
Math 411 Homework 4 Due Wednesday, March 30

1. Prove that if α is continuous on [a, b] and f is monotonic, then f ∈ R(α).

Usually we would need to show that for all ε > 0, there exists P partition of [a, b] such
that U(P, f, α)−L(P, f, α) < ε. However, in this case, since α is no longer required to be
increasing, it is perfectly possible that ∆αi ≤ 0, so it is no longer necessarily true that
U(P, f, α) ≥ L(P, f, α). However, we can still show that −ε < U(P, f, α)−L(P, f, α) < ε
which is what we will do. That is, we want to show that for some P = {x0, x1, ..., xn},
it holds that −ε <

∑n
k=1(Mi−mi)∆αi < ε where Mi = sup{f(x) | xi−1 ≤ x ≤ xi} and

mi = inf{f(x) | xi−1 ≤ x ≤ xi} and ∆αi = α(xi)− α(xi−1).

Fix ε > 0. Since f is assumed to be monotonic, WLOG assume that f is increasing (if
not, replace f by −f). Therefore, since f is increasing, Mi = f(xi) and mi = f(xi−1) for
all i. Also, since α is continuous on a closed bounded interval, α is uniformly continuous
on [a, b], so for every ε̃ > 0, there exists a δ̃ > 0 such that |x− y| < δ̃ with x, y ∈ [a, b]
implies that |α(x)− α(y)| < ε̃ or −ε̃ < α(x)− α(y) < ε̃.

Recall, we are looking to find P = {x0, x1, ..., xn} such that

n∑
k=1

(f(xi)− f(xi−1)) (α(xi)− α(xi−1)) < ε.

The plan is to bound α(xi)−α(xi−1) with a suitable bound that is the same for all of the
subintervals and then use the fact that the sequence without the ∆αis is a telescoping
sequence.

Let ε̃ = ε
f(b)−f(a) which gives us a δ̃ a above. Choose P such that ∆xi < δ̃ for all

i = 1, ..., n. Then −ε/(f(b)−f(a)) < α(xi)−α(xi−1) < ε/(f(b)−f(a)) for all i = 1, ..., n,
so

−ε
f(b)− f(a)

(f(xi)−f(xi−1)) < (f(xi)−f(xi−1))(α(xi)−α(xi−1)) < (f(xi)−f(xi−1))
ε

f(b)− f(a))
.

Therefore,

−ε
f(b)− f(a)

n∑
k=1

f(xi)−f(xi−1) < U(P, f, α)−L(P, f, α) <
ε

f(b)− f(a)

n∑
k=1

f(xi)−f(xi−1)

However,
∑n

k=1 f(xi)−f(xi−1) = f(x1)−f(x0)+f(x2)−f(x1)+· · ·+f(xn)−f(xn−1) =
f(b)− f(a) is a telescoping sum, so

−ε < U(P, f, α)− L(P, f, α) < ε

which is what we wanted to show.

2. Let V be a Vitali set (a subset of [0, 1] containing exactly one element from each of
the equivalence classes under a ∼ b if a− b ∈ Q). Prove that V is unmeasurable.

Let α ∈ R and α be the equivalence class of α under the specified relation. Then V
contains exactly one element in α∩[0, 1] by definition. Call that single element 0 ≤ a ≤ 1
and let Q = Q ∩ [−1, 1].

Claim: a+Q := {a+ q | q ∈ Q} ⊃ α ∩ [0, 1].



Let b ∈ α ∩ [0, 1]. Then b = α+ p
q for some p, q ∈ Z with 0 ≤ b ≤ 1. Since a ∈ α ∩ [0, 1]

as well, there exist p′, q′ ∈ Z with a = α + p′

q′ and 0 ≤ a ≤ 1. In other words −1 ≤
−α− p′

q′ ≤ 0 so −1 ≤ p
q −

p′

q′ ≤ 1 and b = α+ p
q = a− p′

q′ + p
q = a+ q for q = p

q −
p′

q′ .

