the right hand 51de for our two different cases, and notice
that if h € Q, L8O — L ang if b ¢ Q, {810 — 1. Therefore, the limit does
not exist and f is not dlfferentlable at x = 0. ThlS implies that in order for our part a
and part b conclusions to hold, the assumption needs to be true at more than just one
point!

. Since f is a piecewise

Derivatives and uniform continuity
a) Prove that if f is differentiable and |f'(z)| < M for some M € R, the f is
uniformly continuous.

This problem just screams MVT, doesn’t it! We want to show that for all € > 0, there
exists 6 > 0 such that |z —y| < ¢ implies that |f(z) — f(y)| < €. Fix € > 0 and let
0 = 47. Let |z —y| < §7. Then since f is differentiable and hence continuous, the

MVT applies on [z,y], so there exists ¢ € (z,y) with ’f W)= f (z) ‘ |f'(c)]. Therefore,

1fy) = f@)] = f(@) = fQI =) |z -yl <M 57 =c¢ Whlch is what we needed
to show!

b) Give an example of a function that is differentiable and uniformly continuous on
(0,1) but whose derivative is unbounded on (0, 1).

There are many such examples, but a good one is f(x) = y/z. This function is contin-
uous on [0, 1] which is a Compact set, so is uniformly continuous on [0, 1] and hence on

(0,1). However, f'(z) = V which takes values in (1,00) for € (0,1).

Assume that f is continuous on [a, b] and differentiable on (a,b) — {c} where ¢ € (a,b).
a) Prove that if f/(z) > 0 for x < ¢ and f'(z) < 0 for x > ¢, that f has a local
maximum at T = c.

I suppose technically the theorem proved in class that if f/(z) > 0 on [a, b], then f is
increasing on [a, b] doesn’t quite apply because we have a case where f'(x) > 0 on [a, ¢),
not on a closed interval, so we’d get if a < z <y < ¢, then f(z) < f(y), but not that
f(x) < f(c). Therefore, we're going to reprove that theorem for a half open interval.
*sigh*

We need to show that there exists € > 0 such that if x € (¢ — €,¢ + €) implies that
f(x) < f(c). Our assumption means that, in particular, that for all c —a > ¢; > 0 and
for all ¢ —€; < x < ¢, f is continuous on [z, ] and differentiable on (z,c), so MVT
applies! This means that there exists d € (z,c) such that (C) f @) — g (d) > 0. Since
x € (c—e€1,¢), c—x > 0 and therefore f(c) — f(x) > 0 which 1mphes that f(z) < f(c).
Similarly, for all b — ¢ > €2 > 0 and for all = € (¢,c+ €2), f is continuous on [¢, z] and
differentiable on (¢, ) so MVT applies and ..... we get f(z) — f(c) < 0 which implies
that f(c) > f(z). Simply take € — min{ej, €2} and we are done!

b) Prove that if f/(z) < 0 for x < ¢ and f'(z) > 0 for x > ¢, that f has a local
minimum at x = c.

This is pretty much identical to part a, so I refuse to write everything again with
inequalities reversed. I support any student’s decision to do the same!

c) Find the local extrema of f(z) = x§(8 — )% on [~10,10] and classify them as
max or mins.



First we need to differentiate to find f/(z) = %m_%(S —x)? — 2;1?%(8 — x) which exists
everywhere except = 0. Therefore, the potential local extrema are where f'(x) = 0
and z = 0. f/(8) = 0 is clear, and, in addition to this, if z # 8, we can cancel to get

%xfé(S —x) = 23 which gives 8 —x = 3z or z = 2.

Since f’(x) is continuous away from x = 0, by the intermediate value theorem, we just
need to check a single point between each of these ‘critical points’ to figure out if f/(x)
is positive or negative.

fl(—=1) = —2(81) —2(9) = =54 — 18 < 0, f(1) = 2(49) — 2(7) = 2(163 — 7) > 0,
f'(3)=10 (%%—\?’/@) 10/ —V9) <0
£ )—2(%% V81(—1)) >0

Therefore, =
minimum.

0 is a local minimum, x = 2 is a local maximum and z = 8 is a local

Assume that f is a function whose derivative exists for every x and that f has n distinct
roots.
a) Prove that f’ has at least n — 1 distinct roots.

Let x1,x9,...,x, be the n distinct roots of f. By MVT applied to [z;,zi+1] for
i =1,2,....,n —1, since f(z;) = f(xix1) = 0, there exists z; € (x;,zi+1) such that
f(z;) = 0. Since such points exist for all i = 1,...,n — 1 and each is a root, f'(x) has
at least n — 1 roots.

b) Is it possible for f’ to have more roots than f?

Yes, it is! It isn’t even hard to find an example. Let f(z) = (x — 1)z(z + 1) + 1000 =
23— +1000. This has one root (at something a bit less than —10), but f/(x) = 322 -1

has two roots (at i\/g)

Derivatives need not be continuous.
a) Assume that f’ exists on (a,b) and ¢ € (a,b). Show that there exists a sequence
{z,,} converging to ¢ such that {f'(z,)} converges to f’(c).

Apparently I was completely overthinking this! We need to start with a sequence ¢, — ¢
any sequence (I'm doing the case ¢, — ¢ from the right, but left or alternating will also
work). Then using the ordinary MVT on [c, ¢,] gives the existence of z,, € (¢, ¢,) such
that f/(xn) — f(Cn) B f(C) )
Cn—C
¢y, — ¢ < € for all nnz N. Since ¢ < x, < ¢y, this implies that x, — ¢ < € as well for
all n > N and therefore z,, — c¢. By taking the limit as n — oo of both sides of the
inequality above, we get

Since ¢, — ¢, for any € > 0, there exists N such that

n) . . . t) — .

lim f'(z,) = lim M Since f'(c) exists, hmM exists, let F(t) =

n—00 n—00 ch —C t—c t—c

%, S0 %1_I>n F(t) = f'(c). In other words, for all € > 0, there exists § > 0 such
C

that |t — ¢| < & implies |F(t) — f'(c)] < & Fix € > 0 and let € from the definition
of ¢, — ¢ above be equal to the corresponding § that we get from the definition of
the limit of F(¢). This means, there exists N such that |¢, — ¢| < 6 if n > N. This
implies that |F(x,) — f'(¢)| < € and therefore, {F(c,)} converges to f’(c). However,
the equality from MVT above says that x,, is specifically chosen so that F(c,) = f'(x,)
and therefore, we have found a sequence {z,} — ¢ such that {f’(x,)} — f/(¢) which is
what we wanted.



b) Find such a sequence for our example from class for (a,b) = (—00,00) and ¢ =0

x?sin(2) ifz #£0

forf(x):{ 0" ifrlo -

Let ¢, = L. Then f(c,) = #sin(ﬂn) = 0. Clearly {152, converges to 0, and
{f(en)}22y ={0}22,, so the image sequence converges to f/(0) = 0.



