Math 411 Homework 5 Due Friday, April 22

(Big Quiz 2 on Friday, April 22 also)

- 1. FTC Let $f : [a, b] \to \mathbb{R}$ continuous.
 - a) Prove that $\int_a^x f(t) dt = 0$ for all $x \in [a, b]$ implies that f(x) = 0 for all $x \in [a, b]$.
 - **b)** Prove that $\int_a^x f(t) dt = \int_x^b f(t) dt$ for all $x \in [a,b]$ implies that f(x) = 0 for all $x \in [a,b]$.

2. Integral definition of $\ln x$ and e

- a) Use the definition of $\ln x = \int_1^x \frac{1}{t} dt$ to prove that $\ln(x/y) = \ln x \ln y$ for x, y > 0.
- **b)** Use the definition of e as the number such that $\int_1^e \frac{1}{t} dt = 1$ to prove that $e^{a-b} = e^a/e^b$ and $e^{ab} = (e^a)^b$.
- c) Use the definition from part b) to prove that $\frac{d}{dx}e^x = e^x$.
- **3.** Show that the sequence $f_n(x) = \frac{x}{n}$ converges uniformly on [0, M] for any M, but only pointwise on $[0, \infty)$.
- 4. The sup norm Let X and Y be metric spaces. Define $C_Y(X) = \{f : X \to Y \mid f \text{ is continuous and bounded }\}$. If Y is a normed space with norm $|\cdot|_Y$, then define the sup norm on $C_Y(X)$ to be $||f|| = \sup\{|f(x)|_Y \mid x \in X\}$. Prove that $C_Y(X)$ is a metric space under the metric induced by the sup norm $(d_{\mathcal{C}_Y}(X)(f,g) = ||f-g||)$. What does $B(f,\epsilon)$ look like?
- 5. Let f be a bounded continuous function on [0,1] and define $||f||_n = \left(\int_0^1 |f(x)|^n dx\right)^{1/n}$. Prove that $\lim_{n\to\infty} ||f||_n = ||f||$.
- 6. Prove that the uniform limit of bounded functions is bounded and that the sequence itself is uniformly bounded.
- 7. Pointwise convergence with no uniformly convergent subsequence a) Let $f_n(x) = \frac{1}{nx+1}$. Prove that $f_n \to 0$ pointwise on [0, 1].
 - **b)** Prove that the fact that $f_n(\frac{1}{n}) = \frac{1}{2}$ for all $n \in \mathbb{N}$ implies that there is no subsequence converging uniformly on [0, 1].
- 8. Suppose that $f : \mathbb{R} \to \mathbb{R}$ continuous and let $f_n(x) = f(nx)$ for $n \in \mathbb{N}$. Prove that $\{f_n\}$ equicontinuous implies that f(x) = c for some constant c.
- **9.** Let $f_n : [a,b] \to \mathbb{R}$ such that $\{f_n\}$ is uniformly bounded and $f_n \in \mathcal{R}([a,b])$. Let $F_n(x) = \int_a^x f_n(t) dt$ for $x \in [a,b]$. Prove that there exists a subsequence $\{F_{n_k}\}$ converging uniformly on [a,b].
- **10.** Weierstrass Theorem Let $f : [0,1] \to \mathbb{R}$ and assume that $\int_0^1 f(x)x^n dx = 0$ for all $n \in \mathbb{N}$. Prove that f(x) = 0 for all $x \in [0,1]$.