
Math 411 Homework 3 Answers

1. Show that if f(x) is a function whose derivative f ′(x) is monotonic, then f ′(x) is
continuous. Hint: use the fact that derivatives satisfy IVT.

Case 1: Assume that f ′(x) exists and that x < y implies that f ′(x) ≤ f ′(y) (f ′ is
increasing). Fix c and ε > 0 and show that there exists a δ > 0 such that c−δ < x < c+δ
implies that f ′(c)− ε < f ′(x) < f ′(c) + ε. First, let ε1 < ε (this is necessary because f ′

is increasing, but not necessarily strictly increasing). Next, pick y < c arbitrary. Then
f ′(y) ≤ f ′(c) (f ′ is increasing) and either f ′(y) ≤ f ′(c) − ε1 ≤ f ′(c) or f ′(c) − ε1 ≤
f ′(y) ≤ f ′(c). If the first holds, since f ′ satisfies the IVT, there exists t ∈ (y, c) with
f ′(t) = f ′(c) − ε1, let c − t = δ1. If the second holds, let δ1 = c − y. Similarly, pick z
with c < z arbitrarily. Then since f ′ is increasing, either f ′(c) ≤ f ′(c) + ε1 ≤ f ′(z) or
f ′(c) ≤ f ′(z) ≤ f ′(c) + ε1. Define δ2 as either s − c with f ′(s) = f ′(c) + ε1 if the first
holds or as z − c if the second holds. Then let δ = min{δ1, δ2}.
Then if c− δ ≤ c− δ1 < x < c+ δ2 ≤ c+ δ, then, by all of the above inequalities,

f ′(c)− ε < f ′(c)− ε1 ≤ f ′(c− δ1) ≤ f ′(x) ≤ f ′(c+ δ2) ≤ f ′(c) + ε1 < f ′(c) + ε

so we are done!

Case 2 is very similar (f ′ is now decreasing, so any inequalities involving f ′ become ≥
instead of ≤. For example, our final inequality becomes

f ′(c)− ε < f ′(c)− ε1 ≤ f ′(c+ δ1) ≤ f ′(x) ≤ f ′(c− δ2) ≤ f ′(c) + ε1 < f ′(c) + ε

2. L’Hôpital’s rule Suppose that f is defined in a neighborhood of x and suppose that
f ′′(x) exists. Show that

lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
= f ′′(x)

Show by example that the limit may exist even if f ′′(x) does not (for the example, f ′(x)
may not exist either, but f(x) is always defined).

Lets first try to do this without theorems (naively). We know that f ′′(x) exists, so f ′(x)
must exist as well and therefore,

f ′′(x) = lim
t→0

limh→0
f((x+t)+h)−f(x+t)

h − limh→0
f(x+h)−f(x)

h

t

f ′′(x) = lim
t→0

limh→0

(
f((x+t+h)−f(x+t)

h − f(x+h)−f(x)
h

)
t

f ′′(x) = lim
t→0

limh→0

(
f((x+t+h)−f(x+t)−f(x+h)+f(x)

h

)
t



f ′′(x) = lim
t→0

lim
h→0

f((x+ t+ h)− f(x+ t)− f(x+ h) + f(x)

h · t
then, somehow, let t = −h, and

f ′′(x) = lim
h→0

f((x)− f(x− h)− f(x+ h) + f(x)

−h2
= lim

h→0

f(x+ h) + f(x− h)− 2f(x)

h2

which is what we wanted to show! So, how to do the ‘somehow’? Well, I didn’t use
the implied hint, which is the title of the problem, namely, use L’Hôpital’s rule. Maybe
that’s how I can do this!

Notice that lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
is a limit where (since f is twice differen-

tiable and therefore differentiable and therefore continuous at x = 0), the limit of the
numerator is limh→0 f(x + h) + f(x − h) − 2f(x) = f(x) + f(x) − 2f(x) = 0 and the
limit of the denominator is limh→0 h

2 = 0 so the only remaining condition we need to
check in order to use L’Hôpital’s rule on this limit is that the limit of the ratios of the

derivatives exists. Namely, lim
h→0

f ′(x+ h) + f ′(x− h)

2h
exists.

