- 1. Show that if f(x) is a function whose derivative f'(x) is monotonic, then f'(x) is continuous. Hint: use the fact that derivatives satisfy IVT.
- 2. L'Hôpital's rule Suppose that f is defined in a neighborhood of x and suppose that f''(x) exists. Show that

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x)$$

Show by example that the limit may exist even if f''(x) does not (for the example, f'(x) may not exist either, but f(x) is always defined).

3. Taylor's theorem Suppose $a \in \mathbb{R}$, f is a twice differentiable function on (a, ∞) , and M_0, M_1, M_2 are the least upper bounds of |f(x)|, |f'(x)|, |f''(x)| respectively on (a, ∞) . Prove that $M_1^2 \leq 4M_0M_2$. Hint: If h > 0 Taylor's theorem shows that $f'(x) = \frac{1}{2h} (f(x+2h) - f(x)) - hf''(\zeta)$ for some $\zeta \in (x, x+2h)$. Hence $|f'(x)| \leq hM_2 + \frac{M_0}{h}$.

4. Darboux sums

- a) Let $f(x) = x^2 x$ and let $P = \{0, \frac{1}{2}, 1, \frac{3}{2}, 2\}$. Compute U(P, f) and L(P, f).
- **b)** Let $\alpha(x) = x^2$. Compute $U(P, f, \alpha)$ and $L(P, f, \alpha)$.

5. Integrability of lines

- a) Use our integrability condition from class $(f \in \mathcal{R}(\alpha)[a, b])$ if for all $\epsilon > 0$, there exists P partition of [a, b] such that $U(P, f, \alpha) L(P, f, \alpha) < \epsilon$.) to show that $f(x) = 3x + 1 \in \mathcal{R}[a, b]$ for all [a, b]. (So for this part, use $\alpha(x) = x$.)
- **b)** Use the same condition to show that $f \in \mathcal{R}(\alpha)$ for all α increasing on [a, b].
- 6. Let $\alpha(x) = \begin{cases} 0 & a \le x \le c \\ 1 & c < x \le b \end{cases}$ Show that $f \in \mathcal{R}(\alpha)$ if and only if f is continuous from the right at x = c.

7. Riemann vs Riemann-Stilches Integration

- **a)** Let α increasing on [a, b] with $x_0 \in [a, b]$ and α continuous at x_0 . Let $f(x_0) = 1$ and f(x) = 0 if $x \neq x_0$. Prove that $f \in \mathcal{R}(\alpha)$ and $\int_a^b f(x) d\alpha = 0$.
- **b)** Suppose that $f(x) \ge 0$, f is continuous on [a, b] and $\int_a^b f(x) dx = 0$. Prove that f(x) = 0 for all $x \in [a, b]$.
- 8. Let $f: (0,1] \to \mathbb{R}$ and $f \in \mathcal{R}[c,1] \forall c > 0$. Define $\int_0^1 f(x) dx = \lim_{c \to 0^+} \int_c^1 f(x) dx$ if the limit exists and is finite. If $f \in \mathcal{R}[0,1]$, show that this definition agrees with the usual one.