Using this claim, we see that V +Q = {a+ q | a ∈ V, q ∈ Q} contains all of [0, 1] (since
it contains all of the α ∩ [0, 1] fevery equivalence class). In addition, V + Q ⊂ [−1, 2]
since V ⊂ [0, 1]. Therefore, we have [0, 1] ⊂ V +Q ⊂ [−1, 3].

Let µ be a measure on Σ ⊂ P(R) such that µ([a, b]) = b − a (so, in particular, µ is

countably additive and translation invariant). Notice that V +Q =
⋃
q∈Q

V + q,

1 = µ([0, 1] ≤
∑
q∈Q

µ(V + q) =
∑
q∈Q

µ(V ) ≤ µ([−1, 2]) = 3

Now, if µ(V ) exists, µ(V ) ∈ R≥0 by the last inequality, so let µ(V ) = ε. If ε = 0, the
inequality is 1 ≤ 0 ≤ 3 which is clearly false, and if ε > 0, the inequality is 1 ≤ ∞ ≤ 3
which is also clearly false. Therefore, µ(V ) can not exist.

3. Prove that in any σ-algebra Σ with a measure µ : Σ→ R≥0 ∪ {∞}, that µ(A ∪ B) =
µ(A) + µ(B)− µ(A ∩B).

Since µ is a measure, it must be countably additive, and, in particular, finitely additive.
Namely, if {Ei} ⊂ Σ with Ei∩Ej = ∅ for i 6= j, then µ (

⋃n
i=1Ei) =

∑n
i=1 µ(Ei). Notice

that A = (A−B)∪(A∩B), similarily for B and A∪B = (A−B)∪(B−A)∪(A∩B) are
all unions of disjoint subsets. Therefore, finite additivity gives us µ(A) = µ(A − B) +
µ(A∩B), µ(B) = µ(B−A)+µ(A∩B and µ(A∪B) = µ(A∩Bc)+µ(B∩Ac)+µ(A∩B).
Combining these gives µ(A ∪B) = µ(A)− µ(A ∩B) + µ(B)− µ(A ∩B) + µ(A ∩B) =
µ(A) + µ(B)− µ(A ∩B) which is what we wanted to show.

4. Prove that the Borel σ-algebra of R1 (the smallest σ-algebra containing all of the open
sets) is the same as the smallest σ-algebra containing all of the open intervals.

The difference between the smallest σ-algebra containing all of the open sets and the
smallest σ-algebra containing all of the open intervals is that open sets can be written as
arbitrary unions of open intervals and only countable unions of elements are gaurenteed
to be in a σ-algebra. Therefore, it is enough to show that an artitrary union of open
intervals in R can always be written as a countable union of intervals in R.

Let E =
⋃
α∈I

(aα, bα) be an arbitrary union of intervals in R with aα < bα (so none of

the intervals are empty). Since ∅ 6= (aα, bα) ⊂ R and Q is dense in R, for every α ∈ I,
there exists aα < qα < bα with qα ∈ Q.

Claim: these qαs can be chosen so that α 6= β ⇒ qα 6= qβ.

In particular, we will show that if there exists β ∈ I with (aβ, bβ)∩Q ⊂ {qα | α ∈ I, α 6=
β}, then

⋃
α∈I

(aα, bα) =
⋃

α∈I,α 6=β
(aα, bα). Let J = I − β, so E = ∪α∈J(aα, bα).

Once we prove this claim, it follows that J was in fact countable since we will have
defined a bijection between J and a subset of Q which is countable, so we can conclude
that E can be written as a union of countably many open intervals so must be in the
σ-algebra generated by the open intervals.

Proof of Claim



Assume that we have such a β, so for all q ∈ Q such that aβ < q < bβ there exists α ∈ I
with q = qα (which, in particular, implies that aα < q < bα). Since aα < qα = q < bα,
there must exist εα > 0 such that aα < qα − εα < q < qα + εα < bα and this holds for
every q ∈ (aβ, bβ) ∩ Q. Let εγ = 0 if q 6= qγ , so (qγ − εγ , qγ + εγ) = ∅. Notice that

this implies that (aβ, bβ) ⊂
⋃

α∈I,α 6=β
(qα− εα, qα + εα) ⊂

⋃
α∈I,α 6=β

(aα, bα) which proves our

claim.