Notice that this looks a lot like the definition of f ′′(x), namely,

lim
h→0

f ′(x+ h) + f ′(x− h)(−1)

2h
=

1

2
lim
h→0

(
f ′(x+ h)− f ′(x) + f ′(x)− f ′(x− h)

h

)
=

1

2

(
lim
h→0

f ′(x+ h)− f ′(x)

h
+ lim
h→0

f ′(x)− f ′(x− h)

h

)
Now the right half of the sum is just the definition of derivative where we’ve just the
points (x, f ′(x)) and ((x − h), f ′(x − h)) to define the secant line and difference in y
over difference in x is as above.

Therefore, this is 1
2(f ′′(x) + f ′′(x)) = f ′′(x) as we wanted to show.

Notice that a combination of the two methods shows that, at least in this case, we
don’t need to take the limits h → 0 and t → 0 separately. In fact, we can even let
t = −h and approach (0, 0) on the h − t plane from a single combined direction and
get the same answer (provable by another method) as we would by reducing to the line
h = 0 first and then approaching (0, 0) along the t axis (namely limt→0 limh→0). For
an example why this is so special, look at something like lim

x→0+
lim
t→0

xt = 1. This limit

is only 1 from the particular direction specified and things like switching the limits of
integration give different answers. In particular, approaching from x = −t can give us
limt→0(−t)t which isn’t even well defined!

For example, pick a function which is odd but not twice differentiable at x = 0. Then
f(0) = 0 and f(0 + h) = −f(0 − h), so the limit becomes limh→0

0
h2

= 0, but since f ′

is not twice differentiable at 0, f ′′(0) can’t exist. One easy way to do this is to pick
a function that is not continuous at x = 0, so a piecewise function like f(x) = x + 1
if x > 0, f(0) = 0 and f(x) = x − 1 if x < 0. You can also make an odd function
out of any function on [0, 1) which has concavity non-zero at x = 0 (for example y =√

1− (x− 1)2). For such a function, f ′(0) may exist, but f ′′(0) will not because its left
hand and right hand concavity won’t agree.

3. Taylor’s theorem Suppose a ∈ R, f is a twice differentiable function on (a,∞),
and M0,M1,M2 are the least upper bounds of |f(x)|, |f ′(x)|, |f ′′(x)| respectively on
(a,∞). Prove that M2

1 ≤ 4M0M2. Hint: If h > 0 Taylor’s theorem shows that f ′(x) =
1
2h (f(x+ 2h)− f(x))− hf ′′(ζ) for some ζ ∈ (x, x+ 2h). Hence |f ′(x)| ≤ hM2 + M0

h .



Assume M0 and M2 are finite.

Taylor’s theorem says that if f is twice differentiable in [a, b], then for any α 6= β ∈ [a, b],

f(β) = f(α) + f ′(α)(β − α)1 + f ′′(γ)
2 (β − α)2 for some γ between α and β.

Further Taylor polynomials should be unnecessary as we are only comparing bounds on
f, f ′, and f ′′.

The hint suggests we should be considering (x, x+ 2h) as (α, β), so let [A,B] ⊂ (a,∞)
and (x, x+ 2h) ∈ [A,B]. Then Taylor’s theorem states that

f(x+ 2h) = f(x) + f ′(x)(2h) + 1
2f
′′(ζ)(2h)2 for some ζ ∈ (x, x+ 2h) or

f ′(x) = 1
2h(f(x+2h)−f(x)−2f ′′(ζ)h2) = f(x+2h)−f(x)

2h −hf ′′(ζ). Taking absolute values
gives us

|f ′(x)| = |f(x+2h)−f(x)
2h −hf ′′(ζ)| ≤ |f(x+2h)−f(x)

2h |+|hf ′′(ζ)| ≤ M0+M0
2h +hM2 = M0

h +hM2

which implies that

M1 ≤ M0
h + hM2 which holds for all h > 0.

Apparently, we can choose a particular h =
√

M0
M2

and then get

M1 ≤ M0√
M0
M2

+
√

M0
M2
M2 = 2

√
M0M2 and hence M2

1 ≤ 4M0M2 (because all of the terms

are non-negative, squaring preserves inequalities).

