Math 411 Homework 3 Answers

Show that if f(z) is a function whose derivative f’(z) is monotonic, then f’(x) is
continuous. Hint: use the fact that derivatives satisfy IVT.

Case 1: Assume that f/(z) exists and that z < y implies that f'(z) < f'(y) (f' is
increasing). Fix c and € > 0 and show that there exists a § > 0 such that c—d < x < ¢+6
implies that f'(c) —e < f'(x) < f'(c) + €. First, let 1 < e (this is necessary because f’
is increasing, but not necessarily strictly increasing). Next, pick y < ¢ arbitrary. Then
F'y) < F'(e) (' is increasing) and either f'(y) < f/(c) — &1 < f'(e) or f(c) — €1 <
f'(y) < f'(c). If the first holds, since f’ satisfies the IVT, there exists ¢ € (y,c¢) with
f'(t) = f'(c) — €1, let ¢ —t = 7. If the second holds, let 8y = ¢ — y. Similarly, pick z
with ¢ < z arbitrarily. Then since f’ is increasing, either f'(¢) < f'(¢) + &1 < f'(2) or
() < f'(2) < f'(c) + €1. Define §y as either s — ¢ with f/(s) = f/'(c) + € if the first
holds or as z — ¢ if the second holds. Then let 6 = min{dy, d2}.

Then if c— 6 <c—01 <x <c+ 6y <c+ 0, then, by all of the above inequalities,

flle)—e< flle) e < flle=01) < fl(x) < flle+d2) < fl(c) +er < f'c) +e
so we are done!

Case 2 is very similar (f’ is now decreasing, so any inequalities involving f’ become >
instead of <. For example, our final inequality becomes

flly—e<fll)—a < flletd) < f@) < flle=0) < fllo)+e < fllc)+e

L’Hopital’s rule Suppose that f is defined in a neighborhood of x and suppose that
f"(x) exists. Show that
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Show by example that the limit may exist even if f”(x) does not (for the example, f’(x)
may not exist either, but f(x) is always defined).

Lets first try to do this without theorems (naively). We know that f”(z) exists, so f/(x)
must exist as well and therefore,
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which is what we wanted to show! So, how to do the ‘somehow’? Well, I didn’t use

the implied hint, which is the title of the problem, namely, use L’Hopital’s rule. Maybe

that’s how I can do this!

Notice that lim fleth)+ flz=h) = 2f(z)
h—0 h?

tiable and therefore differentiable and therefore continuous at x = 0), the limit of the

numerator is limy_,o f(z + h) + f(x — h) — 2f(x) = f(z) + f(z) — 2f(x) = 0 and the

limit of the denominator is limj,_,o h? = 0 so the only remaining condition we need to

check in order to use L’Hopital’s rule on this limit is that the limit of the ratios of the

f'@+h)+ f'(z—h)
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Notice that this looks a lot like the definition of f”(z), namely,
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Now the right half of the sum is just the definition of derivative where we’ve just the
points (x, f’(z)) and ((z — h), f'(x — h)) to define the secant line and difference in y
over difference in z is as above.

Therefore, this is 5(f”(z) + f"(z)) = f"(x) as we wanted to show.

Notice that a combination of the two methods shows that, at least in this case, we
don’t need to take the limits h — 0 and ¢t — 0 separately. In fact, we can even let
t = —h and approach (0,0) on the h — ¢ plane from a single combined direction and
get the same answer (provable by another method) as we would by reducing to the line
h = 0 first and then approaching (0,0) along the ¢ axis (namely lim;_,olimj_(). For
an example why this is so special, look at something like lim limz! = 1. This limit

r—0+ t—0
is only 1 from the particular direction specified and things like switching the limits of
integration give different answers. In particular, approaching from z = —t can give us

lim;_,o(—%)* which isn’t even well defined!

