- **1.** Prove that if α is continuous on [a, b] and f is monotonic, then $f \in \mathcal{R}(\alpha)$.
- **2.** Let V be a Vitali set (a subset of [0, 1] containing exactly one element from each of the equivalence classes under $a \sim b$ if $a b \in \mathbb{Q}$). Prove that V is unmeasurable.
- **3.** Prove that in any σ -algebra, $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$.
- 4. Prove that the Borel σ -algebra of \mathbb{R}^1 (the smallest σ -algebra containing all of the open sets) is the same as the smallest σ -algebra containing all of the open intervals.
- **5.** Let $\lambda^*(E) = \inf\{\sum_{n=1}^{\infty} (b_n a_n) \mid E \subset \bigcup_{n=1}^{\infty} (a_n, b_n)\}$. Prove that if $A \subset B$, then $\lambda^*(A) \leq \lambda^*(B)$ and that λ^* is countably sub-additive.
- 6. Lebesgue measure Let \mathcal{L} be the Lebesgue σ -algebra
 - a) Prove that all sets of Lebesgue outer measure zero are in \mathcal{L} .
 - **b)** Prove that the Cantor (middle 1/3) set is in \mathcal{L} .
- 7. Riemann Lebesgue theorem Let $f : [a, b] \to \mathbb{R}$ bounded and let $A \subset [a, b]$ be the set of discontinuities of f and $M = \sup\{f(x) \mid x \in [a, b] \text{ and } m = \inf\{f(x) \mid x \in [a, b]\}$.
 - a) Define $\operatorname{osc}(f;c) = \lim_{h \to 0^+} \sup\{|f(z) f(y)| \mid y, z \in (c-h, c+h) \cap [a, b]\}$. Prove that $\operatorname{osc}(f;c) = 0$ if and only if f is continuous at x = c.
 - **b)** Let $A_s = \{x \in [a,b] \mid \operatorname{osc}(f,x) \geq s\}$. Prove that $A_s \subset [a,b]$ is compact. Hint: notice that the definition of the osc is basically the smallest ϵ for which continuity fails.
 - c) Fix $\epsilon > 0$. Assume that $\lambda^*(A) = 0$ where λ^* is the Lebesgue outer measure. Show there exists a finite collection of intervals $\{I_1, I_2, ..., I_n\}$ with $I_i = (a_i, b_i)$ such that $A_{\frac{\epsilon}{2(b-a)}} \subset \bigcup_{i=1}^n I_i$ and $\sum_{i=1}^n b_i a_i < \frac{\epsilon}{2(M-m)}$.
 - **d)** Prove that there exists a finite cover of $[a, b] \bigcup I_i$ by sets of the form $B(x, \delta_x)$ such that for all $y, z \in B(x, \delta_x), |f(y) f(z)| < \frac{\epsilon}{2(b-a)}$.
 - e) Combining parts c) and d), we get an open cover of [a, b]. Prove that there exists a partition $P = \{x_0, x_1, ..., x_n\}$ of [a, b] such that each $[x_{i-1}, x_i]$ is contained in one of the open sets of our cover.
 - f) For the subintervals contained in an I_i , use M and m for each of the M_i and m_i to show that together, these subintervals contribute $< \epsilon/2$ to the total of U(P, f) L(P, f).
 - g) Use your inequality from part d) to show that the subintervals contained in the open sets of the form $B(x, \delta_x)$ together also contribute $< \epsilon/2$ to the total of U(P, f) L(P, f).
 - **h)** Conclude that if $\lambda^*(A) = 0$, then $f \in \mathcal{R}[a, b]$.
 - i) Let $A_{\frac{1}{k}}$ defined as in b), so $A = \bigcup_{k \in \mathbb{N}} A_{\frac{1}{k}}$, fix $\epsilon > 0$ and $k \in \mathbb{N}$. Assume that $f \in \mathcal{R}[a, b]$. Choose P partition of [a, b] with $U(P, f) L(P, f) < \frac{\epsilon}{2k}$. Show that the contribution to U(P, f) L(P, f) from the subintervals of P whose intersection with $A_{\frac{1}{k}}$ is greater than or equal to $\frac{1}{k}$ times the sum of their Δx_i s and therefore $A_{\frac{1}{k}}$ can be covered by intervals whose total length is less than $\epsilon/2$.
 - **j**) Conclude that $f \in \mathcal{R}[a, b]$ implies that the measure of A is zero.