4. Darboux sums

a) Let f(x) = x2 − x and let P = {0, 12 , 1,
3
2 , 2}. Compute U(P, f) and L(P, f).

Please excuse any arithmetic mistakes with these problems. I hope there are none, but
it’s hard to be sure. First notice that ∆x1 = ∆x2 = ∆x3 = ∆x4 = 1

2 . Also notice
that f(x) = x(x − 1) so has its global min at x = 1

2 and is decreasing then increasing.
Therefore, M1 = 0,m1 = −1

4 ,M2 = 0,m2 = −1
4 ,M3 = 3

4 ,m3 = 0,M4 = 2,m4 = 3
4 , so

U(P, x2 − x) =
∑4

i=1Mi∆xi = 11
8 and L(P, x2 − x) =

∑4
i=1mi∆xi = 1

8 .

b) Let α(x) = x2. Compute U(P, f, α) and L(P, f, α).

∆α1 = 1
4 ,∆α2 = 3

4 ,∆α3 = 5
4 ,∆α4 = 7

4 . Using the Mi,mi from part a) above, we get

U(P, x2 − x, x2) =
∑4

i=1Mi∆αi = 0 · 14 + 0 · 34 + 3
4 ·

5
4 + 2 · 74 = 71

16 and

L(P, x2 − x, x2) =
∑4

i=1mi∆αi = −1
4 ·

1
4 +−1

4 ·
3
4 + 0 · 54 + 3

4 ·
7
4 = 17

16

5. Integrability of lines

a) Use our integrability condition from class (f ∈ R(α)[a, b] if for all ε > 0, there
exists P partition of [a, b] such that U(P, f, α) − L(P, f, α) < ε.) to show that
f(x) = 3x+ 1 ∈ R[a, b] for all [a, b]. (So for this part, use α(x) = x.)

We basically did this in class, but here are some details. Let [a, b] be any (non-empty)
interval and fix ε > 0. We need to show that there exists a partition, and the easiest kind
of partition to describe is one with equally spaced subintervals (called a regular partition)
and then choose the size of the subinterval small based on ε (and [a, b]). Also not that our
function is increasing, so if our partition is P = {a = x0, x1, x2, ..., xn−1, xn = b}, then
the ith subinterval is [xi−1, xi] and Mi = 3xi + 1 and mi = 3xi−1 + 1. Let ∆xi = b−a

n .

Then U(P, 3x+1) = b−a
n (3x1+1+3x2+1+ · · ·+3xn+1) = 3(b−a)

n (x1+x2+ · · ·+xn)+n

and L(P, 3x+1) = b−a
n (3x0+1+3x1+1+· · ·+3xn−1+1) = 3(b−a)

n (x0+x1+· · ·+xn−1)+n



and U(P, 3x+ 1)− L(P, 3x+ 1) = 3(b−a)
n (xn − x0) = 3(b−a)

n (b− a) = 3(b−a)2
n . To insure

that this will be less than ε, simply let n > 3(b−a)2
ε . (Remember, that a and b are fixed

constants and we fixed ε > 0 as well, so this is a well defined number).

b) Use the same condition to show that f ∈ R(α) for all α increasing on [a, b].

For this one, we will still want to use an equal sized partition (for simplicity), but we
can not cancel nearly so easily!

Again, fix [a, b] and ε > 0 and let P = {a = x0, x1, x2, ..., xn−1, xn = b} be our partition
of [a, b] and notice that we are doing this for a fixed α(x) increasing. Then we can
recycle the Mi and mi as above, but ∆αi = α(xi) − α(xi−1) this time, and all we can
conclude is that ∆αi > 0.

Then

U(P, 3x+1, α)−L(P, 3x+1, α) =
n∑
i=1

(3xi+1)∆αi−
n∑
i=1

(3xi−1+1)∆αi =
n∑
i=1

3(xi−xi−1)(α(xi)−α(xi−1))

Now, writing out this sum (and keeping in mind that P is a regular partition, so
xi − xi−1 = b−a

n fpr all i) we get

U(P, f, α)−L(P, f, α) = 3
b− a
n

(α(x1)−α(x0) +α(x2)−α(x1) + · · ·+α(xn)−α(xn−1))

which is a telescoping sum, so equal to 3 b−an (α(b)− α(a)), so to make this less than ε,
we just need to choose n > 3

ε (b− a)(α(b)−α(a)) and since a, b, ε, α are all fixed, this is
certainly possible, so f ∈ R(α).