For example, pick a function which is odd but not twice differentiable at x = 0. Then
f(0) =0and f(0+h) = —f(0— h), so the limit becomes lim;,_o 75 = 0, but since f’
is not twice differentiable at 0, f”(0) can’t exist. One easy way to do this is to pick
a function that is not continuous at = = 0, so a piecewise function like f(z) = x + 1
if x >0, f(0) =0and f(r) =2 —1if v < 0. You can also make an odd function
out of any function on [0,1) which has concavity non-zero at = 0 (for example y =

1 — (z — 1)?). For such a function, f/(0) may exist, but f”(0) will not because its left
hand and right hand concavity won’t agree.

Taylor’s theorem Suppose a € R, f is a twice differentiable function on (a, o),
and My, My, My are the least upper bounds of |f(z)|,|f'(z)|,|f”(x)| respectively on
(a,00). Prove that M < 4MoM,. Hint: If h > 0 Taylor’s theorem shows that f(z) =
o (f(x +2h) — f(z)) — hf"(¢) for some ¢ € (z,x + 2h). Hence |f'(z)| < hMs + 2o,



Assume My and M5 are finite.
Taylor’s theorem says that if f is twice differentiable in [a, b], then for any « # 8 € [a, b],
f(B) = f(a) + f(@)(B—a) + @(6 — a)? for some v between o and 3.
Further Taylor polynomials should be unnecessary as we are only comparing bounds on
f.f', and f".
The hint suggests we should be considering (z, x + 2h) as («, 3), so let [4, B] C (a,c0)
and (z,x + 2h) € [A, B]. Then Taylor’s theorem states that

f(z+2h) = f(z) + f'(z)(2h) + 3 £"(¢)(2h)? for some ¢ € (z,z + 2h) or

fl(z) = ﬁ(f(:v—{—Zh)—f(x)—Qf”(g) 2 = W—hf”((). Taking absolute values
gives us

()] = | LI ()| < | LEEZRTD ()] < MostMo gy = Mo p,
which implies that

My < 2o 4 hM, which holds for all 2 > 0.

Apparently, we can choose a particular h = %g and then get

M; < \/% + %Mg = 2/ MyMs5 and hence M12 < 4MyMy (because all of the terms
Mgz

are non-negative, squaring preserves inequalities).

Darboux sums

a) Let f(z) =22 —z andlet P ={0,1,1,3,2}. Compute U(P, f) and L(P, f).

Please excuse any arithmetic mistakes with these problems. I hope there are none, but
it’s hard to be sure. First notice that Ax; = Azy = Axg = Axy = % Also notice
that f(z) = z(z — 1) so has its global min at z = 3 and is decreasing then increasing.
Therefore, M7 = 0,m; = —% My = 0,mo = 1 , Ms = %,mg =0,My =2,my = 350

4
UP,z?—1x) = Ele M;Ax; = 11 and L(P,z% — x) 2?21 m;Ax; = é.

b) Let a(z) = 22. Compute U(P, f,a) and L(P, f,q).

Ao = 1 ,Aag = % Aag = Aa4 Using the M;, m; from part a) above, we get

T
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Integrability of lines

a) Use our integrability condition from class (f € R(«)[a,b] if for all € > 0, there
exists P partition of [a,b] such that U(P, f,a) — L(P, f,a) < €.) to show that
f(z) =3x+ 1€ Rla,b] for all [a,b]. (So for this part, use a(z) = z.)

We basically did this in class, but here are some details. Let [a,b] be any (non-empty)
interval and fix € > 0. We need to show that there exists a partition, and the easiest kind
of partition to describe is one with equally spaced subintervals (called a regular partition)
and then choose the size of the subinterval small based on € (and [a, b]). Also not that our
function is increasing, so if our partition is P = {a = z9, 21,22, ..., Tn—1, Tn, = b}, then
the ith subinterval is [:Ui,l, x;] and M; = 3z; + 1 and m; = 3x;_1 + 1. Let Ax; = b=a

n
Then U(P,3z+1) = >4 (3x1+1+3z2+1+---+3z,+1) = 3= )($ +xo+-Fzp)+n
and L(P,3z+1) = U(3x0+1+3x1+1+ 3z, +1) = 30 “)(x T4 A T1)+n



and U(P,3x +1) — L(P,3x + 1) = S(b Dz — z0) = @(b —a) = 3(1327“)2. To insure
3(b—a)* a)

that this will be less than €, simply let n > . (Remember, that a and b are fixed
constants and we fixed € > 0 as well, so this is a well defined number).

b) Use the same condition to show that f € R(«) for all « increasing on [a, b].