5. Let λ∗(E) = inf{
∑∞

n=1(bn − an) | E ⊂
⋃∞
n=1(an, bn)}. Prove that if A ⊂ B, then

λ∗(A) ≤ λ∗(B) and that λ∗ is countably sub-additive.

Assume thatA ⊂ B. Then, {{(an, bn)}∞n=1 | A ⊂
⋃∞
n=1(an, bn)} ⊃ {{(am, bm)}∞m=1 | B ⊂⋃∞

m=1(am, bm)} and since the infemium of a subset is bigger than or equal to the in-
femium of a superset, we get that λ∗(A) ≤ λ∗(B).

Let {Ei}∞i=1 be a collection of disjoint subsets of the real number line. Prove that
λ∗ (

⋃∞
i=1Ei) ≤

∑∞
i=1 λ

∗(Ei) (this is countable subadditivity). Let 1 ≤ i < ∞. Then
λ∗(Ei) = inf{

∑∞
j=1 bij − aij | Ei ⊂

⋃∞
j=1(aij , bij)}. Therefore, by the definition of an

infemium, for all εi > 0, there exists {(aij , bij)}∞j=1 such that Ei ⊂
⋃∞
j=1(aij , bij)} but

λ∗(Ei) ≤
∑∞

j=1 bij − aij < λ∗(Ei) + εi.

Fix ε > 0 and let εi = ε
2i

. Notice that {{(aij , bij)}∞j=1}∞i=1 is a collection of open intervals
covering

⋂∞
i=1Ei, and therefore, λ∗ (

⋃∞
i=1Ei) ≤

∑∞
i=1

∑∞
j=1 bij − aij <

∑∞
i=1(λ

∗(Ei) +
ε
2i

) = (
∑∞

i=1 λ
∗(Ei)) + ε. In other words, λ∗ (

⋃∞
i=1Ei) < (

∑∞
i=1 λ

∗(Ei)) + ε and this
holds for all ε > 0. Therefore, λ∗ (

⋃∞
i=1Ei) ≤

∑∞
i=1 λ

∗(Ei) which is what we wanted to
show.. (Note, disjoint wasn’t actually used for countable subadditivity, but if we want
countable additivity, we will definitely need it!)

6. Lebesgue measure Let L be the Lebesgue σ-algebra

a) Prove that all sets of Lebesgue outer measure zero are in L.

Let E ⊂ R such that λ∗(E) = 0. Show that for all A ⊂ R, λ∗(A) =
λ∗(A ∩ E) + λ∗(A ∩ Ec). We will be using both parts of the previous prob-
lem. Notice that A ∩ E ⊂ E which implies that λ∗(A ∩ E) ≤ λ∗(E) = 0, so
λ∗(A ∩ E) = 0. Similarily, A ∩ Ec ⊂ A, so λ∗(A ∩ Ec) ≤ λ∗(A). In addi-
tion, A ∩ E and A ∩ Ec are disjoint sets whose union is A, so by subadditivity,
λ∗(A) ≤ λ∗(A ∩E) + λ∗(A ∩Ec) = 0 + λ∗(A ∩Ec). This combined with the previous
observation tells us that they are, in fact, equal.

b) Prove that the Cantor (middle 1/3) set is in L.

In a previous homework, we showed that the sum of the removed intervals from the
Cantor middle third set has total length 1 and therefore, the length of the Cantor set
is 0. We can now make a much more formal arguement that says that let Cn be the
nth iterate of the Cantor set. Then for all ε > 0, there exists N such that λ∗(Cn) < ε
for all n ≥ N . Since C =

⋂
n∈NCn, we have that λ∗(C) < ε for all ε > 0 and therefore,

λ∗(C) = 0. To do this, we just need to choose N such that 1
2

2
3

N− 2
3

− 1
3

> 1− ε.