6. Let α(x) =

{
0 a ≤ x ≤ c
1 c < x ≤ b Show that f ∈ R(α) if and only if f is continuous from

the right at x = c.

Let P be a partition of [a, b] such that xi−1 = c. Then ∆α1 = 0 − 0 = 0, ...,∆αi−1 =
0 − 0 = 0,∆αi = 1 − 0 = 1,∆αi+1 = 1 − 1 = 0, ...,∆αn = 1 − 1 = 0. Therefore,
L(P, f, α) =

∑n
k=1mk∆αk = mi and U(P, f, α) =

∑n
k=1Mk∆αk = Mi where mi =

inf{f(x) | c ≤ x ≤ xi} and Mi = sup{f(x) | c ≤ x ≤ xi}. Therefore,
∫ b
a f(x)dα =

sup{mi | mi = inf{f(x) | c ≤ x ≤ xi}, c < xi} and
∫ b
a f(x)dα = inf{Mi | Mi =

sup{f(x) | c ≤ x ≤ xi}, c < xi}
Notice that if c < xi < x′i, then [c, xi] ( [c, x′i] and therefore mi ≥ m′i since we are
taking an infemium over a strictly smaller set and similarly Mi ≤M ′i .
⇒ Assume that for all ε1 > 0, there exists P ∗ partition of [a, b] such that U(P ∗, f, α)−
L(P ∗, f, α) < ε̃, show that for all ε > 0, there exists a δ > 0 such that c ≤ x < c + δ
implies that f(c)− ε < f(x) < f(c) + ε (namely, f is right continuous at x = c.

Fix ε > 0 and pick ε > ε1 > 0. Let P ∗ be such that U(P, f, α)−L(P, f, α) < ε1. Let P be
the refinement of P ∗ given by P = P ∗∪{c}. Then U(P, f, α)−L(P, f, α) = Mi−mi < ε1
where Mi and mi are defined as above. Then since c ∈ [c, xi], mi ≤ f(c) ≤ Mi, and
since Mi −mi < ε1, f(c)− ε < f(c)− ε1 ≤ mi ≤ f(x) ≤Mi ≤ f(c) + ε1 < f(c) + ε. Let
δ = xi − c and we are done.

⇐ Assume that for all ε1 > 0, there exists δ1 > 0 such that c ≤ x < x+ δ1 implies that
f(c) − ε1 < f(x) < f(c) + ε1. Prove that for all ε > 0, there exists a partition P such
that U(P, f, α)− L(P, f, α) < ε.



Fix ε > 0 and let ε1 = ε/2. Then pick 0 < δ < δ1 where δ1 is as above. Let P = {a, c, c+
δ, b}. Then U(P, f, α) = sup{f(x) | c ≤ x ≤ c+ δ} and L(P, f, α) is the infemium of the
same set. Since for all x ∈ [c, c+ δ] ⊂ [c, c+ δ1), f(x) ∈ (f(c)− ε/2, f(c)+ ε/2), we must
have that f(c) − ε/2 < mi and Mi < f(c) + ε/2. Therefore, U(P, f, α) − L(P, f, α) =
Mi −mi < f(c) + ε/2− (f(c)− ε/2) = ε which is what we wanted to show.

7. Riemann vs Riemann-Stieltjes Integration

a) Let α increasing on [a, b] with x0 ∈ [a, b] and α continuous at x0. Let f(x0) = 1

and f(x) = 0 if x 6= x0. Prove that f ∈ R(α) and
∫ b
a f(x) dα = 0.