For this one, we will still want to use an equal sized partition (for simplicity), but we
can not cancel nearly so easily!

Again, fix [a,b] and € > 0 and let P = {a = x¢, 21, %2, ..., Tn—1, Ty, = b} be our partition
of [a,b] and notice that we are doing this for a fixed a(x) increasing. Then we can
recycle the M; and m; as above, but A«a; = a(z;) — a(x;—1) this time, and all we can
conclude is that Aa; > 0.

Then

n n

U(P,32+1,0)-L(P,3z+1,0) = Y _(3zi+1)Acq;—» (3zi-1+1)Aq; = 23 —zi_1) (o) —ou(zi1))
=1 =1

Now, writing out this sum (and keeping in mind that P is a regular partition, so
Ti— Tl = IFT“ fpr all 7) we get

U(P, f,a)— L(P, f,a) = a(a(xl) —a(zg) +a(ze) —afz1) + -+ a(zy) —alzp-_1))

which is a telescoping sum, so equal to 322 (a(b) — a(a)), so to make this less than e,
we just need to choose n > 2(b— a)(a(b) — a(a)) and since a, b, €, ov are all fixed, this is
certainly possible, so f € R(«).

<z<
6. Let a(z) = (1) Z; ;i - (f Show that f € R(«) if and only if f is continuous from

the right at x = c.

Let P be a partition of [a,b] such that z;_; = ¢. Then Aay =0—-0=0,...,Aq;—1 =
0-0=0,Aq; =1-0=1,A0;41 =1—-1=0,...,Aq;, = 1 —1 = 0. Therefore,
L(P, f,a) = > p_ympAcay, = m; and U(P, f, o) = > )0 ) MpAcy, = M; where m; =
inf{f(z) | ¢ <z < z;} and M; = sup{f(z) | ¢ < z < x;}. Therefore, f(ff(:r)da =

sup{m; | m; = inf{f(z) | ¢ < = < z;},¢ < z;} and Tff(a:)da = inf{M; | M; =
sup{f(z) | c<x <z}, e <z}

Notice that if ¢ < z; < 2}, then [c,z;] C [c,2}] and therefore m; > m) since we are

taking an infemium over a strictly smaller set and similarly M; < M.

= Assume that for all €1 > 0, there exists P* partition of [a, b] such that U(P*, f,«) —
L(P*, f,a) < €, show that for all € > 0, there exists a 6 > 0 such that c <z <c+46
implies that f(c) — e < f(z) < f(c) + € (namely, f is right continuous at z = c.

Fix € > 0 and pick € > €; > 0. Let P* be such that U(P, f,a)—L(P, f,a) < €;. Let P be
the refinement of P* given by P = P*U{c}. Then U(P, f,a)—L(P, f, ) = M;—m; < €;
where M; and m; are defined as above. Then since ¢ € [c, z;], m; < f(¢) < M;, and
since M; —m; < e1, f(c) —e< f(c)—e1 <m; < f(z) < M; < f(c)+e1 < f(c) +e. Let
0 = x; — ¢ and we are done.

< Assume that for all ¢; > 0, there exists §; > 0 such that ¢ < z < z + §; implies that

fle) — e < f(x) < f(c) + €1. Prove that for all € > 0, there exists a partition P such
that U(P, f,a) — L(P, f,a) < €



Fix e > 0 and let €; = €/2. Then pick 0 < § < d; where 0; is as above. Let P = {a, ¢, c+
9,0}, Then U(P, f,a) =sup{f(z) | c <x < c+d} and L(P, f, a) is the infemium of the
same set. Since for all x € [¢,c+0] C [¢,c+01), f(x) € (f(c) —€/2, f(c)+€/2), we must
have that f(c) —€/2 < m; and M; < f(c) + €¢/2. Therefore, U(P, f,a) — L(P, f,a)) =
M; —m; < f(c) +€/2— (f(c) — €/2) = € which is what we wanted to show.