7. Riemann Lebesgue theorem Let f : [a, b] → R bounded and let A ⊂ [a, b] be the
set of discontinuities of f and M = sup{f(x) | x ∈ [a, b] and m = inf{f(x) | x ∈ [a, b]}.

a) Define osc(f ; c) = lim
h→0+

sup{|f(z)−f(y)| | y, z ∈ (c−h, c+h)∩ [a, b]}. Prove that

osc(f ; c) = 0 if and only if f is continuous at x = c.



This is basically just the definition of continuity.

⇒ Assume that lim
h→0+

sup{|f(z) − f(y)| | y, z ∈ (c − h, c + h) ∩ [a, b]} = 0. Since

|f(z) − f(y)| ≥ 0, lim = 0 implies that for all ε̃ > 0, there exists a δ̃ > 0 such that
0 ≤ sup{|f(z) − f(y)|} < ε̃ for all 0 < h < δ̃. This is continuity itself because for any
fixed ε > 0, let ε̃ = ε and let δ = δ̃. Then for all y′, z′ ∈ (c − δ, c + δ) for which f is
defined, |f(z) − f(y) ≤ sup{|f(z) − f(y)|} < ε and since c ∈ (c − δ, c + δ) and f(c)
is defined, we have |f(c) − f(y)| < ε for all y ∈ [a, b] such that y ∈ B(c, δ) which is
continuity.

⇐ Assume that for all ε̃ > 0, there exists δ̃ > 0 such that |x − c| < δ̃ implies that
|f(c) − f(x)| < ε̃. The limit is zero if for all ε > 0, there exists δ > 0 such that
0 < h < δ implies that sup{|f(z) − f(y)|} < ε for all y, z ∈ B(c, δ) ∩ [a, b], so we will
need to show that. To show that the supremium is less than ε, we will need to show
that for all y′, z′ ∈ (c− h, c+ h) ∩ [a, b], |f(y′)− f(z′)| < ε′ < ε.

b) Let As = {x ∈ [a, b] | osc(f, x) ≥ s}. Prove that As ⊂ [a, b] is compact. Hint:
notice that the definition of the osc is basically the smallest ε for which continuity
fails.

We need to show that As is closed (it is clearly bounded). Namely, let y be a limit point
of As, prove that osc(f ; y) ≥ s.
I think Codie was right, I’m way over thinking this. Fix h > 0 and ε > 0. Our goal is
to show that there exists a pair z, w ∈ (y − h, y + h) such that |f(z) − f(w) is greater
than s − ε. This would imply that the supremium of all these values was at least s
and since this would hold for all h > 0, this would imply that the limit h → 0+ of the
supremiums would be at least s (so y ∈ As).
Given this fixed h > 0, since y is a limit point of As, there exists x ∈ (y − h, y + h)
with osc(f ;x) = t ≥ s. This means that for any, ε′ > 0, there exists δ′ > 0 such that
t− ε′ < sup{|f(z)− f(w)| z, w ∈ (x− h′, x+ h′)} < t+ ε′ for all 0 < h/ < δ′ (definition
of a limit). In particular, we can choose h′ such that (x − h′, x + h′) ⊂ (y − h, y + h).
Since the set we are talking about is a supremium (aka least upper bound), we know
that for every ε′′ > 0, there exists a pair z, w ∈ (x − h′, x + h′) such that sup−ε′′ <
|f(z) − f(w)| < sup. Combining these two strings of inequalities with the fact that
t ≥ s, we get s− ε′ − ε′′ ≤ t− ε′ − ε′′ < sup−ε′′ < |f(z)− f(w)| < sup < t+ ε′.

Notice that both ε′ > 0 and ε′′ > 0 were arbitrary, so we can choose them so that
s− ε ≤ s− ε′ − ε′′ and get a pair of points z, w ∈ (x− h′, x+ h′) ⊂ (y − h, y + h) such
that s− ε < |f(z)− f(w)| which is what we wanted to show.

c) Fix ε > 0. Assume that λ∗(A) = 0 where λ∗ is the Lebesgue outer measure. Show
there exists a finite collection of intervals {I1, I2, ..., In} with Ii = (ai, bi) such
that A ε

2(b−a)
⊂

⋃n
i=1 Ii and

∑n
i=1 bi − ai <

ε
2(M−m) .