Since f is continuous away from x0 and α increasing is continuous at x0, f ∈ R(α).
Also, L(P, f, α) = 0 for all partitions P of [a, b]. (To see this, let x0 in the ith
subinterval [xi−1, xi]. Since xi−1 < xi, there exists x ∈ [xi−1, xi] with x 6= x0, so mi = 0

and mj = 0 for i 6= j, so L(P, f, α) = 0 no matter what α is.) Therefore,
∫ b
a f(x) dα = 0

and since f ∈ R(α),
∫ b
a f dα =

∫ b
a f dα =

∫ b
a f dα = 0.

b) Suppose that f(x) ≥ 0, f is continuous on [a, b] and
∫ b
a f(x) dx = 0. Prove that

f(x) = 0 for all x ∈ [a, b].

Proof by contradiction. Assume that there exists x 0 ∈ [a, b] with f(x0) > 0. Since f is
continuous on [a, b], there exists δ > 0 such that |x−x0| < δ implies that |f(x)−f(x0)| <
f(x0)

2 . Let P be a partition of [a, b] such that xi−1 = x0 − δ and xi = x0 + δ. Then

L(P, f) = m1∆x1 + m2∆x2 + · · · + mi2δ + · · · + mn∆xn ≤ f(x0)
2 δ (since mk ≥ 0,

∆xk > 0 and f(x0)
2 ≤ f(x) ≤ 3f(x0)

2 for all x0 − δ ≤ x ≤ x0 + δ). Therefore,
∫ b
a f(x)dx =

sup{L(P, f) | P} ≥ 1
2f(x0)δ > 0 which is a contradiction to our assumption that∫ b

a f(x)dx =
∫ b
a f(x)dx = 0

8. Let f : (0, 1] → R and f ∈ R[c, 1] ∀ c > 0. Define

∫ 1

0
f(x) dx = lim

c→0+

∫ 1

c
f(x)dx if the

limit exists and is finite. If f ∈ R[0, 1], show that this definition agrees with the usual
one.

Since f ∈ R[0, 1], for all ε0 > 0, there exists a P0 partition of [0, 1] such that U(P0, f)−
L(P0, f) < ε0. If necessary, replace P0 with a partition that contains c and let Pc =
P0 ∩ [c, 1]. Then we get

U(P0, f)− ε0 < L(P0, f) ≤ L(Pc, f) ≤ U(Pc, f) ≤ U(P0, f) < L(P0, f) + ε0.

Also, since f ∈ R[0, 1], f must be bounded on [0, 1] and let M be an upper bound for
|f(x)| on [0, 1].

Fix ε > 0 and let ε0 = ε/4 and δ = ε
4M and P0 and Pc as above with xi = c.

Let P0c = P0 ∩ [0, c] and notice that we have specifically chosen c so that

−ε/4 = −M ε

4M
< −M(c−0) ≤ L(P0c, f) ≤

∫ c

0
f(x)dx ≤ U(P0c, f) ≤M(c−0) < M

ε

4M
= ε/4.

Then

U(P0, f)− ε/4 < L(P0, f) ≤
∫ 1
0 f(x)dx ≤ U(P0, f) < L(P0, f) + ε/4 and

U(Pc, f)− ε/4 < L(Pc, f) ≤
∫ 1
c f(x)dx ≤ U(Pc, f) < L(Pc, f) + ε/4,

Multiplying the second inequality by negative one gives



−L(Pc, f) − ε/4 < −
∫ 1
c f(x)dx < −U(Pc, f) + ε/4, and adding the first and last in-

equalities gives

U(P0, f)− L(Pc, f)− ε/2 <
∫ 1
0 f(x)dx−

∫ 1
c f(x)dx < L(P0, f)− U(Pc, f) + ε/2

Notice that U(P0, f)−L(Pc, f) = M1∆x1 + · · ·+Mi∆xi + (Mi+1−mi+1)∆xi+1 + · · ·+
(Mn −mn)∆xn = U(P0c, f) + (U(Pc, f)− L(Pc, f)) > −ε/4− ε/4.

Similarly, L(P0, f) − U(Pc, f) = m1∆x1 + · · · + mi∆xi + (mi+1 −Mi+1)∆xi+1 + · · · +
(mn −Mn)∆xn = L(P0c, f)− (U(Pc, f)− L(Pc, f)) < ε/4 + ε/4.

Putting all of these together gives

−ε <
∫ 1
0 f(x)dx−

∫ 1
c f(x)dx < ε which was what we wanted to show.