7. Riemann vs Riemann-Stieltjes Integration

a) Let « increasing on [a,b] with 2 € [a,b] and « continuous at zg. Let f(zo) =1
and f(z) = 0 if z # x¢. Prove that f € R(« andff do = 0.

Since f is continuous away from xy and « increasing is continuous at xg, f € R(«a).
Also, L(P, f,a) = 0 for all partitions P of [a,b]. (To see this, let zy in the ith
subinterval [z;_1,x;]. Since x;—1 < x;, there exists z € [x;_1, x;] with x # z¢, so m; =0
and m; = 0 for i # j, so L(P, f,a) = 0 no matter what « is.) Therefore, fff(x) da =0

and since f € R(« ffd —ffd —f f da =0.

b) Suppose that f(z) > 0, f is continuous on [a,b] and f; f(z) dz = 0. Prove that
f(z) =0 for all z € [a, b].

Proof by contradiction. Assume that there exists 2.0 € [a,b] with f(zo) > 0. Since f is
continuous on [a, b], there exists 0 > 0 such that |z—=zo| < § implies that | f(x)— f(zo)| <

@. Let P be a partition of [a,b] such that x;—1 = 29 — ¢ and x; = 29 + . Then

L(P, f) = mlszl + moAxy + - +m20 + -+ + mpAx, < @5 (since my > 0,
Azy, > 0 and £20) xo < f( ) < 3f(x°) for all zg — 6 < x < xp+ §). Therefore, f;f(x)d:): =
sup{L(P, f) | P} > 1f(x0)§ > 0 which is a contradiction to our assumption that
f;f(:n)d;r = fff(:v)dx =0

1 1
8. Let f:(0,1] = Rand f € R[e,1] V ¢ > 0. Define / f(z) de = 1ir(1)a+/ f(z)dx if the
0 c— c

limit exists and is finite. If f € R|0, 1], show that this definition agrees with the usual
one.

Since f € R0, 1], for all ¢y > 0, there exists a Py partition of [0, 1] such that U(FPp, f) —
L(Py, f) < €. If necessary, replace Py with a partition that contains ¢ and let P, =
PyNc,1]. Then we get

U(Po, f) —eo < L(Po, f) < L(P., f) S U(P,., f) S U(Po, f) < L(Po, f) + €o-

Also, since f € R|0,1], f must be bounded on [0, 1] and let M be an upper bound for
|f ()] on 0, 1].
Fix € > 0 and let ¢g = €¢/4 and § = ;57 and Py and P, as above with z; = c.

Let Py = Py N[0, ¢] and notice that we have specifically chosen ¢ so that

—€/4 = —Mm < —M(c—0) < L(Poc, f) < /0 f(z)dr <U(Poc, f) < M(c—0) < Mm =e€/4.

Then
U(Po, f) —€/4 < L(Po, f) < fo x)dx < U(Py, f) < L(Py, f) + €/4 and

U(Pe, f) = €/4 < L(P., f) < [ f(x)dx < U(P., f) < L(Pe, f) + €/4,
Multiplying the second inequality by negative one gives



—L(P.,f) —€¢/4 < —fcl f(z)dz < =U(P,, f) + ¢/4, and adding the first and last in-
equalities gives

U(Po, f) — L(P., f) — ¢/2 < [} f(a)dz — [ f(z)dzw < L(Py, f) — U(P., f) +¢/2

Notice that U(Po, f) — L(PC, f) = MiAzy+---+ M;Az; + (Mi+1 — m@'+1)Al'i+1 +---+
(Mn _mn)Axn = U(Pwa) + (U(Paf) _L(ow)) > _6/4_6/4'

Similarly, L(Py, f) — U(Pe, f) = miAxy + - - + miAx; + (mip1 — Mip1) Az + -+ +
(mp — My)Azy = L(Poc, f) — (U(Fe, [) — L(Pe, f)) < €/4+¢€/4.

Putting all of these together gives

—e< fol f(x)dz — fcl f(z)dr < e which was what we wanted to show.