Fix ε > 0.

Since λ∗(A) = inf{
∑∞

n=1(bn − an) | E ⊂
⋃∞
n=1(an, bn)} = 0, for all ε′ > 0, there exists a

collection of open intervals {In}∞n=1 such that A ⊂
⋃∞
n=1 In and

∑∞
n=1 `(In) < ε′, where

`(Ik) is the length of that open interval (this is since λ∗ is the infemium, so ε′ is not a
lower bound).

Let ε′ = ε
2(M−m) where M and m are defined as in the statement of the problem.

Since A ε
2(b−a)

⊂ A ⊂
⋃∞
i=1 In, the collection {In} form an open cover of A ε

2(b−a)
, and

since As is compact for all s, {In} has a finite subcover. Relabel so that this finite
subcover is {I1, I2, ..., In} with Ik = (ak, bk). Then A ε

2(b−a)
⊂

⋃n
i=1 Ii and

∑n
i=1 `(Ii) =∑n

i=1 bi − ai ≤
∑∞

i=1 `(Ii) < ε′ = ε
2(M−m) , which is what we wanted to show.



d) Prove that there exists a finite cover of [a, b] −
⋃
Ii by sets of the form B(x, δx)

such that for all y, z ∈ B(x, δx), |f(y)− f(z)| < ε
2(b−a) .

Let x ∈ [a, b] −
⋃
Ii. Therefore, osc(f ;x) < ε

2(b−a) since {Ii}ni=1 cover the set where

this is not true. Therefore, osc(f ;x) = limh→0+ sup{|f(z) − f(y)| | y, z ∈ (c − h, c +
h) ∩ [a, b]} = t < ε

2(b−a) , so for all ε′ > 0, there exists δ′ > 0 such that t = ε′ <

sup{|f(z) − f(w)| | z, w ∈ (x − h, x + h)} < t + ε′ for all 0 < h < δ′. Since t < ε
2(b−a)

and ε′ was arbitrary, we can choose ε′ so that t + ε′ < ε
2(b−a) . For this choice of ε′, we

get a δ′ and choose δx > 0 such that δx < δ′ (notice that all of this depended on which
x ∈ [a, b]−

⋃
Ii we are looking at). Therefore, for all y, z ∈ (x− δx, x+ δx) = B(x, δx),

|f(y) − f(z) ≤ sup{|f(z) − f(w)| | z, w ∈ (x − δx, x + δx)} < ε
2(b−a) which is what we

wanted to show.

e) Combining parts c) and d), we get an open cover of [a, b]. Prove that there exists
a partition P = {x0, x1, ..., xp} of [a, b] such that each [xi−1, xi] is contained in
one of the open sets of our cover. (I changed the size of our partition to p because
I had already used n in the statement of part c, and did not mean to imply they
were the same. In fact, they can’t be the same!!)

In the previous part, we produced {B(x, δx)}x∈[a,b]−⋃ Ii which is an open cover of [a, b]−⋃
Ii. Since each Ii is an open interval, and the union of open sets is open, [a, b]−

⋃
Ii =

[a, b]∩ (
⋃
Ii)

c is a closed and bounded subset of R1, so is compact. Therefore, we have a
finite subcover, call it {B(x1, δx1 , ..., B(xm, δxm} which covers [a, b]−

⋃
Ii and combined

with {I1, ..., In} which covers
⋃
Ii, we have a finite open cover of [a, b] (it has n + m

open sets in it) which consists entirely of intervals. Call this open cover U = {Ui}n+mi=1 .

Since we have a set of open intervals which cover all of [a, b], the intervals must overlap
(if Ui ∩ Uj = ∅ for all i 6= j, then either Ui = [a, b], or inf Ui and supUi are not in the
open cover).

Assume that (ai, bi) and (aj , bj) are two such overlapping intervals with ai < a < bi,
aj < bi, and aj < b < bj (see Kirkwood for an illustration). This is the start of an
induction arguement that I’m going to be lazy with and only explain the induction
step. The notation gets horrible if I don’t just start with [a, b] covered with those two
intervals (we would have to construct a sequence of partitions, each one with one more
pair of overlapping sets taken care of). Then [a, 12(aj + bi)] and [12(aj + bi), b] form a
partition where [a, 12(aj + bi)] is in (ai, bi) and [12(aj + bi), b] is in (aj , bj).

The size of our partition p will depend on the arrangement of the overlaps between our
sets.

f) For the subintervals contained in an Ii, use M and m for each of the Mi and
mi to show that together, these subintervals contribute < ε/2 to the total of
U(P, f)− L(P, f).

Let [xi−1, xi] ⊂ Ik for some 1 ≤ i ≤ p and some 1 ≤ k ≤ n. Then the contribution from
that interval to the total of U(P, f)−L(P, f) is (Mi−mi)(xi−xi−1) < (M−m)(bk−ak),
and if two such [xi=−, xi], [xi, xi+1] are both in the same Ik, then they contribute (Mi−
mi)(xi− xi−1) + (Mi+1,mi+1)(xi+1− xi) < (M −m)(xi+1− xi−1) < (M −m)(bk − ak).
Let Let i1, i2, ..., iq be the indicies of intervals contained in the I1, ..., In. Then the total
∆xi1 + ∆xi2 + · · ·+ ∆xiq < (b1− a1) + · · ·+ (bn− an) < ε

2(M−m) by part c, so the total

contribution to U(P, f) − L(P, f) is
∑q

j=1(Mij − mij )∆xij <
∑q

j=1(M − m)∆xij =
(M −m)

∑q
j=1 ∆xij < (M −m) ε

2(M−m) = ε/2



g) Use your inequality from part d) to show that the subintervals contained in the
open sets of the form B(x, δx) together also contribute < ε/2 to the total of
U(P, f)− L(P, f).

We proved in part d) that for all y, z ∈ B(xj , δxj ), it holds that |f(y)− f(z)| < ε
2(b−a) .

This implies that if [xi−1, xi] ⊂ B(xj , δxj ), then |Mi −mi| < ε
2(b−a) as well.

Therefore, the contribution of that interval is (Mi−mi)(xi− xi−1) and if i1, ..., ir are a
list of such intervals, then the total contribution amoung all of them to U(P, f)−L(P, f)
is

∑r
k=1(Mik −mik)∆xik <

∑r
k=1

ε
2(b−a)∆xik = ε

2(b−a)
∑r

k=1 ∆xik .

Since the total
∑p

i=1 ∆xi = b − a, it must hold that
∑r

k=1 ∆xik ≤ b − a, so the total
contribution of such intervals is

∑r
k=1(Mik −mik)∆xik <

ε
2(b−a)(b− a) = ε/2

h) Conclude that if λ∗(A) = 0, then f ∈ R[a, b].

Notice that U(P, f)−L(P, f) =
∑p

i=1(Mi−mi)∆xi =
∑q

j=1(Mij−mij )∆xij+
∑r

k=1(Mik−
mik)∆xik where p = q + r because each sub-interval belongs to one fo these two sets.
By part f),

∑q
j=1(Mij −mij )∆xij < ε/2 and by part g),

∑r
k=1(Mik −mik)∆xik < ε/2

and therefore, in total U(P, f) − L(P, f) < ε. Since ε was arbitrary, by the awesome
condition for integrability, f ∈ R[a, b].

i) Let A 1
k

defined as in b), so A =
⋃
k∈NA 1

k
, fix ε > 0 and k ∈ N. Assume that

f ∈ R[a, b]. Choose P partition of [a, b] with U(P, f)− L(P, f) < ε
2k . Show that

the contribution to U(P, f)−L(P, f) from the subintervals of P whose intersection
with A 1

k
is greater than or equal to 1

k times the sum of their ∆xis and therefore

A 1
k

can be covered by intervals whose total length is less than ε/2.

It’s on p. 144 of Kirkwood!! I’m seriously about to kill this homework. I’m sorry it was
so long!!!

j) Conclude that f ∈ R[a, b] implies that the measure of A is zero.


